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Abstract

We consider the problem of stabilization of a one-dimensional wave equation that contains instability at its free end and control on the
opposite end. In contrast to classical collocated “boundary damper” feedbacks for the neutrally stable wave equations with one end satisfying
a homogeneous boundary condition, the controllers and the associated observers designed in the paper are more complex due to the open-loop
instability of the plant. The controller and observer gains are designed using the method of “backstepping,” which results in explicit formulae
for the gain functions. We prove exponential stability and the existence and uniqueness of classical solutions for the closed-loop system. We
also derive the explicit compensators in frequency domain. The results are illustrated with simulations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Strings and flexible beams have been important benchmarks
for the development of distributed parameter system theory
for several decades. Even in the absence of damping (viscous,
structural, or Kelvin–Voigt/material damping), when one end
of a string/beam is pinned/clamped, they are neutrally stable
(in the Lyapunov sense, i.e., in the sense that the overall energy
is not increasing). They have another important property—that
when actuation and sensing is performed on the same bound-
ary (collocated boundary control), their input–output operator
is passive or positive-real. The same operator is also zero-state-
observable (in the sense of the definition in Khalil (2001),
which is provable by a LaSalle-type argument). Due to pas-
sivity and zero-state-observability, strings and beams with one
end pinned/clamped are stabilizable by proportional feedback
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(or by derivative feedback, depending on exactly which physical
quantity at the boundary is considered to be the actuated input
and the measured output).

As a result of stabilizability by simple feedback laws, col-
located boundary control systems have been under study for
several decades and have spawned hundreds of papers for
strings, beams, and thin plates. Various system-theoretic as-
pects such as well posedness, stabilizability, and detectability
of strings, cables, and beams were considered by Lions (1988),
Chen (1979), Lagnese (1983), Komornik and Zuazua (1990),
Weiss and Curtain (1997), Bardos, Lebeau, and Rauch (1992),
Bardos, Halpern, Lebeau, Rauch, and Zuazua (1991), Tucsnak
(1993), Rebarber and Zwart (1998). The observer design was
considered, among others, by Demetriou (2004), and actuator
and sensor positioning and design was addressed by Fahroo
and Demetriou (2000). The book by Luo, Guo, and Morgul
(1998) is dedicated to collocated boundary control for beams,
whereas the book by Lagnese (1989) is dedicated to collocated
boundary control of thin plates. The book by Lasiecka (2002)
carries the collocated concept further to coupled structural-
acoustic nonlinear models. As many authors acknowledge,
collocated feedback laws are primarily to be understood as
being implementable using passive control devices, such as
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“dampers.” However, active control implementations have been
pursued using smart material actuators/sensors (PZT, PVDF) by
Moheimani and Fleming (2006), Banks, Smith, Brown, Silcox,
and Metcalf (1997), Preumont, De Marneffe, Deraemaeker, and
Bossens (2005), Sodano, Inman, and Belvin (2006), or using
air jets and electromagnets by de Queiroz, Dawson, Agarwal,
and Zhang (1999), de Queiroz and Rahn (2002) and Zhang,
Dawson, de Queiroz, and Vedagarbha (1997).

When the actuator and sensor are not collocated, the ex-
ponential stabilization problem changes dramatically. The
input–output operator is typically no longer passive, which is
the case for several reasons—either because the relative degree
changes (in the collocated case it is no greater than one) or
because the system transfer function becomes “non-minimum
phase”—which precludes the application of simple P/PD/PI
controllers. It is clear that one should expect that, in general,
non-collocated actuator/sensor pairs require higher order dy-
namic compensator, including possibly compensators arrived
at using observer-based control designs.

Of particular interest in many applications are “anti-
collocated” architectures, where the actuator acts through one
boundary of the structure (beam, string, etc.), whereas the sen-
sor is placed on the other boundary. Such problems were solved
for one-dimensional parabolic PDEs by Smyshlyaev and Krstic
(2005) who considered unstable reaction–advection–diffusion
equations and designed output-feedback controllers by the
method of “backstepping,” which uses the Volterra transforma-
tion to map an unstable PDE into a stable “target” PDE. These
controllers employed state feedback laws applied through one
boundary condition, where the state estimate was supplied by
an observer PDE driven by a measurement at the other bound-
ary of the PDE domain. Until recently, the applicability of the
backstepping method was restricted to parabolic PDEs. The
main difficulty in extending this method to flexible structures
lied in the fact that one cannot add in-domain damping (neither
viscous nor Kelvin–Voigt) to a hyperbolic PDE using Volterra
transformation (while it is possible to do that for the heat
equation). Therefore the right “target” system in the hyper-
bolic case is not obvious at all. In the conference paper, Krstic,
Smyshlyaev, and Siranosian (2006) extended the backstepping
method to wave equations and Timoshenko beam models with
Kelvin–Voigt damping. The present paper expands upon the
ideas in Krstic et al. (2006) for the undamped wave equation
with two actuator/sensor configurations.

Guo and Xu (2007) considered a wave equation with an anti-
collocated actuator/sensor configuration, where one end of the
string was pinned and Neumann measurement was performed
at that end, whereas the other end was actuated using Neu-
mann actuation. Fig. 1 shows the actuator/sensor configuration
in Guo and Xu (2007) (bottom), in comparison with the con-
figuration used in the classical “boundary damper” control ap-
proach (top). The authors in Guo and Xu (2007) proposed an
observer-based compensator which exponentially stabilizes the
string. The stability is analyzed using the Riesz basis approach.
The observer in Guo and Xu (2007) is designed using an ap-
proach dual to the approach that exploits the passivity of the
collocated configuration and leads to PD control. To be exact,

Fig. 1. Two problem formulations for boundary control of a stable string
pinned on one end: top—classical formulation with the actuation/sensing col-
located on the right end (Neuman/force actuation and Dirichlet/displacement
sensing). Bottom (Guo & Xu, 2007)—Neumann actuation on the right end
and Neumann sensing on the left (pinned) end.

the output injection operator of the observer (the observer gain
operator) is chosen as the adjoint of the measurement operator
(times a constant). In physical terms, this means that the out-
put injection is applied only in the boundary condition of the
observer (rather than also in the domain, i.e., on the right-hand
side of the PDE, as would be the case in a general observer de-
sign problem for a PDE). Hence, the overall output-feedback
compensator consists of a simple controller and a simple ob-
server. The problem considered in Guo and Xu (2007) is harder
than the classical problem but it is still solvable using a simple
controller and observer.

