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Reviewed by David Mayne. 

This is an unusual book, highly original and educative. The adap- 
tive backstepping procedure, developed by the authors as recently 
as 1990, broke many barriers, permitting adaptive controllers to 
be designed for a much wider class of nonlinear systems than 
was previously possible. Since then, the three authors have made 
considerable progress in developing the basic idea to the point where 
it provides well-understood procedures for the design of controllers 
for a wide range of uncertain nonlinear systems. In the first place, 
therefore, the book is a report on new research in an important 
area-adaptive nonlinear control; it “opens a view to the largely 
unexplored landscape of nonlinear systems with uncertainties.” But 
to view it merely as a specialized research monograph would be 
wrong. It is written in a style which, in contrast to many research 
texts, is, with occasional lapses, highly accessible. The approach 
is pedagogical; the reader is gently taught the important advances 
made by the authors, and prior specialized knowledge of nonlinear 
or adaptive control is not required. Reading the text is a pleasure 
rather than a demanding exercise. And in following the text, the 
reader acquires a familiarity with many important concepts. 

The book, because of its originality, cannot be easily placed in 
the context of existing literature on adaptive control. Milestones in 
this literature (at least for this reviewer) include the introduction 
of the self-tuning idea [l], the first proof of stability for systems 
of arbitrary relative degree [2], the dramatic introduction of a new 
approach (error normalization) [3], [4] and its extension to continuous 
time [ 5 ] ,  [6], the development of robust adaptive controllers following 
the revealing simulations in [7], the still-to-be explored possibilities 
offered by hybrid adaptive control, the extension of adaptive control 
to nonlinear systems [8], [9], and backstepping. Error normalization 
marked a change of direction which has permeated most of the 
literature on adaptive control, including that on nonlinear adaptive 
control, where linearization has allowed the import of techniques 
developed initially for linear adaptive control [8] and has permitted 
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controller and estimator design to be decoupled. There are now many 
excellent texts in adaptive control, a recent and excellent example 
being [lo]. The methodology in Nonlinear and Adaptive Control 
Design differs markedly from most of the literature (which, in the 
main, employs error normalization), being closer in spirit to the earlier 
work in [2] where the discerning reader may observe the use of a form 
of backstepping to obtain derivative-free adaptive control of linear 
systems with high relative degree. The elaboration of backstepping as 
a powerful and consistent design methodology for both nonlinear and 
adaptive control emerges for the first time in Nonlinear and Adaptive 
Control Design. 

Grossly simplifying, the major theme can be simply stated: first, 
control of scalar nonlinear systems (or those satisfying a matching 
condition) is simple; second, control of complex systems (of a 
specified structure) can be decomposed into a sequence of simple 
control problems by a process called backstepping. To support the first 
contention, the following points are made in the excellent introduction 
(Chapter 1) and in the introductory material of later chapters. For the 
scalar system 

j: = U + $qX) 
~ ( z )  = (1/2)z2 is a control Lyapunovfunction ( i n f u v ( z )  = 
inf, z (u  + d(z)) < 0) so that a stabilizing state feedback controller 
(e.g., U = a(.) = - 4(z) - cz, yielding V ( z )  = -ex2)  is easily 
determined. This controller is also linearizing since the controlled 
system satisfies x = -ex, but one of the points forcibly made 
by the book is that linearizing control, which has received much 
attention, is often wasteful. Thus, if $(z) = -z3, stabilization easily 
can be seen to be achieved by the effortless controller U = 0 which 
yields V(z)  = -z4 ; linearization requires unnecessary control effort. 
Uncertainty is also easily dealt with in scalar systems. For the system 

j: = U + 4(z)A(t) 

where A(t)  is unknown but uniformly bounded (knowledge of the 
bound is not required), a stabilizing controller U = a(.) for the 
unperturbed system (k = U in this example) is first determined, and 
to it i s  added nonlinear damping of the form --s(z)z, yielding a 
controller U = a ( z )  - s(z)z; the nonlinear damping term is chosen 
to dominate the uncertainty for “large” X. For example, if d(z) = x2 
and A(t) = e-“, the controller U = a(.) = -x stabilizes the 
unperturbed system but allows the state of the perturbed system to 

