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Abstract

We consider a problem of boundary feedback stabilization of first-order hyperbolic partial differential equations (PDEs). These equations
serve as a model for physical phenomena such as traffic flows, chemical reactors, and heat exchangers. We design controllers using a backstepping
method, which has been recently developed for parabolic PDEs. With the integral transformation and boundary feedback the unstable PDE is
converted into a “delay line” system which converges to zero in finite time. We then apply this procedure to finite-dimensional systems with
actuator and sensor delays to recover a well-known infinite-dimensional controller (analog of the Smith predictor for unstable plants). We also
show that the proposed method can be used for the boundary control of a Korteweg–de Vries-like third-order PDE. The designs are illustrated
with simulations.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we apply the backstepping method, recently
developed for parabolic PDEs [28,29] and second-order
hyperbolic PDEs [18,19,17], to solve a problem of stabilization
of a class of first-order hyperbolic PDEs. While hyperbolic
PDEs of second order usually describe oscillatory systems
such as strings and beams, the first-order hyperbolic equations
describe quite a different set of physical problems, such as
traffic flows, chemical reactors, and heat exchangers.

The existing results on feedback control of first-order hy-
perbolic PDEs include [6–8,20,26,32]. Boundary controllabil-
ity, including null controllability, of these systems is studied
in [1,4,5,14]. The focus in the field of control of first-order
hyperbolic PDEs is on coupled systems of conservation laws,
including nonlinear conservation laws. As conservation laws,
such systems are typically neutrally stable, but with a possi-
bility of infinitely many eigenvalues on the imaginary axis (in
the case of coupled first-order hyperbolic PDEs). Such systems
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are stabilizable by static output feedbacks in the form of sim-
ple boundary conditions, however, the construction of strict
Lyapunov functions is a delicate matter, and so is proving lo-
cal stability of the nonlinear closed-loop PDE system (versus
the easier problem of proving the stability of the linearization).

We first develop backstepping controllers for pure first-order
hyperbolic PDEs. The idea of the backstepping method is to
use invertible Volterra integral transformation together with the
boundary feedback to convert the unstable hyperbolic PDE
into a “delay line” system which converges to zero in finite
time. The kernel of this transformation satisfies a certain PDE,
which turns out to be also in the class of first-order hyperbolic
equations. This PDE can be solved numerically, or, in certain
cases, even in closed form.

We then apply the backstepping method to coupled
ODE–PDE systems. First we design the controllers for a system
which consists of the first-order hyperbolic PDE coupled with
a second-order (in space) ODE. This system resembles the
Korteweg-de Vries equation (see [3,22] and the references
therein), which describes shallow water waves and ion acoustic
waves in plasma.

For our second application, we consider LTI finite-
dimensional systems with actuator and sensor delays, which
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can be viewed as a coupled system consisting of the ODE
and the first-order hyperbolic PDE (which models delays). We
combine the backstepping design for hyperbolic PDEs with the
backstepping design for linear ODEs [15] to recover classical
results for linear systems with actuator and sensor delay [25,
21,23,2,24,9,31,14] (for a recent survey on the control of time-
delay systems, see [11]). Even though the obtained controllers
are well known, the backstepping procedure provides a more
general and systematic way to handle time-delay systems. In
particular, it can be applied to PDEs with sensor and actuator
delays.

2. First-order hyperbolic PDEs

Consider the plant

vt (x, t) = vx (x, t) + λ(x)v(x, t) + ḡ(x)v(0, t)

+

∫ x

0
f̄ (x, y)v(y, t)dy (1)

for 0 < x < 1 with initial condition v(x, t) = v0(x) and
boundary condition

v(1, t) = Ū (t). (2)

We assume that functions λ, ḡ, f̄ are continuous. Our objective
is to stabilize the zero equilibrium of this system with the
boundary control U (t) (when U (t) ≡ 0, this system is unstable
for large positive ḡ and f̄ ).