In this paper we consider a much harder problem where,
instead of having one end of the string pinned, we have it sub-
jected to a destabilizing boundary condition. The exact form
of the “destabilizing” boundary condition is introduced in
Section 2, however, we point out here that the boundary condi-
tion is of Robin type, that it results in the uncontrolled system
having some real positive eigenvalues, and that the physical
cause of such a boundary condition can be the action of an
“unfavorably” polarized magnetic field to a metallic free end
of the string. As shown in Fig. 2, we allow ourselves to apply
control only through the boundary condition on the end of the
string opposite from where the destabilizing force acts, which
is what makes the problem difficult.

We present two results in the paper. The first result, corre-
sponding to the actuator/sensor configuration in the top picture
in Fig. 2, is presented in Sections 2–5. This result employs a
non-trivial backstepping control law, whereas the observer de-
sign is straightforward. Then, in Section 6 we present a control
design for the problem in the bottom picture in Fig. 2, which
employs both actuation and sensing on the boundary opposite
from the boundary with the destabilizing effects. This configu-
ration results in both the controller and the observer requiring
a non-trivial choice for both the controller and the observer,
where the gain functions are derived using the backstepping
approach. In particular, the observer in Section 6 must incorpo-
rate the output injection not in the boundary condition where
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Fig. 2. Two problem formulations for boundary control of an unstable string
with a destabilizing force (boundary condition) on the free end: top (Sec-
tions 2–5)—Dirichlet actuation on the right end, Dirichlet sensing on the
left end. Bottom (Section 6)—collocated actuation/sensing on the right end
(Neumann/force actuation and Dirichlet/displacement sensing).

the measurement is taken but on the right-hand side of the PDE,
throughout the domain.

While the backstepping method does not provide optimal-
ity, the controller and the observer gain functions are obtained
in closed form as functions of the spatial variable x (this de-
pendence happens to be exponential) and the parameters of
the plant, which is not the case for the optimality-driven ap-
proaches (where operator Riccati equations have to be solved
numerically).

We should mention that the time derivative of the output is
used in our design, under the assumption of a noise-free output
measurement. This is not a problem particular to our design,
but a common issue in all the existing approaches to boundary
control of flexible structures.

The paper is organized as follows. In Sections 2–5 we present
the problem formulation, controller/observer design, stability
analysis, and well posedness analysis for our anti-collocated
Dirichlet actuation/sensing problem. Then, in Section 6, given
that the main techniques are covered in the previous sections,
we briefly present the design and the analysis for our collocated
case (with a destabilizing b.c.). Frequency domain representa-
tions of the compensators are derived in Section 7. In Section
8 we present simulation results.

2. A non-collocated problem

We consider the system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wtt (x, t) = wxx(x, t), 0 < x < 1, t > 0,

wx(0, t) = −qw(0, t), t �0,

w(1, t) = u(t), t �0,

w(x, 0) = w0(x), 0 < x < 1,

y(t) = w(0, t), t �0,

(1)

where u is a (scalar) control input and y is a (scalar) measured
output. The objective is to exponentially stabilize the system to
zero in energy state space. We present a dynamic compensator
which employs a PDE observer and full state feedback based
on the observer state.

For q = 0, Eq. (1) models a string which is free at the end
x = 0 and actuated by displacement actuation at the end x = 1.
For q �= 0 the free end of the string is subject to a force propor-
tional to the displacement, which physically may be the result
of various phenomena. For example, if the x = 0 end of the
string is made of iron and it is placed between two magnets of
the same polarity, the string’s end will be subject to a magnetic
force which depends on its displacement (the magnetic force
will typically depend on the displacement nonlinearly, however,
for small signals this force can be approximated using linear
dependence). When q > 0 the zero equilibrium state of the sys-
tem will become unstable. Physically this would correspond to
having magnets whose polarity is such that they both generate
an attractive force.

3. Controller and observer design

We design the following observer for system (1):⎧⎪⎪⎨⎪⎪⎩
ŵtt (x, t) = ŵxx(x, t), 0 < x < 1, t > 0,

ŵx(0, t) = −qy(t) − c0[ẏ(t) − ŵt (0, t)], t �0,

ŵ(1, t) = u(t), t �0,

ŵ(x, 0) = ŵ0(x), 0 < x < 1,

(2)

where c0 is a positive design parameter. The observer (2) is a
“natural observer” (Demetriou, 2004) in a sense that it employs
a copy of the plant plus output injection (in this case, only at
the boundary).

To show the exponential convergence of the observer above,
let �(x, t) = w(x, t) − ŵ(x, t) denote the observer error. Then,
it is easy to see that � is governed by⎧⎪⎪⎨⎪⎪⎩

�t t (x, t) = �xx(x, t), 0 < x < 1, t > 0,

�x(0, t) = c0�t (0, t), t �0,

�(1, t) = 0, t �0,

�(x, 0) = �0(x), 0 < x < 1.

(3)

System (3) is the familiar damped wave equation, with the
greatest damping obtained for c0 = 1. The initial condition
�0(x) is, of course, not necessarily equal to zero since the initial
condition of the observer ŵ0(x) can be chosen arbitrarily.