A 
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diverge to infinity in$nite time if z(0) > 1 + k .  With this controller, 
V = -z2 + A(t)z3, the second term clearly dominating for large 
z, suggesting the possibility of finite escape. However, the addition 
of nonlinear damping of the form s(z) = @(z) yields a controller 
U = -x - z$’(z) which ensures 

V(z)  = -z2 + zd(z)A(t) - z’~$’(z) _< -z2 + A2((t)/4 

the last inequality resulting from completing the square (q2@(z) - 
x$(z)A(t) = [ z d ( x )  - A(t)/2I2 - A2((t)/4). Clearly V < 0 for 
2 @ L = {zIV(z) 5 l\A(.)\lk/8} so that all trajectories of the 
perturbed system are bounded and converge to the compact level set 
L. 

Designing scalar adaptive systems is also relatively simple. The 
system 

A 

k = U + 6’$(z) 

where 6’ is unknown (but constant, satisfying 0 = 0) can be treated as 
an uncertain system if a bound for 0 is known. But better performance 
can often be obtained by estimating 0 using 

6’ = ~(8, z). 

Defining 8 to be equal to 0 - 0. the composite system satisfies 

i = U + 8$(2)  + a$(,) 
e = T ( 8 ,  z) 

where the uncertainty is now e”$(z); with a “good” estimator, 84(z) 
is “smaller” than 6’4(z). This two-dimensional system has- two 
“controls” (U and 7 ) .  A suitable Lyapunov function is V ( z ,  6’) = 
2’12 + i 2 / 2 ,  yielding (since 8 = -8) 

v = xk + 8; = z[u + 84(z)] + 0 [ - T ( O ,  z) + z4(z )] .  

The certainty equivalence control law U = -cz  - 6’$(z) coupled 
with the estimator dynamics ~ ( 8 ,  z) = z $ ( x )  gives V = -cz2 5 0, 
yielding (via the LaSalle stability theorem) global asymptotic stabil- 
ity. This choice of estimator dynamics eliminates terms involving 6’ in 
the equation for V ;  the estimator dynamics are, therefore, determined 
by the choice of Lyapunov function. In contrast, in the estimator 
approach to adaptive control, estimator dynamics are independently 
obtained by setting up a “filtering” problem 

0 = 0  

Y=4Q 
from which an estimator for B may be obtained; $ is known as the 
regressor. For ou; example, if the certainty equivalence controller 
U = -z - $(,)e is employed, then 

i = -z + 4(2)8 

so that z = [4(z)e)p where (.)I denotes [l/(s + 1)](.). An 
appropriate observation equation is 

A 
y = 5 - Zf  - U f  = $(Z)f6’ 

which is obtained by passing both sides of the differential equation 
k = U + e$(.) through the stable filter l/(s + 1). A gradient filter 
takes the form 8 = p ( y  -$) where j j  5 $(z)f8; standard filters result 
in desirable properties of the estimation error (e.g., e“ is uniformly 
bounded and its derivative is either hounded or square integrable). 
But these properties cannot be directly employed in stability analysis 
because of an interesting complication: 4(z)&J # (d(z)8”)f (since 
6’ is time varying); the difference between these two terms (the 
“swapping” _error) affects the response of the controlled system 
(z = ($ (x )6 ’ ) f )  and must, therefore, be properly accounted. Even if 0 
decays to zero exponentially, the closed-loop system k = -z+$(le)e 

may still explode in finite time, as discussed above in the context of 

uncertainty. As in the uncertainty problem, stability may be ensured 
by adding to the certainty equivalence controller appropriate nonlinear 
damping which ov_ercomes, at least for large x, the effect of the 
“uncertainty” 4 ( z ) 0 .  Output feedback control (for nonlinear control, 
control of uncertain systems, and adaptive control) raises similar 
issues, requiring state estimation, possibly in addition to parameter 
estimation. 

