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A Closed-Form Feedback Controller for
Stabilization of the Linearized 2-D
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Abstract—We present a formula for a boundary control law
which stabilizes the parabolic profile of an infinite channel flow,
which is linearly unstable for high Reynolds numbers. Also known
as the Poiseuille flow, this problem is frequently cited as a para-
digm for transition to turbulence, whose stabilization for arbitrary
Reynolds numbers, without using discretization, has so far been
an open problem. Our result achieves exponential stability in the
2 1 and 2 norms, for the linearized Navier–Stokes equa-

tions. Explicit solutions are obtained for the closed loop system. This
is the first time explicit formulae are produced for solutions of the
linearized Navier–Stokes equations in a channel flow, with feedback
in the boundary conditions used to make this possible. The result
is presented for the 2-D case for clarity of exposition. An extension
to 3-D is available and will be presented in a future publication.

Index Terms—Backstepping, boundary control, distributed pa-
rameter systems, flow control, Lyapunov function, Navier–Stokes
equations, stabilization.

I. INTRODUCTION

WE present an explicit boundary control law which stabi-
lizes a benchmark 2-D linearized Navier–Stokes system.

Despite the deceptive simplicity of the channel flow geometry,
there is a number of complex issues underlying this problem
[19], making it extremely hard to solve. The fact that the channel
is unbounded further complicates the problem [27].

Controllability and stabilizability results for the Navier–
Stokes equations are available for general geometries; for
example, see [15]–[18] and references therein. However, these
results do not provide the means of computing a feedback
controller.

Many efforts in the design of feedback controllers for the
Navier–Stokes system employ in-domain actuation, using
optimal control methods [9], spectral decomposition and pole
placement [11], or stochastic control [26]. For boundary feed-
back control, there are theoretical works in optimal control
theory for general geometries [22], and more applied works that
consider specific geometries, like cylinder wake [21]. In [12],
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optimal controllers that act only tangentially to the boundary
are designed, and it is shown for the 2-D case that an stabi-
lizing controller acting only on a arbitrarily small subset of the
boundary can be found. There are also new techniques arising
for specific flow control problems like separation control [3].

Optimal control has so far been the most successful technique
for addressing channel flow stabilization [17], in a periodic
setting, by using a discretized version of the equations and
employing high-dimensional algebraic Riccati equations for
computation of gains. The computational complexity of this
approach is formidable if a very fine grid is necessary in the
discretizations, for example if the Reynolds number is very
large. Using a Lyapunov/passivity approach, another control
design [1], [7] was developed for stabilization of the (periodic)
channel flow; the design was simple and explicit and did
not rely on discretization or linearization, but its theory was
restricted to low Reynolds numbers though in simulations the
approach was successful at high Reynolds numbers, above the
linear instability threshold. Other works make use of nonlinear
model reduction techniques to solve the problem, though they
employ in-domain actuation [4]–[6]. Boundary controllers
using spectral decomposition and pole-placement methods
have been developed, using normal actuation [10] or tangential
actuation in an arbitrarily small subset of the walls [30].

The approach we present in this paper is the first result that
provides an explicit control law (with symbolically computed
gains) for stabilization at an arbitrarily high Reynolds number
in nondiscretized linearized Navier–Stokes equations, and it is
applicable to both infinite and periodic channels with arbitrary
periodic box size, and also extends to 3-D. Thanks to the ex-
plicitness of the controller, we are able to obtain approximate
analytical solutions for the linearized Navier–Stokes equations.
Exponential stability in the and norms is proved for
the linearized Stokes system.

The method we use for solving the stabilization problem is
based on the recently developed backstepping technique for par-
abolic systems [28], which has been successfully applied to flow
control problems, for example to the vortex shedding problem [2]
and to feedback stabilization of an unstable convection loop [34].

We start the paper by stating, in Section II, the mathemat-
ical model, which consists of the linearized Navier–Stokes
equations for the velocity fluctuation around the (Pouisseuille)
equilibrium profile. In Section III, we introduce the control law
that stabilizes the equilibrium profile. Explicit solutions for the
closed loop system are then stated in Section IV along with
the main results of the paper. Sections V–VII deal with the
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Fig. 1. Two-dimensional channel flow and equilibrium profile. Actuation is on
the top wall.

proof of, respectively, and stability of the closed
loop system. A Fourier transform approach allows separate
analysis for each wave number. For certain wave numbers, a
normal velocity controller puts the system into a form where
a linear Volterra operator, combined with boundary feedback,
transforms the original normal velocity PDE into a stable heat
equation. The rest of wave numbers are proved to be open loop
exponentially stable, and left uncontrolled. These two results
are combined to prove stability of the closed loop system for
all wave numbers and in physical space. In Section VIII we
justify the well-posedness of the system. Section IX is devoted
to study some properties of the control laws. In Section X, we
finish the paper with a discussion of the results.