We propose the following observer-based feedback controller
(the motivation behind it will be clear from (6) to (9)):

u(t) = ŵ(1, t),

ŵx(1, t) = − (c1 + q)

∫ 1

0
eq(1−�)[c2ŵt (�, t) + qŵ(�, t)] d�

− c2ŵt (1, t) − (c1 + q)ŵ(1, t), (4)

where c1, c2 are positive design parameters. Then (2)
becomes1⎧⎪⎪⎨⎪⎪⎩

ŵtt (x, t) = ŵxx(x, t),

ŵx(0, t) = −qy(t) − c0[ẏ(t) − ŵt (0, t)],
ŵx(1, t) = −c2ŵt (1, t) − (c1 + q)ŵ(1, t)

−(c1+q)
∫ 1

0 eq(1−�)[c2ŵt (�, t)+qŵ(�, t)] d�.

(5)

1 In the rest of the paper we do not explicitly state the initial conditions
for the PDEs. We also omit the (obvious) intervals for t and x (t �0 and
0 < x < 1).
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It should be noted that the control u(t) is implemented based
on the boundary value ŵ(1, t) of the solution ŵ(x, t) of the
observer system. Thus, it is better to think of (4) as a boundary
condition to the observer system rather than an implicit expres-
sion for the control law, because the control u(t) = ŵ(1, t) is
really given explicitly in terms of the observer state. The rec-
ommended choices of the control gains are c2 around one, and
c1 relatively large.

While the motivation behind the observer (2) is simple, the
motivation behind the controller design (4) is a little more in-
tricate. The choice of the boundary control (4) comes from the
backstepping design (Smyshlyaev & Krstic, 2004). Consider
the invertible change of variable

w̃(x, t) = [(I + P)ŵ](x, t)

= ŵ(x, t) + (c1 + q)

∫ x

0
eq(x−�)ŵ(�, t) d�, (6)

where P is a Volterra transformation. The most important prop-
erties of the Volterra transformation that are crucial for the
designs presented here are boundedness, invertibility, and (spa-
tial) causality. In this paper all the Volterra transformations and
their inverses are given explicitly, which makes these properties
almost obvious. For general theory of Volterra transformations,
see Gripenberg, Londen, and Staffans (1990). The inverse of
(I + P) is given by

ŵ(x, t) = [(I + P)−1w̃](x, t)

= w̃(x, t) − (c1 + q)

∫ x

0
e−c1(x−�)w̃(�, t) d�. (7)

It can be shown that (6) converts the system (5) into⎧⎪⎪⎨⎪⎪⎩
w̃tt (x, t) = w̃xx(x, t)

+ (c1 + q)eqx[q�(0, t) + c0�t (0, t)],
w̃x(0, t) = c1w̃(0, t) − [q�(0, t) + c0�t (0, t)],
w̃x(1, t) = −c2w̃t (1, t).

(8)

Thus, the overall system is a cascade of the exponentially sta-
ble �(x, t)-subsystem and the w̃(x, t)-subsystem, as given in
(8). For �(0, t) ≡ 0, the resulting system (8) is exponentially
stable2 :⎧⎨⎩

w̃tt (x, t) = w̃xx(x, t),

w̃x(0, t) = c1w̃(0, t),

w̃x(1, t) = −c2w̃t (1, t).

(9)

This is a familiar form of a wave equation with a “passive
damper” boundary condition at x = 1, except that at x = 0
we have a mixed boundary condition rather than the Dirichlet
one. However, for large values of c1 this boundary condition
is “almost” Dirichlet which, together with c2 being close to 1,
makes the system exponentially stable. The idea of the trans-
formation (6) is that it makes the closed-loop system (5) behave
as the system (9) (in the absence of observer) by propagating
the destabilizing q-term from the boundary x = 0, through the
entire domain, to the boundary x = 1, where it gets cancelled
by the feedback.

2 In the appropriate norms, the exact topology will be defined later.

The stability of the overall cascade of � and w̃ systems, for
�(x, t) �= 0, will be shown in the next section using a Lyapunov
method (that proof will essentially be a proof of the separa-
tion principle for our observer and state-feedback controller).
Since the transformed system is related to the original one via
the invertible transformation (6), the original system with the
output feedback controller is also exponentially stable in the
appropriate norms (Section 5).

4. Well-posedness and stability of transformed system

In this section, we consider the overall system (3), (8):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�t t (x, t) = �xx(x, t),

�x(0, t) = c0�t (0, t), �(1, t) = 0,

w̃tt (x, t) = w̃xx(x, t)

+ (c1 + q)eqx[q�(0, t) + c0�t (0, t)],
w̃x(0, t) = c1w̃(0, t) − [q�(0, t) + c0�t (0, t)],
w̃x(1, t) = −c2w̃t (1, t),

(10)

in the space H = H 1
R(0, 1) × L2(0, 1) × H 1(0, 1) ×

L2(0, 1), H 1
R(0, 1) = {f ∈ H 1(0, 1)|f (1) = 0} with the inner

product

〈(f1, g1, �1, �1), (f2, g2, �2, �2)〉

= c1�1(0)�2(0) + K

∫ 1

0
[f ′

1(x)f ′
2(x) + g1(x)g2(x)] dx

+ K�0

∫ 1

0
(x − 2)[f ′

1(x)g2(x) + g1(x)f ′
2(x)] dx

+
∫ 1

0
[�′

1(x)�′
2(x) + �1(x)�2(x)] dx

+ �
∫ 1

0
(x + 1)[�′

1(x)�2(x) + �1(x)�′
2(x)] dx

∀(f1, g1, �1, �1, f2, g2, �2, �2) ∈ H ,

where 0 < �0 < min{ 1
2 , c0/(1 + c2

0)}, 0 < � < min{ 1
2 , c2/(1 +

c2
2)} and K > 0 is large enough so that A is dissipative in H as in

the proof of Lemma 1. It is easy to see that the above inner prod-
uct is well-defined. We only need to check the positivity since
other properties are obvious. Indeed, for any (f, g, �, �) ∈ H

we have

‖(f, g, �, �)‖2 �K(1 − 2�0)

∫ 1

0
[f ′(x)|2 + |g(x)|2] dx

+ (1 − 2�)

∫ 1

0
[�′(x)|2 + |�(x)|2] dx.