The second contention, that an important class of feedback control 
problems can be decomposed into a sequence of scalar problems 
(to which the design procedures mentioned above are applicable), 
is the major theme of the booK, fully addressed in the subsequent 
nine chapters. The procedure employed is backstepping. Backstepping 
essentially applies scalar design procedures iteratively to each (scalar) 
equation in a vector differential equation, yielding in the process 
a Lyapunov function for the transformed system and a stabilizing 
controller. Indeed, backstepping may be profitably regarded as a 
method for sequentially constructing a state transformation such that 
the Lyapunov function for the transformed system has a simple, 
prescribed form such as z: where z is the transformed state. The 
problems addressed include nonlinear control, nonlinear control of 
uncertain systems, and nonlinear adaptive control; both state and 
output feedback are addressed. 

The basic methodology employed is hest approached through 
its application to nonlinear control, addressed in Chapter 2.  The 
following simple system: 

which has many of the features of the more general systems consid- 
ered in the book, serves as an appropriate vehicle for understanding 
the procedure The transformed state is z = ( z 1 ,  z ~ ,  a), where 
z1 = zl,  z2 = z2 - o11(z1) and z3 = 2 3  - a2(zl ,  2 2 ) .  The 
state transformations are determined sequentially as follows With 
21 = XI, we choose VI = zf /2 so that a 

Vl = z1[zz + &(Zl) l .  

A Thechoicezz = a l ( z ~ ) + z ~ ,  a1(21) = - ~ ( z ~ ) - z I  (equivalently, 
z~ = 2 2  - cq(z1)) yields 

VI = -2: + %I22 

which is negative if we neglect momentanly the term 2122 which will 
be dealt with in the next iteration. We have effectively used 2 2  as a 
surrogate control variable and deterrmned the “control” law x2 = 01 

by solving a scalar control problem which ensures that VI < 0 when 
z2 = 0. 

For step 2, we set Vz = z f /2  + 22212 so that 

e2 zz -Z;  + ZlZZ + Z Z [ Z 3  + 42(21, z2) - yl(z1, 2 2 ) ]  

n 
(yl(21, ~ 2 )  = = (8w(zi)/8z1)[z2 + 41(21)]) which we 
see poses a similar problem We therefore choose 2 3  to be the 
surrogate control (for the second differential equation) and set 2 3  = 

(this defines the transformed vanable z3 = 2 3  - az(z1, 2 2 ) ) .  Hence 

A 
O2(21,  2 2 ) + % 3 , 0 2 ( 2 1 ,  2 2 )  = -42(z1, 2 2 ) + Y l ( Z l ,  z2)-z1-z2 

2 2  
v 2  = -21 - z2 + z 2 % 3 .  

For the final step we choose V = V3 = ~ 2 1 / 2 + 2 2 2 / 2 + 2 , ” / 2 ,  yielding 
P . = -  z1 - 2; + z2z3 + z 3 [ U  + 4 3  - 721 

and choose the control law 

U = c y L ( 2 1 ,  z2, 2 3 )  

A 
- - 43(Zl, 2 2 )  2 3 )  + y2(21, z2, z3) - z2 - z 3  
- 
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A where (yz = &) yielding, finally 

P = -2:  - 2,” - 2; 

which establishes global, asymptotic stability. The resultant trans- 
formed system satisfies i = A ( z ) z  where A ( z )  has a simple, 
tridiagonal, structure. 

The procedure can be easily extended to deal with uncertainty; 
suppose the system to be controlled is now defined by 

ii = xz + #~ i (x i )A( t )  
i? = 2 3  + 42(z1, a!) 
x 3  U + $‘3(21, 5 2 ,  G3). 