We start by applying the state transformation

v(x, t) = e−
∫ x

0 λ(ξ) dξ u(x, t), (3)

which results in the following plant

ut (x, t) = ux (x, t) + g(x)u(0, t) +

∫ x

0
f (x, y)u(y, t)dy (4)

u(1, t) = U (t), (5)

where U (t) = Ū (t)e
∫ 1

0 λ(ξ) dξ and

g(x) = ḡ(x)e
∫ x

0 λ(ξ) dξ , f (x, y) = f̄ (x, y)e
∫ x

y λ(ξ) dξ
. (6)

Following the backstepping approach [28], we use the
transformation

w(x, t) = u(x, t) −

∫ x

0
k(x, y)u(y, t) dy (7)

along with the feedback

u(1, t) =

∫ 1

0
k(1, y)u(y, t) dy (8)

to convert the plant (4) into the target system

wt (x, t) = wx (x, t) (9)

w(1, t) = 0. (10)

This system is a delay line with unit delay, output w(0, t) =

w(1, t − 1), and zero input at w(1, t). Its solution is

w(x, t) =

{
w0(t + x), 0 ≤ x + t < 1
0, x + t ≥ 1,

(11)
where w0(x) is the initial condition. We see that this solution
converges to zero in finite time.

To derive the condition that k(x, y) should satisfy, we
compute:

wx (x, t) = ux (x, t) − k(x, x)ux (x, t)

−

∫ x

0
kx (x, y)u(y, t) dy (12)

and

wt (x, t) = ut (x, t) −

∫ x

0
k(x, y) (ux (y, t) + g(y)u(0, t)) dy

−

∫ x

0
k(x, y)

∫ y

0
f (y, ξ)u(ξ, t) dξ dy

= ux (x, t) + u(0, t)

(
g(x) −

∫ x

0
k(x, y)g(y) dy

)
+

∫ x

0
u(y, t)

(
f (x, y) −

∫ x

y
k(x, ξ) f (ξ, y)

×dξ

)
dy − k(x, x)u(x, t)

+ k(x, 0)u(0, t) +

∫ x

0
ky(x, y)u(y) dy. (13)

Subtracting (12) from (13) and using (9), we obtain the
following set of conditions on k(x, y):

kx (x, y) + ky(x, y) =

∫ x

y
k(x, ξ) f (ξ, y)dξ − f (x, y) (14)

k(x, 0) =

∫ x

0
k(x, y)g(y)dy − g(x). (15)

The following theorem establishes the well-posedness of the
PDE (14), (15).

Theorem 1. The PDE (14), (15) has a unique C1([0, 1] ×

[0, 1]) solution with a bound

|k(x, y)| ≤ (ḡ + f̄ )e(ḡ+ f̄ )(x−y), (16)

where

ḡ = max
x∈[0,1]

g(x), f̄ = max
(x,y)∈[0,1]×[0,1]

f (x, y). (17)

Proof. It is easy to show that k(x, y) satisfies the following
integral equation:

k(x, y) = F0(x, y) + F[k](x, y), (18)

where

F0(x, y) = −g(x − y) −

∫ y

0
f (x − y + ξ, ξ) dξ (19)

F[k](x, y)

=

∫ y

0

∫ x−y

0
k(x − y + η, ξ + η) f (ξ + η, η)dξ dη

+

∫ x−y

0
k(x − y, ξ)g(ξ) dξ. (20)
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Let us solve this equation using the method of successive
approximations. Set

k0(x, y) = F0(x, y),

kn+1(x, y) = F0(x, y) + F[kn
](x, y) (21)

for n = 0, 1, . . . and consider the differences 1kn+1
= kn+1

−

kn with 1k0
= F0. It is easy to see that 1kn satisfy

1kn+1(x, y) = F[1kn
](x, y). (22)

Let us assume that

|1kn(x, y)| ≤
(ḡ + f̄ )n+1(x − y)n

n!
. (23)

Then from (20) and (22) we get

|1kn+1
| ≤ ḡ

(ḡ + f̄ )n+1(x − y)n+1

(n + 1)!
+ f̄ (ḡ + f̄ )n+1

×

∫ y

0

∫ x−y

0

(x − y − ξ)n

n!
dξ dη

≤
(ḡ + f̄ )n+2(x − y)n+1

(n + 1)!
. (24)