Define the operator A : D(A)(⊂ H) → H as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A(f, g, �, �)

=(g, f ′′, �, �′′ + (c1 + q)eq·[qf (0) + c0g(0)]),
D(A) = {(f, g, �, �) ∈ (H 2(0, 1) ∩ H 1

R(0, 1))

× H 1
R(0, 1) × H 2(0, 1) × H 1(0, 1)|,

f ′(0) = c0g(0), �′(0) = c1�(0) − [qf (0) + c0g(0)],
�′(1) = −c2�(1)}, ∀(f, g, �, �) ∈ D(A).

(11)
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Then system (10) can be written as

d

dt
v(·, t) = Av(·, t) (12)

where v = (�, �t , w̃, w̃t ).

Lemma 1. Let A be defined by (11). Then A generates an
exponentially stable C0-semigroup on H. Therefore, for any
initial value v(·, 0) ∈ H , there exists a unique solution to
(12) such that v(·, t) ∈ C([0, ∞); H), and there are positive
constants M, � such that

‖v(·, t)‖�Me−�t‖v(·, 0)‖. (13)

Moreover, if v(·, 0) ∈ D(A), then v(·, t) ∈ C1([0, ∞); H) is
the classical solution of (10).

Proof. Define the Lyapunov functions:

E�(t) = 1

2

∫ 1

0
[�2

x(x, t) + �2
t (x, t)] dx

+ �0

∫ 1

0
(−2 + x)�x(x, t)�t (x, t) dx, (14)

and

Ew̃(t) = 1

2

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx + c1

2
w̃2(0, t)

+ �
∫ 1

0
(1 + x)w̃x(x, t)w̃t (x, t) dx. (15)

Both of them are positive definite for �0 < 1
2 , � < 1

2 , as simple
computation shows:

E�(t)�
(

1

2
− �0

) ∫ 1

0
[�2

x(x, t) + �2
t (x, t)] dx, (16)

Ew̃(t)� c1

2
w̃2(0, t)

+
(

1

2
− �

) ∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx. (17)

The time derivatives of E� and Ew̃ along the trajectory of (10)
are, respectively,

Ė�(t) =
∫ 1

0
[�x(x, t)�xt (x, t) + �t (x, t)�xx(x, t)] dx

+ �0

∫ 1

0
(−2 + x)�xt (x, t)�t (x, t) dx

+ �0

∫ 1

0
(−2 + x)�x(x, t)�xx(x, t) dx

= �x(x, t)�t (x, t)|10 − �0

2

∫ 1

0
[�2

x(x, t) + �2
t (x, t)] dx

+ �0

2
(−2 + x)(�2

t (x, t) + �2
x(x, t))|10

= − �0

2

∫ 1

0
[�2

x(x, t) + �2
t (x, t)] dx

− [c0 − �0(1 + c2
0)]�2

t (0, t) − �0

2
�2
x(1, t), (18)

Ėw̃(t) =
∫ 1

0
[w̃x(x, t)w̃xt (x, t) + w̃t (x, t)w̃xx(x, t)] dx

+ c1w̃(0, t)w̃t (0, t)

+ �
∫ 1

0
(1 + x)w̃xt (x, t)w̃t (x, t) dx

+ �
∫ 1

0
(1 + x)w̃x(x, t)w̃xx(x, t) dx

= − �

2

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx − �

2
w̃2

t (0, t)

− [c2 − �(1 + c2
2)]w̃2

t (1, t)

− �

2
[c1w̃(0, t) − (q�(0, t) + c0�t (0, t))]2

+ [q�(0, t) + c0�t (0, t)]
{
w̃t (0, t) + (c1 + q)

×
∫ 1

0
eqx[w̃t (x, t) + �(1 + x)w̃x(x, t)] dx

}
. (19)

By performing two completions of squares further, we get

Ėw̃(t) = − �

4

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx

− [c2 − �(1 + c2
2)]w̃2

t (1, t)

− �

4
[w̃2

t (0, t) + c2
1w̃

2(0, t)]

− �

4

[
c1w̃(0, t) − 2

c1
(q�(0, t) + c0�t (0, t))

]2

− �

4

[
w̃t (0, t) − 2

�
(q�(0, t) + c0�t (0, t))

]2

− �

4

∫ 1

0
[w̃x(x, t) − 2(c1 + q)(1 + x)

× eqx(q�(0, t) + c0�t (0, t))]2 dx

− �

4

∫ 1

0

[
w̃t (x, t) − 2

c1 + q

�
eqx(q�(0, t)

+c0�t (0, t))

]2

dx

+
[
(c1 + q)

∫ 1

0

(
�(1 + x)2 + 1

�

)
e2qx dx

− 1

2
+ 1

�
+ �

c2
1

]
(q�(0, t) + c0�t (0, t))2. (20)

With Poincaré inequality, �2(0, t)�4‖�x(·, t)‖2
L2(0,1)

, we obtain

Ėw̃(t)� − �

4

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx − �

4
c2

1w̃
2(0, t)

− �

4
w̃2

t (0, t) − [c2 − �(1 + c2
2)]w̃2

t (1, t)

+ �

[
4q2

∫ 1

0
�2
x(x, t) dx + c2

0�
2
t (0, t)