The uncertainty A is assumed to be uniformly bounded (IlA(.),(( 5 
5), but the bound 5 need not be known. We proceed as before, with 
21 = c1 and VI = z : / 2  but now add nonlinear damping so that 
now cvL(z1) = - ~1&1(z1)~ - z1 (it was previously -4(xL) - a). 
Consequently 

A 

A 

Vl = -t: + Z l Z Z  - [z:d1(z1)2 - $l(Zl)A(t)]  
5 -2,” + 2122  + 5’14 

on completing the square as before. The design now proceeds much 
as before, with V = V3 = 2:/2 + ti12 + 2;/2 satisfying 

r;- 5 -z;  - 2; - 2; + 52/4  

so that, once again, all trajectories are bounded and converge to a 
compact level set of V .  

This bald summary does little justice to the flexibility of the 
backstepping procedure, a flexibility which is highly evident in 
adaptive control where many variants of backstepping are possible. 
The discussion of adaptive control commences in Chapter 3, where 
the simplest variety, adaptive backstepping, is employed. The essence 
of the method may be illustrated by its application to the system 

21 = 2 2  + dl(Z1)0 
i Z  = z3 + b Z ( 2 1 ,  z 2 ) O  

i 3  = U + d’3(zl, 5’2, X 3 ) 0  

where 8 is constant but unknown. Setting t l  = XI and choosing 
VI = $12 + @/a, where 01 = 0 - 0 yields - a  ~ 

Vl = Zl[ZZ + b1(z1)&1+ e”l[zl4l(rl) + i l l .  

A The choices xz = a1 + zz with a1 = - $ I ( Z J ) I ~ I  - 21 (certainty 
equivalence “control”) and estimator dynamics 01 = -01 = T I  with 
TI = 1c14(z1) give A 

VI  = -2: + 2122 

as in the nonadaptive case. The choice of estimator removes terms 
involving $1 from QI. The procedure can be carried forward to the 
second and third stages with V, = V, -1  + 2,212 + @/2,  i = 2, 3. 
Cancellation, for each i of the term involving e“; in V i  necessitates 
an estimator, OZ = -0; = T; ,  for each component of the state. This 
feature, referred to as overparameterization, obviously complicates 
implementation. 

Over parameterization is overcome by the introduction of tuning 
functions, the subject of Chapter 4. Consider the adaptive control of 

i = f (z)  + F ( 4 0  + g(x)u.  

If, for each 0, there exists a control Lyapunov function Va(x, 0)  for 
the modified system 

i = f (x )  + F(z ) [B  + aV,/a19] = g(z)u 

then an interesting formula due to Sontag may be employed to 
obtain a stabilizing controller U = a(z ,  0) for the modified ,sys- 
tem. The controller U = a ( z ,  e ) ,  together with estimator e = 
~ ( z ,  0) g [ ~ K ( x ,  e)F(z) IT  when applied to the original system, 
renders e negative definite with V(z,  4) V,(z, 4) + l$lZ/2; cv 
and T define a stabilizing adaptive controller for the original system. 
The modified problem yields a modified controller which properly 
accounts for parameter estimation transients. The functions V, and 
CY may be obtained by applying backstepping, much as described 
above, to the original problem, but now not cancelling at each stage 
the terms invo!ving e“. One estimator is used, and, for each i ,  a term 
of the form 8[e - T ~ ]  is retained in the expression for k ;  T~ depends 
on T L - ~  and is referred to as a tuning function. At the final stage, T, 

is chosen t? eliminate the term involving 8; this yields the (single) 
estimator ( e  = T,),  which, together with an appropriate choice of 
U = CY,, renders V, negative semidefinite, V, = 2:/2 + 1811’/2, 
enabling stability to be established. 