By induction (23) is proved. Therefore, the series

k(x, y) =

∞∑
n=0

1kn(x, y) (25)

uniformly converges to the solution of (21) with n → ∞ and
the bound (16). The fact that this solution satisfies the PDE
(14), (15) is checked by simple differentiation. To show the
uniqueness of this solution, consider the difference between
two solutions k1 and k2: δk = k1 − k2. For δk we obtain the
homogeneous integral equation

δk(x, y) = F[δk](x, y). (26)

It is now easy to show by repeating the calculations above that

|δk(x, y)| ≤
(ḡ + f̄ )n+1(x − y)n

n!
(27)

for any n, which implies that δk(x, y) ≡ 0, or k1 ≡ k2. �

We are ready to state the main result of this section.

Theorem 2. For any initial condition u(x, 0) = u0 ∈ H =

{ f | f ∈ H1(0, 1), f (1) =
∫ 1

0 k(1, y) f (y)dy}, the closed-
loop system (4), (8) with k(x, y) given by (14), (15) has a
unique solution u ∈ C([0, ∞), H) ∩ C1([0, ∞), L2(0, 1))

which becomes zero in finite time.

Proof. From the transformation (7) we see that the initial
condition of the target system w0 ∈ H̄ = { f | f ∈

H1(0, 1), f (1) = 0} and therefore it immediately follows from
(11) that w ∈ C([0, ∞), H̄) ∩ C1([0, ∞), L2(0, 1)). One can
show that the transformation, inverse to (7), has the form

u(x, t) = w(x, t) +

∫ x

0
l(x, y)w(y, t)dy, (28)
where l(x, y) satisfies the following PDE

lx (x, y) + ly(x, y) = −

∫ x

y
f (x, ξ)l(ξ, y)dξ − f (x, y) (29)

l(x, 0) = −g(x). (30)

This PDE is very similar to the PDE (14), (15) and repeating
the arguments in the proof of Theorem 1, one can show
that (29) and (30) has a unique continuously differentiable
solution. Therefore, from (28) we obtain u ∈ C([0, ∞), H) ∩

C1([0, ∞), L2(0, 1)). The explicit form of the solution is
obtained by using (11) and transformations (7) and (28):

u(x, t) = u0(x + t) −

∫ x

0
u0(y + t)

[
k(x + t, y + t)

− l(x, y) +

∫ x

y
l(x, ξ)k(ξ + t, y + t) dξ

]
dy, x + t < 1 (31)

and u(x, t) ≡ 0 for x + t ≥ 1, so that the control objective is
achieved for all t ≥ 1. The uniqueness of this solution follows
from the well-known uniqueness of the weak solution to (9),
(10) (see, e.g., [5]). �

Remark 1. When u0 ∈ L2(0, 1) (without the compatibility
condition), the solution (31) belongs to C([0, ∞), L2(0, 1)).

Since we have established the stabilizability of class (1) with
boundary feedback, it may be natural to expect that this class of
systems would be controllable in an appropriate sense. The null
controllability for T ≥ 1 of the special case of system (37) for
f = 1, λ = 0 is established in [5] and a similar result may very
well hold for the entire class (1).

We now illustrate the design with two examples.

Example 2.1. Consider the plant

ut (x, t) = ux (x, t) + gebx u(0, t), (32)

where g and b are constants. The Eq. (14) becomes

kx (x, y) + ky(x, y) = 0, (33)

which has a general solution k(x, y) = φ(x − y). If we
substitute this solution into (15), we get the integral equation
for φ(x):

φ(x) =

∫ x

0
gebyφ(x − y)dy − gebx . (34)

The solution to this equation can be easily obtained by applying
the Laplace transform in x to both sides of (34). We get