]
, (21)
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where

� = 2

[
1

�
+ �

c2
1

+
(

4� + 1

�

)
(c1 + q)2e2q

]
. (22)

We now take the overall Lyapunov function as

E(t) = KE�(t) + Ew̃(t) (23)

and compute its derivative along the solution of (10):

Ė(t)� − �

4

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx − �

4
c2

1w̃
2(0, t)

− �

4
w̃2

t (0, t) −
[
K

�0

2
− 4q2�

] ∫ 1

0
�2
x(x, t) dx

− (c2 − �(1 + c2
2))w̃

2
t (1, t) − K

�0

2

∫ 1

0
�2
t (x, t) dx

− [K(c0 − �0(1 + c2
0)) − c2

0�]�2
t (0, t), (24)

for 0 < �0 < min{ 1
2 , c0/(1 + c2

0)}, 0 < � < min{ 1
2 , c2/(1 + c2

2)}
and large K > 0. Using (16)–(17), we get the following
inequality:

Ė(t)� − �E(t)�0 (25)

for some positive �.
The above process could be also applied to compute

Re〈A(f, g, �, �), (f, g, �, �)〉�0, ∀(f, g, �, �) ∈ D(A).

So A is dissipative in H (Pazy, 1983), and (24) shows that
if A generates a C0-semigroup, then this semigroup must be
exponentially stable. By the Lumer–Phillips theorem (Theorem
4.3, Pazy, 1983, p. 14), the proof will be accomplished if we
can show that A−1 exists and is bounded on H. Actually, a
simple computation shows that

A−1(f, g, �, �) = (f ∗, g∗, �∗, �∗), ∀(f, g, �, �) ∈ H ,

where g∗ = f, �∗ = � and

f ∗(x) = c0f (0)(x − 1) +
∫ x

0
(x − 	)g(	) d	

−
∫ 1

0
(1 − 	)g(	) d	,

�∗(x) = −
∫ 1

x

x�(	) d	 −
∫ x

0
	�(	) d	

− 1

c1

∫ 1

0
�(x) dx − c2�(1)

(
x + 1

c1

)
+ qf ∗(0) + c0f (0)

c1

[
1−c1+q

q
(eq−1)(1+c1x)

]
.

The proof is complete. �

5. Well-posedness and stability of closed-loop system

We go back to the closed-loop system (1) under the
feedback (4):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt (x, t) = wxx(x, t),

wx(0, t) = −qw(0, t),

w(1, t) = ŵ(1, t),

ŵtt (x, t) = ŵxx(x, t),

ŵx(0, t) = −qy(t) − c0[ẏ(t) − ŵt (0, t)],
ŵx(1, t) = −c2ŵt (1, t) − (c1 + q)ŵ(1, t)

− (c1 + q)
∫ 1

0 eq(1−�)[c2ŵt (�, t) d� + qŵ(�, t)],
y(t) = w(0, t).

(26)

We consider system (26) in the state spaceH={(f, g, �, �) ∈
(H 1(0, 1) × L2(0, 1))2|f (1) = �(1)}. Define the system
operator⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D(A) = {(f, g, �, �) ∈ H|A(f, g, �, �) ∈ H,

f ′(0) = −qf (0), �′(0) = c0�(0) − qf (0) − c0g(0),

�′(1) = −c2�(1) − (c1 + q)�(1)

− (c1 + q)
∫ 1

0 eq(1−�)[c2�(�) + q�(�)] d�},
A(f, g, �, �) = (g, f ′′, �, �′′), ∀(f, g, �, �)∈D(A).

(27)

Then system (26) can be written as an evolution equation in H:

d

dt
(w(·, t), wt (·, t), ŵ(·, t), ŵt (·, t))
= A(w(·, t), wt (·, t), ŵ(·, t), ŵt (·, t)). (28)

Theorem 2. Let A be defined by (27) with c0, c1, c2 > 0. Then
A generates a C0-semigroup eAt on H. This semigroup is
exponentially stable:

‖eAt‖�Ce−�t

for some positive constants C, � independent of t.

Proof. For any (w(·, 0), wt (·, 0), ŵ(·, 0), ŵt (·, 0)) ∈ D(A),
let⎧⎪⎪⎪⎨⎪⎪⎪⎩

�(x, 0) = w(x, 0) − ŵ(x, 0),

�t (x, 0) = wt(x, 0) − ŵt (x, 0),

w̃(x, 0) = ŵ(x, 0) + (c1 + q)
∫ x

0 eq(x−�)ŵ(�, 0) d�,

w̃t (x, 0) = ŵt (x, 0) + (c1 + q)
∫ x

0 eq(x−�)ŵt (�, 0) d�.

A direct computation shows that the initial value (�(·, 0), �t (·, 0),
w̃(·, 0), w̃t (·, 0)) ∈ D(A), which implies that there exists a
unique classical solution to (10). Let⎧⎨⎩

w(x, t) = w̃(x, t) − (c1 + q)
∫ x

0 e−c1(x−�)w̃(�, t) d�

+ �(x, t),

ŵ(x, t) = w̃(x, t) − (c1 + q)
∫ x

0 e−c1(x−�)w̃(�, t) d�.