The tuning function approach, although yielding a simpler con- 
troller, has to employ an estimator dictated by the choice of Lyapunov 
function, unlike the situation in linear adaptive control where control 
and estimator modules may be separately designed. An ingenious 
method for achieving an analogous modularity is described in Chapter 
5. For the system 

A 

i = f(z) + F(.c)0 + S(”)U 
with a Lyapunov function V(z,  e ) ,  we have 

i. = [aV/az][f(z) + F ( z ) i  + g(x)’ul 

The approach adopted is to regard e” and 8 as uncertainties and to 
apply the backstepping procedure for uncertain systems, described 
above..A wide class of estimators can be employed, provided only that 
e” and ê  have certain properties (e.g., e” is uniformly bounded and ê  is 
either uniformly bounded or square integrable). Prior to defining the 
estimator, nonlinear damping can be incorporated in the backstepping 
process, as described above, to dominate these uncertainties, at least 
for “large” 2,  thus ensuring that all signals are uniformly bounded 
even if there is no adaptation (since then e” is constant and ê  = 0). 
The resultant controller achieves input-to-state stability, as defined by 
Sontag, with input (i, e ) .  The transformed system satisfies 

i = A(z,  e,  t) + W ( z ,  e,  t ) i  + & ( z ,  4, t)e 
where, as before, A has a simple, tridiagonal structure. 

To achieve. adaptation, an estimator, which ensures that the un- 
certainty (e”, 8) has the necessary properties, has to be added. An 
estimator which incorporates a passive observer of the state t is 
presented in the remainder of Chapter 5 ;  the operator relating the input 
e” to the output W ( z ,  e ,  t ) (z  - 5) is strictly passive. The input to the 
estimator is the output of the passive observer. A more determined 
effort to achieve modularity is mounted in Chapter 6, where the use 
of nonlinear extensions to the “swapping lemma,” (due to Morse) 
permits the use of gradient and least-squares parameter estimators. 
The authors construct two nonlinear filters with outputs R and $ 
which provide a “static” observation of the unknown parameter, i.e., 

z + $ l = Q 0  

modulo an exponentially decaying error. This static observation 
can be used in the usual way to obtain gradient and least-squares 
parameter estimators with the properties required by the controller. 
Moreover, using the fact that the swapping error lies in L2, conver- 
gence of z(2) to zero is established. 
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Attention is turned to output feedback in Chapter 7 but restricted 
to systems for which exponentially convergent state estimators exist. 
A simple (nonadaptive) example is 

i 1  = 5 2  + 41(?4) 

x 2  = x 3  + h ( Y )  

23 = 4 3 ( ~ )  + bou 
y = XI 

which may be more compactly expressed as li: = Az + bu + d(y), 
y = c T z ,  but more complex systems, possessing zero dynamics, are 
addressed. Since y is known, the nonlinearity d ( y )  does not hinder 
the derivation of an exponential observer of the form 

li: = A? + bu + 4(?~) + k ( ~  - 6) 
6 = C T Z .  

A The state estimation error satisfies i = Ao0, A0 = A - IceT. To 
obtain a controller, backstepping is now applied, much as in the state 
feedback case, using, in stage i, the state estimate &+I in place of 
z,+1 as a surrogate control and incorporating nonlinear damping to 
dominate the exponential state estimation error. Thus, in stage 1, with 
z1 = X I  = y and 2 2  = a1 + 2 2 ,  we obtain 

1 1  = -21 + 22 + $ 2  

if 011 = - z1 - 41 (y). In the second stage, with 2 3  = a2 + 2 3 ,  we get 

22 = 012 + z 3  + 23 + h ( y )  - it1 

A 

A A 

and a3 now has to incorporate nonlinear damping to dominate 
the variable 2 2  appearing via oil. Stability is established using a 
Lyapunov function of the form 2:/2 + PTP2/d, where PA0 + 
AFP = - I .  