II. MODEL

Consider a 2-D incompressible channel flow evolving in a
semi-infinite rectangle as
in Fig. 1. The dimensionless velocity field is governed by the
Navier–Stokes equations

(1)

(2)

and the continuity equation

(3)

where denotes the streamwise velocity, the wall-normal
velocity, the pressure, and is the Reynolds number. The
boundary conditions for the velocity field are the no-penetra-
tion, no-slip boundary conditions for the uncontrolled case, i.e.,

. Instead of using
(3), we derive a Poisson equation that verifies, combining (1),
(2), and (3)

(4)

with boundary conditions and
, which are obtained evaluating (2)

at .
The equilibrium solution of (1)–(3) is the parabolic Poiseuille

profile
(5)

(6)

(7)

shown in Fig. 1. This equilibrium is unstable for high Reynolds
numbers [25]. Defining the fluctuation variables

and , and linearizing around the equilibrium profile
(5)–(7), the plant equations become the Stokes equations

(8)

(9)

(10)

with boundary conditions

(11)

(12)

(13)

(14)

(15)

(16)

The continuity equation is still verified

(17)

We have added in (12) and (14) the actuation variables
and , respectively, for streamwise and normal velocity
boundarycontrol.Theactuatorsareplacedalongthe topwall,

, and we assume they can be independently actuated for all
. No actuation is done inside the channel or at the bottom wall.
Taking Laplacian in (9) and using (10), we get an autonomous

equation for the normal velocity, the well-known Orr–Sommer-
feld equation

(18)

with boundary conditions (13)–(14), as well as
, derived from (11)–(12) and (17). This

equation is numerically studied in hydrodynamic theory to de-
termine stability of the channel flow [23].

Defining and using the Fourier transform, it is
possible to partially solve (18) and obtain an evolution equation
for
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(19)

with boundary conditions and .
Equation (19) governs the channel flow, since from and using
(17), we recover both components of the velocity field

(20)

(21)

Equation (19) displays the full complexity of the Navier–
Stokes dynamics, which the PDE system (8)–(10) conceals
through the presence of the pressure (10), and the Orr–Sommer-
feld (18) conceals through the use of fourth order derivatives.
Besides being unstable (for high Reynolds numbers), the
system incorporates (on its right-hand side) the components of

from everywhere in the domain. This is the main source
of difficulty for both controlling and solving the Navier–Stokes
equations. A perturbation somewhere in the flow is instanta-
neously felt everywhere—a consequence of the incompressible
nature of the flow. Our approach to overcoming this obstacle is
to use one of the two control variables (normal velocity ,
which is incorporated explicitly inside the equation) to prevent
perturbations from propagating in the direction from the con-
trolled boundary towards the uncontrolled boundary. This is a
sort of “spatial causality” on , which in the nonlinear control
literature is referred to as the ‘strict-feedback structure’ [20].

III. CONTROLLER

The explicit control law consists of two parts—the normal
velocity controller and the streamwise velocity controller

. makes the integral operator in the third to fifth
lines of (19) spatially causal in ,1 which is a necessary structure
for the application of a “backstepping” boundary controller for
stabilization of spatially causal partial integro-differential equa-
tions [28]. is a backstepping controller which stabilizes
the spatially causal structure imposed by . The expressions
for the control laws are

(22)

(23)

where verifies the equation

(24)

where

(25)

1The first, second, and tenth lines are already spatially causal in y.

and the kernels and are defined as

(26)

(27)

(28)

In expressions (26)–(28), is a truncating function in the
wave number space whose definition is

otherwise
(29)

where and are, respectively, the low and high cutoff wave
numbers, two design parameters which can be conservatively
chosen as and . The
function appearing in (26) is a (complex valued) gain
kernel defined as

(30)

where is recursively defined as2

(31)

and

(32)

The terms of this series can be computed symbolically as they
only involve integration of polynomials and exponentials. In im-
plementation, a few terms are sufficient to obtain a highly accu-
rate approximation because the series is rapidly convergent [28].

Formulas (22)–(32) constitute the complete statement of our
feedback law. Their mathematical validity is established in The-
orem 2 and Proposition 1.