Then a direct computation shows that such a defined
(w, ŵ) satisfies (26) with initial value (w(·, 0), wt (·, 0),
ŵ(·, 0), ŵt (·, 0)). This solution is unique by the invertible
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transformation⎛⎜⎜⎝
�
�t
w̃

w̃t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 −1 0
0 1 0 −1
0 0 I + P 0
0 0 0 I + P

⎞⎟⎟⎠
⎛⎜⎜⎝

w

wt

ŵ

ŵt

⎞⎟⎟⎠ (29)

and the uniqueness of classical solution to (10). Moreover, this
solution is exponentially stable by (7), (13) and (29):

‖(w(·, t), wt (·, t), ŵ(·, t), ŵt (·, t)‖H
�Ce−�t‖(w(·, 0), wt (·, 0), ŵ(·, 0), ŵt (·, 0)‖H (30)

for some positive constant C independent of t. Similar to the
proof of Lemma 1, we can show that A−1 exists and is bounded
on H. Hence 
(A) �= ∅. Since obviously, D(A) is dense in
H, it follows from Theorem 1.3 of Pazy (1983, p. 102) that A
generates a C0-semigroup eAt on H. (29) shows that eAt is
exponentially stable. �

6. A collocated design

In this section, we design an observer which allows stabiliza-
tion of the string with both measurement of displacement and
actuation of vertical force at the right end, despite the presence
of the destabilizing boundary condition at the left end as that
in Eq. (1). This new controller requires the use of a more com-
plicated, backstepping observer, as in Smyshlyaev and Krstic
(2004). This new result is actually an extension of the classical
theory, using the classical choices of actuation and sensing.

The reason that we have to use a more complicated observer
in this new collocated result than in the previous non-collocated
result is that for the non-collocated result the sensor was at the
source of instability, the boundary condition of (1) at left end,
whereas in this new result the sensor and the actuator are at the
opposite end of the domain from the source of instability.

The model we are concerned with is the string equation of
the following form:⎧⎪⎪⎨⎪⎪⎩

wtt (x, t) = wxx(x, t),

wx(0, t) = −qw(0, t),

wx(1, t) = u(t),

y(t) = w(1, t),

(31)

where u is again a scalar control input and y is a scalar measured
output. Note that if the string is pinned at x=0, namely w(0, t)=
0, then one can use the classical derivative feedback wx(1, t)=
−c1wt(1, t). But now that the string is destabilized at x=0 due
to the Robin boundary condition wx(0, t)=−qw(0, t), the more
complicated backstepping controller, and a more complicated
backstepping observer are employed.

We design the following observer:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ŵtt (x, t) = ŵxx(x, t)

+ q(c0 + q)eq(1−x)[y(t) − ŵ(1, t)]
+ c1(c0 + q)eq(1−x)[ẏ(t) − ŵt (1, t)],

ŵx(0, t) = −qŵ(0, t),

ŵx(1, t) = u(t) + (c0 + q)[y(t) − ŵ(1, t)]
+ c1[ẏ(t) − ŵt (1, t)],

(32)

where ci, i = 0, 1, 2, 3 are positive design parameters.

The observer error �(x, t)=w(x, t)− ŵ(x, t) is governed by⎧⎪⎪⎨⎪⎪⎩
�t t (x, t) = �xx(x, t)

− (c0 + q)eq(1−x)[c1�t (1, t) + q�(1, t)],
�x(0, t) = −q�t (0, t),

�x(1, t) = −c1�t (1, t) − (c0 + q)�(1, t).

(33)

The output feedback controller is designed as

u(t) = − c3ŵt (1, t) − (c2 + q)ŵ(1, t)

− (c2 + q)

∫ 1

0
eq(1−�)[c3ŵt (�, t) + qŵ(�, t)] d�. (34)

Then the closed-loop form of observer (32) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵtt (x, t) = ŵxx(x, t)

+ q(c0 + q)eq(1−x)[y(t) − ŵ(1, t)]
+ c1(c0 + q)eq(1−x)[ẏ(t) − ŵt (1, t)],

ŵx(0, t) = −qŵ(0, t),

ŵx(1, t) = −c3ŵt (1, t) − (c2 + q)ŵ(1, t)

− (c2 + q)
∫ 1

0 eq(1−�)[c3ŵt (�, t)

+ qŵ(�, t)] d�
+ (c0 + q)[y(t) − ŵ(1, t)]
+ c1[ẏ(t) − ŵt (1, t)].

(35)

Make the invertible change of variables

�̃(x, t) = [(I + P1)�](x, t)

= �(x, t) − (c0 + q)

∫ 1

x

ec0(x−�)�(�, t) d�,

w̃(x, t) = [(I + P2)ŵ](x, t)

= ŵ(x, t) + (c2 + q)

∫ x

0
eq(x−�)ŵ(�, t) d�.

Both P1 and P2 are Volterra transformations. Under these trans-
formations, we obtain the following autonomous system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�̃t t (x, t) = �̃xx(x, t),

�̃x(0, t) = c0̃�(0, t), �̃x(1, t) = −c1̃�t (1, t),

w̃tt (x, t) = w̃xx(x, t)+c0+q

q
eq [c1̃�t (1, t)+q̃�(1, t)]

× (q cosh(qx) + c2 sinh(qx)),

w̃x(0, t) = c2w̃(0, t),

w̃x(1, t) = −c3w̃t (1, t) + c1̃�t (1, t) + (c0 + q)̃�(1, t).

(36)

Consider system (36) in the space X= (H 1(0, 1) × L2(0, 1))2

with the inner product

〈(f1, g1, �1, �1), (f2, g2, �2, �2)〉

= c0f1(0)f2(0) + K

∫ 1

0
[f ′

1(x)f ′
2(x) + g1(x)g2(x)] dx

+ K�0

∫ 1

0
(x + 1)[f ′

1(x)g2(x) + g1(x)f ′
2(x)] dx

+
∫ 1

0
[�′

1(x)�′
2(x) + �1(x)�2(x)] dx + c2�1(0)�2(0)

+ �
∫ 1

0
(x + 1)[�′

1(x)�2(x) + �1(x)�′
2(x)] dx,
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for all (f, g, �, �) ∈ X, where �0, � are small positive constants
and K > 0 is large enough so that B is dissipative in X as in
the proof of Lemma 3. Define the system operator B : D(B)(⊂
X) → X as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(B) = {(f, g, �, �) ∈ (H 2(0, 1) × H 1(0, 1))2|
f ′(0) = c0f (0), f ′(1) = −c1g(1),

�′(0) = c2�(0),

�′(1) = −c3�(1) + c1g(1) + (c0 + q)f (1)},

B(f, g, �, �) =
(

g, f ′′, �, �′′ + (c0 + q)

× [c1g(1) + qf (1)]eq

(
cosh(qx)

+c2

q
sinh(qx)

))
∀(f, g, �, �) ∈ D(B).