φ̂(s) = −
g

s − b − g
, (35)

and after taking the inverse Laplace transform, φ(x) =

−ge(b+g)x . Therefore, the solution to the kernel PDE is

k(x, y) = −ge(b+g)(x−y) (36)

and the controller is given by (8).
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Example 2.2. Consider the plant

ut (x, t) = ux (x, t) +

∫ x

0
f eλ(x−y)u(y, t) dy, (37)

where f and λ are constants. The kernel PDE (14), (15) takes
the form

kx (x, y) + ky(x, y) =

∫ x

y
k(x, ξ) f eλ(ξ−y)dξ − f eλ(x−y) (38)

k(x, 0) = 0. (39)

After we differentiate (38) with respect to y, the integral term
gets eliminated:

kxy(x, y) + kyy(x, y) = − f k(x, y) − λkx (x, y) − λky(x, y).

(40)

Since we now increased the order of the equation, we need an
extra boundary condition. We get it by setting y = x in (38):

d
dx

k(x, x) = kx (x, x) + ky(x, x) = − f, (41)

which, after integration, becomes k(x, x) = − f x .
Introducing the change of variables

k(x, y) = p(z, y)eλ(z−y)/2, z = 2x − y, (42)

we get the following PDE for p(z, y):

pzz(z, y) − pyy(z, y) = f p(z, y) (43)

p(z, 0) = 0 (44)

p(z, z) = − f z. (45)

This PDE has the following solution [28]:

p(z, y) = −2 f y
I1

(√
f (z2 − y2)

)
√

f (z2 − y2)
, (46)

where I1 is the modified Bessel function. In the original
variables we obtain

k(x, y) = − f eλ(x−y)y
I1

(
2
√

f x(x − y)
)

√
f x(x − y)

, (47)

and the controller is given by

u(1, t) = −

∫ 1

0
f eλ(1−y)y

I1
(
2
√

f (1 − y)
)

√
f (1 − y)

u(y, t) dy. (48)

3. Korteweg–de Vries-like equation

Consider the first-order hyperbolic PDE coupled with a
second-order ODE:

εut (x, t) = ux (x, t) − v(x, t) (49)

0 = εvxx (x, t) + a(−v(x, t) + γ ux (x, t)), (50)

where ε > 0, a > 0. The boundary condition vx (0, t) = 0 and
u(1, t) = U1(t), v(1, t) = U2(t), where U1 and U2 are control
inputs.
The motivation for considering the system (49) and (50)
comes from the fact that it can be viewed as a third-order PDE

ut (x, t) − νut xx (x, t) + δuxxx (x, t) + λux (x, t) = 0, (51)

which is obtained by differentiating (49) with respect to x twice,
substituting the result into (50), and denoting

δ =
1
a

, ν =
ε

a
, λ = ε−1(γ − 1). (52)

The PDE (51) resembles a linearized Korteweg–de Vries
equation which serves as a model of shallow water waves and
ion acoustic waves in plasma. Compared to the traditional form
of the Korteweg–de Vries equation, it has an additional term
−νut xx , which is small when ε/a is small in the original system
(49), (50). In fact, this term appears in the derivation of KdV
equation, but is then dropped as it is small compared to ut [16].
The PDE (51) is unstable when λ/δ is positive and large.
Besides being related to the Korteweg–de Vries PDE, equation
(51) can be obtained as an approximation of the linearized
Boussinesq PDE system modeling complex water waves such
as tidal bores [10].

To apply the backstepping design to the system (49)–(50),
we first solve (50) with respect to v:

v(x, t) = cosh(bx)v(0, t) − γ b
∫ x

0
sinh(b(x − y))

×u y(y, t)dy, (53)

where b =
√

a/ε. Setting x = 1 in (53), we express v(0, t) in
terms of v(1, t):

v(0, t) =
1

cosh b

[
v(1, t) − γ b sinh(b)u(0, t)

+ γ b2
∫ 1

0
cosh(b(1 − y))u(y, t) dy

]
. (54)

The integral in (54) has the limits from 0 to 1 and not in the class
of PDEs (4). Therefore we select the first boundary control to
be

v(1, t) = γ b sinh(b)u(0, t) − γ b2
∫ 1

0
cosh(b(1 − y))