2This infinite sequence is convergent, smooth, and uniformly bounded over
(y; �) 2 [0; 1] , and analytic in k. See Proposition 1 for details
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Remark 1: (23) is a dynamic controller whose magnitude is
determined by the variable , which evolves according to
(24). The initial condition must verify the compatibility
condition for the plant to be well-posed. This amounts to setting

.
Remark 2: Control kernels (27) and (28) can be explicitly

expressed as

(33)

(34)

where and are defined

(35)

(36)

IV. MAIN RESULTS

Due to the explicit form of the controller, the solution of the
closed loop system is also obtained in the explicit form

(37)

(38)

where

(39)

(40)

The variables and represent the error
of approximation of the velocity field and are bounded in the
following way:

(41)

where both and can be written in terms
of the initial conditions of the velocity field as

(42)

(43)

The bound on the errors is proportional to the initial kinetic en-
ergy of and , which, as made explicit in the expressions
(42)–(43), is, in turn, proportional to the kinetic energy of and

at very small and very large length scales (the integral that we
are substacting from the initial conditions represents the inter-
mediate length scale content), and decays exponentially. There-
fore, this initial energy will typically be a very small fraction
of the overall kinetic energy, making the errors and very
small in comparison with and , respectively.

The kernel in (40) is defined as a convergent, smooth se-
quence of fuctions

(44)

whose terms are recursively defined as

(45)

(46)

Control laws (22)–(32) guarantee the following results.
Theorem 1: Assume and , initial conditions

for and , belong to and that the following compati-
bility conditions3 are verified:

(47)

(48)

3The compatibility condition V (t; x)dx = 0 is automatically verified,
see Theorem 2.
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Then, the equilibrium of system
(8)–(16), with feedback law (22)–(32) where the function

in (24) verifies the initial condition ,
is exponentially stable in the and norms. More-
over, the solutions for and belong to

and are given explicitly by (37)–(46).
Theorem 2: Under the same assumptions of Theorem 1,

control laws and kernels as defined by
(22)–(32), have the following properties.

i) and are spatially invariant in .
ii) (zero net flux).

iii) , for .
iv) and are smooth functions of .
v) are real valued.

vi) are smooth in their arguments.
vii) and are functions of .

viii) All spatial derivatives of and are function of .
Remark 3: By Sobolev’s Embedding Theorem [31], sta-

bility suffices to establish continuity of the velocity field, which
holds on bounded (e.g., periodic) domains as well as on infinite
domains.

Remark 4: Theorem 2 ensures that the control laws are well
behaved and their formal definition makes sense. Property i, spa-
tial invariance, means that the feedback operators commute with
translations in the direction [8], which is crucial for implemen-
tation. Property ii ensures that we do not violate the physical
restriction of zero net flux, which is derived from mass conser-
vation. Property iii allows to truncate the integrals with respect
to to the vicinity of , which allows sensing to be restricted just
to a neighborhood (in the direction) of the actuator. Properties
iv to vi ensure that the control laws are well defined. Properties
vii and viii prove finiteness of energy of the controllers and their
spatial derivatives.

The next sections are devoted to proving these theorems. We
first derive a priori estimates; then we prove well-posedness in
a direct way using explicit closed-loop solutions.

V. STABILITY

As common for infinite channels, we use a Fourier transform
in . The transform pair (direct and inverse transform) has the
following definition:

(49)

(50)

Note that we use the same symbol for both the original
and the image . In hydrodynamics, is referred to as the
“wave number.”

One property of the Fourier transform is that the norm is
the same in Fourier space as in physical space, i.e.,

(51)

allowing us to derive exponential stability in physical space
from the same property in Fourier space. This result is called
Parseval’s formula in the literature [13].

Remark 5: Given a state , we define feedback operators that
act on the state for each wave number . Calling the result of the
operator ,

(52)

where is a kernel that is itself a function of . Applying the
inverse transform we can write (52) in physical space

(53)

or in terms of in physical space

(54)

This is known as the Convolution Theorem. Supposing that is
an function of space, and that is bounded and has finite
support in , it follows that Expression (54) makes sense and
defines an function in space.