A theory for adaptive output feedback problems is then developed 
for systems such as 

il = 2 2  + O h ( y )  

x2 = x 3  + O#)z(y) 

5 3  = 043(y )  + bou 
y = 21 

and extended versions of these equations incorporating stable zero 
dynamics. A whole range of adaptive controllers is presented, mir- 
roring those developed previously for state feedback systems. The 
overparameterized controller of Chapter 3 is first extended (in Chapter 
7), followed (in Chapter 8) by an extension of the tuning function 
design of Chapter 4. The modular designs of Chapters 5 and 6 are 
extended, in Chapter 9, to the output feedback problem. 

Chapter 10 presents a self-contained development of the application 
of these new techniques to linear systems. Readers with a good 
knowledge of linear adaptive control might like to turn to this chapter 
rather early to see, in the context of familiar material, the deveiopment 
and application of these new approaches to adaptive control. In the 
linear case, the system equations have the form 

z1 = z 2  - a,-1y 

where a = ( U O ,  a l ; . . , a , )  and b = ( b o ,  bl,...,b,) are the 
unknown parameters. The zero dynamics are defined by rows p + 
1 . . . n. Choosing appropriate filters, whose outputs are U; tind 0, 
yields the “static” relationship 

between the state z and the unknown parameter 8 .  Omitting the zero 
dynamics, the system equations are replaced by 

where v1 . . . U ,  are components of the first column of R. Backstep- 
ping can now be applied as before using, in the ith row, u2+1 as the 
surrogate control. The tuning function approach yields a nonlinear 
adaptive controller whose performance is, in many respects, superior 
to that of a conventional indirect adaptive controller. 

This summary gives some appreciation of the basic methodology 
but does scant justice to the richness of the text. A useful summary 
of Lyapunov’s stability results is given in Chapter 2, together with 
a nice introduction to the important work by Artstein and Sontag on 
control Lyapunov functions. This includes the first presentation in 
a book of Sontag’s construction for obtaining a stabilizing control 
law from a control Lyapunov function. An extension for adaptive 
problems is presented in Chapter 4. The useful concepts of input- 
to-state stability and input-to-state control Lyapunov functions are 
described in Chapter 5 .  Passivity is used extensively, particularly 
in the context of backstepping using equation “blocks” (rather than 
single equations). The tracking problem is comprehensively treated. 
The book provides, as does nonlinear control in general, a clearer 
insight into classical results for linear systems; in particular, the 
weakness of “certainty equivalence” as a design concept is exposed. 
Serious examples, effectively illustrating the power of the design 
procedures, are presented. 

I have some grumbles. The book, which introduces some topics 
so well for the novice, is pretty uncompromising on others. The 
discussion on zero dynamics could be more helpful. Occasionally 
the text lapses into research paper style, quoting results with little 
explanation; better coordination between the various authors would 
help avoid this. On rare occasions, an undefined term (such as 
“decrescent” in Lemma 5.6) creeps into the discussion. And perhaps 
there is too much material, with some developments making earlier 
approaches redundant. Robustness and constrained control are not 
treated. But these reservations are all minor; in the context of the 
exciting glimpse the book gives to the “largely unexplored landscape 
of nonlinear systems with uncertainties,” they fall into insignificance. 
Providing a novel treatment, based on backstepping, of both nonlinear 
control and adaptive control, it differs substantially from other books, 
the closest being the recent text [9] which is also devoted to 
nonlinear and adaptive control and differs in its extensive utilization 
of differential geometric algorithms, including feedback linearization 
for both state and output feedback. My overwhelming impression of 
Nonlinear and Adaptive Control Design is best stated in my opening 
remarks: “this is an unusual book, highly original and educative.” I 
strongly recommend it to anyone interested in nonlinear and adaptive 
control of uncertain systems. 
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Optimal Control Theory for Infinite Dimensional Sys- 
tems-Xunjing Li and Jiongmin Yong (Boston, MA: Birkhauser, 
1995, 488 pages). Reviewed by Suzanne Lenhart. 