×u(y, t)dy, (55)

which guarantees that v(0, t) = 0. Substituting (53) into (49)
we get

εut (x, t) = ux (x, t) − γ b sinh(bx)u(0, t)

+ γ b2
∫ x

0
cosh(b(x − y))u(y, t) dy. (56)

Note that this PDE is exactly of the form (4). We can now use
the design developed in Section 2. The second control law is

u(1, t) =

∫ 1

0
k(1, y)u(y, t) dy, (57)
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1 From this point onwards, we suppress the time dependence for clarity, so
that u(0) ≡ u(0, t), etc.
Fig. 1. Control gain for the Korteweg-de-Vries equation.

where the control kernel k(x, y) is found from the PDE

kx (x, y) + ky(x, y) = γ b2
∫ x

y
k(x, ξ) cosh(b(ξ − y)) dξ

− γ b2 cosh(b(x − y)) (58)

with the boundary condition

k(x, 0) = γ b sinh(bx) − γ b
∫ x

0
k(x, y) sinh(by) dy. (59)

Using Theorem 2, we obtain the following result.

Theorem 3. For any initial condition u0 ∈ H, the system
(49)–(50) with the controllers (55), (57) has a unique solution
u ∈ C([0, ∞), H) ∩ C1([0, ∞), L2(0, 1)) which becomes zero
in finite time.

The simulation results for a = 1, ε = 0.2, γ = 4
are presented in Figs. 1 and 2. The control gain (Fig. 1) is
obtained by discretizing (58), (59) using the implicit Euler
finite-difference scheme (an alternative is to use the series (21)).
We can see that the open-loop plant (49)–(50) is unstable and
the controller stabilizes the system.

4. ODE Systems with actuator delay

We now apply the design developed in the previous section
to ODEs with the actuator delay. Consider a linear finite-
dimensional system

Ẋ = AX + BU (t − D), (60)

where X ∈ Rn , (A, B) is a controllable pair and the input signal
U (t) is delayed by D units of time. The delay can be modelled
by the following first-order hyperbolic PDE

ut (x, t) = ux (x, t) (61)

u(D, t) = U (t). (62)

The solution to this equation is u(x, t) = U (t + x − D) and
therefore the output u(0, t) = U (t −D) gives the delayed input.
Fig. 2. The open-loop (left) and the closed-loop (right) responses of the
Korteweg–de Vries-like plant (49)–(50) with backstepping controllers (55) and
(57)–(59).

Fig. 3. Linear system Ẋ = AX + BU (t − D) with actuator delay D.

The system (60) can be now written as.1

Ẋ = AX + Bu(0). (63)

Eqs. (61)–(63) form an ODE–PDE cascade which is driven by
the input U from the boundary of the PDE (Fig. 3).

Suppose a static state feedback control has been designed for
a system with no delay (i.e. with D = 0) such that U = K X
is a stabilizing controller, i.e., the matrix (A + BK ) is Hurwitz.
Consider the backstepping transformation

w(x) = u(x) −

∫ x

0
q(x, y)u(y)dy − γ (x)T X (64)
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which maps (61)–(63) into the target system

Ẋ = (A + BK )X + Bw(0) (65)

wt = wx (66)

w(D) = 0. (67)

Let us calculate the time and spatial derivatives of the
transformation (64):

wx = ux − q(x, x)u(x) −

∫ x

0
qx (x, y)u(y)dy − γ ′(x)T X

(68)

wt = ut −

∫ x

0
q(x, y)ut (y)dy − γ (x)T [AX + Bu(0)]

= ux − q(x, x)u(x) + q(x, 0)u(0)

−

∫ x

0
qx (x, y)u(y)dy − γ (x)T

[AX + Bu(0)]. (69)

Subtracting (68) from (69) we get∫ x

0
(qx (x, y) + qy(x, y))u(y)dy +

[
q(x, 0) − γ (x)T B

]
u(0)