We also define the norm of with respect to

(55)

The norm as a function of is related to the norm as

(56)

Equations (8)–(10) written in the Fourier domain are

(57)

(58)

(59)

with boundary conditions

(60)

(61)

(62)

(63)

(64)

(65)
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and the continuity (17) is now

(66)

Thanks to linearity and spatial invariance, there is no coupling
between different wave numbers. This allows us to consider the
equations for each wave number independently. Then, the main
idea behind the design of the controller is to consider two dif-
ferent cases depending on the wave number . For wave num-
bers , which we will refer to as controlled wave
numbers, we will design a backstepping controller that achieves
stabilization, whereas for wave numbers in the range
or in the range , which we will call uncontrolled wave
numbers, the system is left without control but is exponentially
stable. This is a well-known fact from hydrodynamic stability
theory [25].

Estimates of and are found in the paper based on Lya-
punov analysis and allow us to use feedback for only the wave
numbers . This is crucial because feedback over
the entire infinite range of ’s would not be convergent. The
truncations at are truncations in Fourier space which
do not result in a discontinuity in .

We now analyze (57)–(59) in detail, for both controlled and
uncontrolled wave numbers.

A. Controlled Wave Numbers

For we first solve (59) in order to eliminate
the pressure. The equation can be easily solved since it is just
an ODE in , for each . Introducing its solution into (57), we
are left with

(67)

We do not need to separately write and control the equation
because, by the continuity (66) and using the fact that

, we can write in terms of

(68)

Introducing (68) in (67), and simplifying the resulting double
integral by changing the order of integration, we reduce (67) to

an autonomous equation that governs the whole velocity field.
This equation is

(69)

with boundary conditions

(70)

(71)

Note that the relation between in (19) and in (69) is that
.

Now, we design the controller in two steps. First, we set
so that (69) has a strict-feedback form in the sense previously
defined

(72)

This can be integrated and explicitly stated as a dynamic con-
troller in the Laplace domain

(73)

Control law (72) can be expressed in the time domain and phys-
ical space as (23)–(25) and (27), (28), by use of the convolution
theorem of the Fourier transform.

Introducing in (69) yields

(74)
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Equation (74) can be stabilized using the backstepping tech-
nique for parabolic partial integro-differential equations [28].
This method consists on finding an invertible Volterra transfor-
mation that maps the original unstable equation into a target
system with the desired stability properties.

Using backstepping, we map , for each wave number
, into the family of heat equations

(75)

(76)

(77)

where

(78)

(79)

are respectively the direct and inverse transformation. The
kernel is found by substituting (74) and (78) into (75)–(77).
Then integration by parts, following exactly the same steps as
in [28], leads to the following equation that must verify

(80)

a hyperbolic partial integro-differential equation (PIDE) in the
region with boundary
conditions

(81)

(82)

Regarding (80)–(82), we have the following result.
Proposition 1: Consider (80) in the domain
with boundary conditions (81)–(82). There is a solution ,

given by (30)–(32), such that belongs to . Moreover
as a complex-valued function of is analytic in the annulus

.
Proof: We transform (80)–(82) into an integral equation.

This is done following the same steps as in [28], by defining new

variables . Then one obtains a PIDE in and
and parameterized by , that can be partially solved by inte-

gration, finally reaching an integral equation of Volterra type in
two variables. The integral equation can be solved explicitly for
each via a successive approximation series; this explicit solu-
tion is given by (30)–(32). For each , the same method of
[28] proves convergence of the series and, hence, the existence
of a solution. One gets the following estimate when is in the
annulus

(83)

where .
Moreover, using the estimate and the fact that the terms in the
series definition (31)–(32) of are analytic in , it is shown
that the kernel itself is also analytic as a complex function of ,
for compact subsets of the annulus . This implies
analyticity in the given annulus [24]. The required smoothness
in and is shown by differentiating the series term by term.

Remark 6: Proposition 1 implies that the kernel and its first
and second order derivatives in and are bounded for

and .
Remark 7: Using Proposition 1, (78)–(79) and Remark 6, it

is shown that the backstepping transformation (78) maps the
spaces and back to themselves.

From the transformation (78) and the boundary condition
(70), the control law is

(84)

Using the convolution theorem of the Fourier transform (see
Remark 5) we write the control law (84) back in physical space.
The resulting expressions is (22).

The equation for the inverse kernel in (79) is similar to the
one of and enjoys similar properties

(85)

again a hyperbolic partial integro-differential equation in the re-
gion with boundary conditions

(86)

(87)

The equation can be transformed into an integral equation and
calculated via the successive approximation series (45)–(46). A
similar result to Proposition 1 holds for .
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By using (68) and (78)–(79), can also be expressed in terms
of

(88)

(89)

Since (78)–(79) map (74) into (75), stability properties of the
velocity field follows from those of the system.