I. INTRODUCTION 
The Pontryagin maximum principle, the Bellman dynamic pro- 

gramming principle, and the Kalman optimal linear regulator theory 
are the three cornerstones of finite dimensional control theory [2]. The 
study of optimal control theory for infinite dimensional systems can 
be traced back to the early 1960’s. The fundamental work of Lions [3] 
was instrumental in starting this study. The above three comerstones 
have been extended to infinite dimensional control systems to some 
extent [l], [4], [5]. This book gives a summary of the results for 
infinite dimensional systems related to these cornerstones in optimal 
control theory. 

11. MAIN BODY 
This book consists of five parts besides the first two chapters 

of preliminary analysis results and motivational examples. The first 
part concerns the existence theory of optimal controls. First- and 
second-order evolution systems are discussed, which correspond to 
parabolic and hyperbolic partial differential equations (PDE’s), as 
well as elliptic equations and variational inequalities. Several impor- 
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tant measurable selection theorems are presented; these theorems have 
played essential roles in proving the existence of optimal controls. By 
posing suitable compactness conditions, the infinite dimensional case 
is illustrated to be quite similar to the finite dimensional case. 

The second part is concerned with the Pontryagin’s maximum 
principle for optimal controls of evolution equations and elliptic 
PDE’s. In all of the problems, difficulty can come from the lack of 
convexity of the control domain, the presence of the pointwise state 
constraints, and the nonsmoothness of the state equation (e.g., the 
variational inequality) and/or the cost functional (e.g., the minimax 
problem). To treat the possible nonconvexity of the control domain, 
the spike variation for the control is used; the corresponding “Taylor 
expansion” for the state is developed. Pointwise state constraints are 
treated with some penalization together with the Ekeland variational 
principle. When the state equation or the cost functional is nonsmooth, 
some specially designed penalty functions and certain stability con- 
ditions are introduced to achieve reasonable approximations to the 
original problem. Boundary control is included in the semilinear 
elliptic case. 

The third part is concerned with the dynamic programming method. 
The theory of viscosity solutions for infinite dimensional Hamil- 
ton-Jacobi-Bellman (HBJ) equations in the Hilbert space case is the 
central topic here. They adopted the result of Ekeland and Lebourg 
on the perturbed optimization, instead of the Stegall’s result. It is 
interesting that in proving the result of Ekeland and Lebourg, the 
Ekeland variational principle has been used. This connection makes 
the second and the third parts link intrinsically. The optimal switching 
and impulse control problems are presented. The HBJ equation 
corresponding to these problems are systems of quasi-variational 
inequalities. A method of approximation together with the theory 
of viscosity solutions are adopted for bounded HJB equations. 

The fourth part covers the time optimal control problem and 
the controllability problem. The recent result on the (approximate) 
controllability of semilinear evolution equations using the method of 
optimization and penalization is included. Hence, the controllability 
problem is closely linked to the optimal control problem. 

The last part is a self-contained presentation of linear quadratic 
optimal control problems for finite and infinite time durations. They 
have covered general evolution equations with bounded controls 
(e.g., parabolic or hyperbolic equations with distributed controls) 
and the evolution equations governed by analytic semigroups with 
unbounded controls (which correspond to parabolic equations with 
Dirichlet or Neumann boundary controls). For the finite time duration 
problem, after establishing the existence and uniqueness of the 
optimal control, they introduce the Fredholm integral equation to 
synthesize the control problem. Then, the integral form of the Riccati 
equation is introduced as some additional characterization of the 
optimal synthesizing operator. On the other hand, for the infinite time 
duration problem, they take the reverse way by introducing the Riccati 
equation first and then the Fredholm integral equation. At the same 
time, they have discussed some frequency domain characterizations 
of the systems. 

111. CONCLUSIONS 
In the book, some efforts are made to collect or construct many 

counterexamples in the self-contained fashion. For two examples, a 
control problem with the value function not having continuous first 
derivatives (Chapter 6, SI) and the nonconvexity of the reachable 
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