+

[
γ ′(x)T

− γ (x)T A
]

X = 0. (70)

This equation should be valid for all u and X , so we have three
conditions:

qx (x, y) + qy(x, y) = 0 (71)

q(x, 0) = γ (x)T B (72)

γ ′(x) = ATγ (x). (73)

The first two conditions form a first-order hyperbolic PDE and
the third one is a simple ODE. To find the initial condition
for this ODE, let us set x = 0 in (64), which gives w(0) =

u(0) − γ (0)T X . Substituting this expression into (65), we get

Ẋ = AX + Bu(0) + B
(

K − γ (0)T
)

X. (74)

Comparing this equation with (63), we have γ (0) = K T .
Therefore the solution to the ODE (73) is γ (x) = eATx K T

which gives

γ (x)T
= K eAx . (75)

A general solution to (71) is q(x, y) = φ(x − y), where the
function φ is determined from (72). We get

q(x, y) = K eA(x−y) B. (76)

We can now plug the gains γ (x) and q(x, y) into the
transformation (64) and set x = D to get the control law:

u(D) =

∫ D

0
K eA(D−y) Bu(y)dy + K eAD X. (77)

The stability result is given by the following theorem.

Theorem 4. The closed-loop system consisting of the plant
(63), (61) and (62) with the controller (77) is exponentially
stable at the origin in the sense of the norm (|X (t)|2 +
∫ D

0
u(x, t)2dx)1/2.

Proof. First we prove that the origin of the target system
(65)–(67) is exponentially stable. Consider a Lyapunov
function

V = X T P X +
a

2

∫ D

0
(1 + x)w(x)2 dx, (78)

where P = PT > 0 is the solution to the Lyapunov equation
P(A + BK ) + (A + BK )T P = −Q for some Q = QT > 0,
and the parameter a > 0 is to be chosen later. We have

V̇ = X T ((A + BK )T P + P(A + BK ))X

+ 2X T P Bw(0) −
a

2
w(0)2

−
a

2

∫ D

0
w(x)2 dx

≤ −X T Q X +
2
a

‖X T P B‖
2
−

a

2

∫ D

0
w(x)2 dx . (79)

Let us choose a = 4λmax(PBBT P)/λmin(Q), where λmin
and λmax are minimum and maximum eigenvalues of the
corresponding matrices. Then

V̇ ≤ −
λmin(Q)

2
‖X‖

2
−

2λmax(PBBT P)

λmin(Q)

∫ D

0
w(x)2 dx

≤ − min
{

λmin(Q)

2λmax(P)
,

a

2

}
V . (80)

Thus we obtain exponential stability in the sense of the full state

norm in the transformed variable,
(
|X (t)|2+

∫ D
0 w(x, t)2dx

)1/2
.

To show exponential stability in the sense of the norm(
|X (t)|2 +

∫ D
0 u(x, t)2dx

)1/2
, we need the inverse of the

transformation (64). One can show with calculations similar to
(69)–(76) that such a transformation is

u(x) = w(x) +

∫ x

0
K e(A+BK )(x−y) Bw(y)dy

+ K e(A+BK )x X. (81)

From (81) one readily obtains exponential stability in the sense

of the norm
(
|X (t)|2 +

∫ D
0 u(x, t)2dx

)1/2
. �

Remark 2. The controller (77) is given in terms of the transport
delay state u(y). Using (61) and (62) one can also derive the
representation in terms of the input signal U (t):

U (t) = K

[
eAD X +

∫ t

t−D
eA(t−θ) BU (θ)dθ

]
. (82)

The controller (82) is the analog of the Smith Predictor
[27] extended to unstable plants and was first derived in
1978–1982 [21,23,2] (see also, for example, the more recent
book [13]). The derivation in these references is very different
and employs a transformation of the ODE state rather than the
delay state. As a result, the analysis in these references does
not capture the entire ODE + delay system as succinctly and
completely as (65)–(67).
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Fig. 4. The closed-loop response of the finite-dimensional system with actuator delay. Left: state evolution with nominal LQR controller in the absence of the
delay (dash-dotted); with nominal LQR controller in the presence of the delay (dashed); with the backstepping controller in the presence of the delay (solid). Right:
delayed control input.
In Fig. 4 the simulation results for system (60) are presented
for

A =

2 0 1
1 −2 −2
0 1 −1

 , B =

0
0
1

 .