(37)

Then system (36) can be written as

d

dt
v(·, t) = Bv(·, t), (38)

where v = (̃�, �̃t , w̃, w̃t ).

Lemma 3. Let B be defined by (37). Then B generates an expo-
nentially stable C0-semigroup on X. Therefore, for any initial
value v(·, 0) ∈ X, there exists a unique solution to (38) such
that v(·, t) ∈ C([0, ∞);X), and there are positive constants
L, �0 such that

‖v(·, t)‖�Le−�0t‖v(·, 0)‖. (39)

Moreover, if v(·, 0) ∈ D(B), then v(·, t) ∈ C1([0, ∞);X) is
the classical solution to (36).

Proof. The proof is very similar to the proof of Lemma 1, so
we give just a sketch. Define the Lyapunov functions

E�̃(t) = 1

2

∫ 1

0
[̃�2

x(x, t) + �̃2
t (x, t)] dx

+ �0

∫ 1

0
(x+1)̃�x(x, t )̃�t (x, t) dx+c0

2
�̃2(0, t), (40)

Ew̃(t) = 1

2

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx + c2

2
w̃2(0, t)

+ �
∫ 1

0
(1 + x)w̃x(x, t)w̃t (x, t) dx. (41)

Both of them are positive definite for small positive �0, � (which
is shown as in Lemma 1). One can show that the derivative
along the solution of (36) of the overall Lyapunov function

E(t) = KE �̃(t) + Ew̃(t) is

Ė(t)� − �

4

∫ 1

0
[w̃2

x(x, t) + w̃2
t (x, t)] dx − �

4
c2

2w̃
2(0, t)

− �

4
w̃2

t (0, t) − [c3 − �(1 + c2
3)]w̃2

t (1, t)

−
[
K

�0

2
− �

] ∫ 1

0
�̃2
x(x, t) dx − K

�0

2

∫ 1

0
�̃2
t (x, t) dx

− [K(c0 − �0(1 + c2
0)) − �]̃�2

t (1, t)

− K
�0

2
�̃2
t (0, t) −

[
K

�0

2
c2

0 − �

]
�̃2(0, t). (42)

Choosing �0, � sufficiently small and K sufficiently large, there
exists a sufficiently small �0 > 0 such that

Ė(t)� − �0E(t). (43)

The rest of the proof is the same as in Lemma 1. �

Finally, we go back to the original closed-loop system (31),
(32), (34) and consider it in space X. Define the system operator⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(B) = {(f, g, �, �) ∈ (H 2(0, 1) × L2(0, 1))2|,
f ′(0) = −qf (0), �′(0) = −q�(0),

�′(1) = −c3�(1) − (c2 + q)�(1)

− (c2 + q)
∫ 1

0 eq(1−�)[c3�(�) + q�(�)] d�,

f ′(1) = �′(1) + (c0 + q)[f (1) − �(1)]
+ c1[g(1) − �(1)]},

B(f, g, �, �) = (g, f ′′, �, �′′ + (c0 + q)eq(1−·)
× [q(f (1) − �(1)) + c1(g(1) − �(1))])
∀(f, g, �, �) ∈ D(B).

(44)

Then the closed-loop system can be written as an evolution
equation in X:

d

dt
(w(·, t), wt (·, t), ŵ(·, t), ŵt (·, t))
= B(w(·, t), wt (·, t), ŵ(·, t), ŵt (·, t)). (45)

Theorem 4. Let B be defined by (44) with c0, c1, c2, c3 > 0.
Then B generates an exponentially stable C0-semigroup eBt

on X. This semigroup is exponentially stable:

‖eBt‖�C0e−�0t

for some positive constants C0, �0 independent of t.

Proof. The result follows from Lemma 3 in the same way as
Theorem 2 follows from Lemma 1 by noticing that the invertible
transformation below relates the systems (36) and (44),⎛⎜⎜⎝

�̃
�̃t
w̃

w̃t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
I + P1 0 −I − P1 0

0 I + P1 0 −I − P1

0 0 I + P2 0
0 0 0 I + P2

⎞⎟⎟⎠

×

⎛⎜⎜⎝
w

wt

ŵ

ŵt

⎞⎟⎟⎠ . �
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7. Frequency domain representation

With observers and controllers given explicitly, it is possible
to obtain compensator transfer functions in closed form. The
plant has the following transfer function:

y(s) = s

s cosh s − q sinh s
u(s). (46)

Let us first consider the non-collocated design (4), (5). Taking
Laplace transform of (5) we get (the initial conditions of the
observer are assumed to be zero):

s2ŵ(x, s) = ŵ′′(x, s),

ŵ′(0, s) = −(q + c0s)y(s) + c0sŵ(0, s),

ŵ′(1, s) = − (c2s + c1 + q)ŵ(1, s)

− (c1 + q)(c2s + q)

∫ 1

0
eq(1−�)ŵ(�, s) d�. (47)

The solution to the first equation of (47) is

ŵ(x, s) = D1esx + D2e−sx , (48)

where D1 and D2 are constants that should be determined from
the second and third equations of (47). The result is given by

D1 = − (q + c0s)(s − q)(s(1 − c2)(s − c1)e−s − �)

s[a(s)es − b(s)e−s − eq(c1 + q)(c2s + q)] y(s),

D2 = − (q + c0s)(s + q)(s(1 + c2)(s + c1)es − �)

s[a(s)es − b(s)e−s − eq(c1 + q)(c2s + q)]y(s),

where we denote

a(s) = 1
2 (1 + c2)(1 + c0)s(s + q)(s + c1),

b(s) = 1
2 (1 − c2)(1 − c0)s(s − q)(s − c1).