This system is unstable at the origin (eigenvalues are 2 and
−1.5 ± 1.4 j). One can see that the nominal LQR controller
(with Q = I and R = 1) does not stabilize the system when the
small delay (D = 0.3) is present. The controller (77) stabilizes
the system. The larger transient is due to the fact that in the
beginning the input to the system is zero because of the delay.

5. Observers for ODE systems with sensor delay

The procedure developed in the previous section extends to
the case of sensor delay. Consider the system

Ẋ = AX (83)

Y (t) = C X (t − D), (84)

where (A, C) is an observable pair. The output equation can be
represented through the first-order hyperbolic PDE as

ut = ux (85)

u(D) = C X (86)

Y = u(0). (87)

We have the following result for (83), (85)–(87).

Theorem 5. The observer

˙̂X = AX̂ + eAD L
(
Y − û(0)

)
(88)

ût = ûx + CeAx L
(
Y − û(0)

)
(89)

û(D) = C X̂ , (90)

where L is chosen such that A−LC is Hurwitz, guarantees that
X̂ , û exponentially converge to X, u, i.e., more specifically, that
the observer error system is exponentially stable in the sense of
the norm(

|X (t) − X̂(t)|2 +

∫ D

0

(
u(x, t) − û(x, t)

)2 dx

)1/2

.

Proof. Introducing the error variables X̃ = X − X̂ , ũ = u − û,
we obtain:

˙̃X = AX̃ − eAD Lũ(0) (91)

ũt = ũx − CeAx Lũ(0) (92)

ũ(D) = C X̃ . (93)

Consider the transformation

w̃(x) = ũ(x) − CeA(x−D) X̃ . (94)

We have

w̃t − w̃x = ũx − CeAx Lũ(0) − CeA(x−D)(AX̃ − eAD Lũ(0))

− ũx + CeA(x−D) AX̃ = 0 (95)

and w̃(D) = ũ(D) − C X̃ = 0. This means that w̃ converges to
zero in finite time. The equation (91) can be written as

˙̃X = AX̃ − eAD Lũ(0) = AX̃ − eAD L(w̃(0) + Ce−AD X̃)

= (A − eAD LCe−AD)X̃ − eAD Lw̃(0). (96)

The matrix A − eAD LCe−AD is Hurwitz, which can be easily
seen by using a similarity transformation eAD , which commutes
with A. With a Lyapunov function

V = X̃ T e−AT D Pe−AD X̃ +
a

2

∫ D

0
(1 + x)w̃(x)2 dx, (97)

where P = PT > 0 is the solution to the Lyapunov equation
P(A − LC) + (A − LC)T P = −Q for some Q = QT > 0,
and a is sufficiently large, one can show that V̇ ≤ −µV for
some µ > 0, i.e., the (X̃ , w̃) system is exponentially stable at
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the origin. From (94) we get exponential stability in the sense

of
(
|X̃(t)|2 +

∫ D
0 ũ(x, t)2dx

)1/2
. �

Remark 3. The observer (88)–(90) can be represented in terms
of the output Y by taking the Laplace transform of (89), solving
the resulting ODE and taking the inverse Laplace transform:

˙̂X = AX̂ + eAD L(Y − Ŷ ) (98)

Ŷ (t) = C X̂(t − D) + C
∫ t

t−D
eA(t−θ)L(Y (θ) − Ŷ (θ)) dθ. (99)

Remark 4. Unlike in the case of actuator delay, the observer
presented in this section seems to be novel, i.e., it is not merely
a different way of obtaining the known delay-compensating
observer results in [31,14]. Those results take a different
approach and use an observer of the form which is essentially

˙̂X = AX̂ + eAD L
(

Y − Ce−AD X̂
)

, (100)

where the gain vector L is selected to make the matrix A − LC
Hurwitz (which is equivalent to making A − eAD LCe−AD

Hurwitz). The observer (100) differs from our observer
(88)–(90) in the way that the estimate of Y (t) is introduced
in the estimation error. While (100) uses Ce−AD X̂(t) in lieu
of an estimate of Y (t), we use a distributed estimator û(x, t)
of Y (t + x), x ∈ [0, D], given by (89), (90), with output
injection, which can also be viewed as the estimator of the
actual plant output C X (θ) over the window θ ∈ [t − D, t].
In other words, our observer generates not only a convergent
estimate X̂(t) of X (t), but also a (quantifiably) convergent
estimate Ŷ (t + x) = û(x, t) of Y (t + x) = C X (t + x − D)

for x ∈ [0, D]. Since our observer is infinite dimensional,
whereas the observer (100) is finite dimensional, it is valid to
ask a question whether the additional dimensionality is of any
value. One should first note that (100) is a classical reduced-
order observer for the plant (83), (84) which treats the infinite-
dimensional “sensor state” Y (t + x), x ∈ [0, D], as known (in
the future), and does not ‘waste’ dynamic order to estimate
it. In contrast, our observer is a full-order observer, which
estimates both the plant state X and the sensor state. One
benefit of employing a full-order observer over a reduced-order
observer is that reduced-order observers are well known to be
overly sensitive to measurement noise. An additional comment
in favor of our full-order observer approach is that the idea
that allows the reduced-order observer (100) does not extend
to more general sensor dynamics (whether finite or infinite
dimensional). It works only with delays because of the special
form of their dynamics (pure ‘time-shift’) and also thanks to
the fact that the transport delay dynamics are exponentially
stable, hence output injection is not necessary to stabilize their
observer error system.

Remark 5. It is possible that the observer (98), (99) may
be implicitly contained in the general infinite-dimensional
observer form in [30, 4.1], however it is not clear that [30]
contains a constructive result to obtain (98), (99).
Remark 6. The dimensionality advantage of the reduced-order
observer (100) disappears the moment one adds an input into
the plant (83), (84), i.e., Ẋ(t) = AX (t) + BU (t), Y (t) =

C X (t − D). Then, the observer (100) assumes the form

˙̂X(t) = AX̂(t) + BU (t)

+ eAD L

(
Y (t) − Ce−AD X̂(t)

+ C
∫ t

t−D
eA(t−D−θ) BU (θ)dθ

)
. (101)

Note that, even though infinite dimensional, this is still a
reduced-order observer because it does not attempt to estimate
the sensor state. Our observer (88)–(90) needs only a slight
modification when the term BU (t) is added to the plant and
its order does not increase:

˙̂X = AX̂ + BU + eAD L
(
Y − û(0)

)
(102)

ût = ûx + CeAx L
(
Y − û(0)

)
(103)

û(D) = C X̂ . (104)

Remark 7. An alternative implementation of the reduced-order
observer (101) is

Ξ̇ (t) = AΞ (t) + BU (t − D) + L(Y (t) − CΞ (t))

X̂(t) = eADΞ (t) +

∫ t

t−D
eA(t−θ) BU (θ)dθ. (105)

So, the classical [14,31] observer essentially estimates the past
state from D seconds back, and then advances it in an open-loop
manner D seconds in the future.

6. Conclusions

We presented a new approach for the boundary stabilization
of the first-order hyperbolic PDEs. Application to systems
with delays seems a particularly interesting application of this
result, opening many new opportunities for research. In future
work, several directions can be pursued. First, various PDEs
with actuator and sensor delays (resulting in a cascade of a
second-order parabolic or hyperbolic PDE with the first-order
hyperbolic PDE) can be investigated. Second, the (still open)
control problem for finite-dimensional systems with both state
and actuator delays can be addressed. Finally, the approach
holds a great promise for nonlinear systems [12], for which
there are currently no controllers available that compensate for
arbitrarily long actuator delays.
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