The control input is u(s) = D1es + D2e−s = C(s)y(s), where

C(s) = P(s)

Q(s)
, (49)

P(s) = (c0s + q)[s2(s + c1c2) + qs(c2s + c1)

− eq(c1 + q)(c2s + q)(s cosh(s) − q sinh(s))], (50)

Q(s) = s(a(s)es − b(s)e−s − eq(c1 + q)(c2s + q)) (51)

is the desired compensator transfer function. Note that zero is
not a pole of (51) since C(0) = q(1 − q) − e−qqc1/(c1 + q).
The above explicit expression may be useful for finding an
approximate, finite-dimensional reduced order model for the
compensator. In Fig. 3 the Bode plots of the open-loop plant
and the compensator are shown for q = 1, c0 = 0.8, c1 = 5,
c2 = 1. It is clear that the compensator works by putting zeros
close to the open-loop poles. Although this may not seem as a
robust design, in Section 8 we will show that the compensator
is robust with respect to parameter q in the plant.
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Fig. 3. Bode plots of the plant (dashed) and the compensator (solid) for the
non-collocated design.

In a similar way one can derive the compensator transfer
function in the collocated case:

P(s) =
(

s(c0 + q)(c1s + q)(c3s + c2) + sb(s)
e2q − 1

2q

−a(s)

)
[(s+q)e−s−(s−q)es]−s2(c1s

2+c0s+qs

+ qc0c1)[(1 + c3)(s + c2)e
s − (1 − c3)(s − c2)e

−s],
Q(s) = s(s2 − q2)[(c0c1 + (1 + c3)(s + c2))e

s

− (c0c1 + (1 − c3)(s − c2))e
−s] + 2a(s) cosh s

+ 2b(s) sinh s−b(s)
e2q−1

2q
[(s−q)es+(s+q)e−s],

where a(s) = s(s2 − q2)(c1s + c0 + q) and b(s) = (c0 + q)

(c2 + q)(c1s + q)(c3s + q).

8. Simulation results

In this section we consider a computational example for the
non-collocated design (1), (2), (4). The second order in time
equations were first converted into a system of two first or-
der equations and then Backward Euler Method in time with
Chebyshev spectral method in space were used. The boundary
conditions were implemented in an explicit way. The numerical
code was programmed in Matlab (see, e.g., Trefethen, 2000).
We used spatial grid size N = 40 and time step dt = 10−4. The
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Fig. 4. String response w(x, t). Uncontrolled case, zero Dirichlet boundary
condition at x = 1.
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Fig. 5. Observer error w − ŵ in the uncontrolled case.
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Fig. 6. String response w(x, t) with observer-based control applied at x = 1.

parameter values were set to q =1, c0 =1, c1 =600, and c2 =1.
The initial conditions were

w(0, x) = x − 1 for x ∈ [0, 1],

wt(0, x) =
{

1 if 0.45�x�0.55,

0 otherwise.
.

The initial condition on w corresponds to the simplest non-zero
equilibrium profile of the uncontrolled string. The initial condi-
tion on the time derivative wt corresponds to hitting the string
out of its equilibrium with a force. The force is concentrated
over a length of 0.1 in the middle of the string. As Fig. 4 shows,
the forced boundary condition wx(0, t) = −qw(0, t) with zero
input (u ≡ 0) and with zero Dirichlet boundary condition at
x = 1 results in the instability of the equilibrium profile. For
the observer we used zero initial conditions, which correspond
to the case when the observer initially assumes no knowledge
of the plant. Fast decay of the observer error w − ŵ of the un-
controlled case can be seen in Fig. 5. The controlled case in
Fig. 6 shows asymptotic stability. The instability at x = 0 is
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Fig. 7. Time trace of control u(t).
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Fig. 8. String response w(x, t) with reduced order (N = 6) observer-based
control applied at x = 1.
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Fig. 9. String response w(x, t) with q = 1 in the observer mismatching the
value q = 1.1 in the plant.

suppressed with small control effort at x = 1, shown in Fig. 7.
We were able to achieve stabilization using reduced order ob-
server with N = 6 Chebyshev node points (keeping the plant
discretization at N = 40). The controlled plant is shown in Fig.
8 (compare it to Fig. 6).

In order to examine the robustness of our control/observer
design with respect to the plant parameter q, we designed the
compensator for q = 1 and then changed the value of q in the
plant. Our design was able to stabilize the system for values
q ∈ [0.5, 1.2]. The controlled system with q = 1 used in the
observer is depicted in Fig. 9. The closed loop poles are shown
in Fig. 10. One can see that the controller is quite robust to the
underestimation of the plant parameter by 10%.

9. Conclusions

We have presented the first control designs for stabilization
of open-loop unstable wave equations. Previous damping-based
boundary control designs were applicable only to wave equa-
tions that are neutrally stable (though not exponentially stable).
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Fig. 10. Closed-loop poles: ×—nominal plant and compensator (q = 1),
�—plant with q = 1.1, but compensator is designed for q = 1.

The continuing work is focused on extending the results
of this work to beam models—shear beams and Timoshenko
beams. Future work will deal with thin plates and cylindrical
shells, with control applied along one edge and sensing ap-
plied along the other edge. Further efforts for hyperbolic PDEs
will also include beam equations with non-constant coefficients
(beams with spatially varying profiles).
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