Proposition 2: For any in the range , the
equilibrium of system (57)–(65)
with control laws (72), (84) is exponentially stable in the
norm, i.e.,

(90)

where is defined as

(91)

Proof: First, from the (75), it is possible to get an
estimate

(92)

then employing the direct and inverse transformations (78)–(79)
and (89), we get (90)–(91).

Now, if we apply the feedback laws (72) and (84) for all wave
numbers , then the control laws in physical space
are given by expressions (22)–(28), where the inverse transform
integrals are truncated at in (26)–(28). If we define

(93)

(94)

which are variables that contain all velocity field information
for wave numbers , the following result holds.

Proposition 3: Consider (8)–(16) with control laws
(22)–(23). Then the variables and
defined in (93)–(94) decay exponentially

(95)

Proof: The Fourier transform of the star variables is, by
definition, the same as the Fourier transform of the original vari-

ables for , and zero otherwise. Therefore, ap-
plying Parseval’s formula and Proposition 2

(96)

proving (95).

B. Uncontrolled Wave Number Analysis

For the uncontrolled system (57)–(58), we define, for each ,
the Lyapunov functional

(97)

The time derivative of is

(98)

where the bar denotes the complex conjugate, and the pressure
term cancels out using integration by parts and the continuity
(66). The second term in the first line of (98) can be bounded
using the Poincare inequality, thanks to the Dirichlet boundary
condition at

(99)

Consider now separately the two cases and .
In the first case, we can bound the second line of (98) as

(100)

so, if , then

(101)

Now, consider the case of small wave numbers. We bound the
second line of (98) using the continuity (66)

(102)

so, if , then

(103)

We have just proved the following result.
Proposition 4: If and

, then for both and the
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equilibrium of the uncontrolled
system (57)–(65) is exponentially stable in the sense

(104)

Since the decay rate in (104) is independent of , that al-
lows us to claim the following result for all uncontrolled wave
numbers.

Proposition 5: The variables and de-
fined as

(105)

(106)

decay exponentially as

(107)

Proof: As in Proposition 3.

C. Analysis for the Entire Wave Number Range

Using (37)–(38)

(108)

where we have used the fact that
and is zero for all

by its definition (29).
This shows that the norm of is the sum of the norms

of and . The same holds for . Therefore,
Theorem 1 follows from Propositions 3 and 5. Noting that
as defined in (91) is greater than unity, we obtain the following
estimate of the decay:

(109)

VI. STABILITY

We define the norm of as

(110)

We also define the norm of with respect to y as

(111)

The norm as a function of is related to the norm as

(112)

A. Stability for Controlled Wave Numbers

For each , one has that

(113)

where we have used (111) and Poincare’s inequality. This
proves the equivalence, for any , of the norm of
and the norm of just . Therefore, we only have to
show exponential decay for and .

Due to the backstepping transformations (78) and (79) and
(88) and (89)

(114)

(115)

(116)

(117)

and then it is possible to write the following estimates, which
are derived from simple estimates on and from (75)

(118)

(119)

where

(120)

Using these estimates the following proposition can be stated
regarding the velocity field at each in the controlled range.

Proposition 6: For any in the range , the
equilibrium of the system (57)–(65)
with control laws (72), (84) is exponentially stable in the
sense

(121)
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where is defined as

(122)

Thanks to the same argument as in Proposition 3, for all wave
numbers , the following result holds.

Propostion 7: Consider (8)–(16) with control laws (22)–(23).
Then the variables and defined in
(93)–(94) decay exponentially in the norm

(123)

B. Stability for Uncontrolled Wave Numbers

Following the same argument as in (97)–(103), a slightly dif-
ferent bound can be derived that keeps some of the norm
in (102)

(124)

where

(125)

The time derivative of can be bounded as

(126)

where we have used integration by parts and the Dirichlet
boundary conditions of the uncontrolled wave number range.
Doing further integration by parts and using the divergence free
condition, we can simplify a little the previous expression

(127)

Only the last term remains to be estimated. Using (64) and (65)
with being zero for uncontrolled wave number, the last term
in (127) can be expresssed as

(128)

This quantity can be estimated using the following lemma.
Lemma 1: If the pressure verifies the Poisson equation (59)

with boundary conditions (64)–(65), then

(129)

Proof: Multiplying (59) by and integrating from zero to
one, one gets

(130)

which integrated by parts, becomes

(131)

Now using Young’s inequality, one finally arrives at

(132)

For the other conjugate pair one proceeds analogously, thus
completing the proof.

Using the lemma, the time derivative of can be estimated
as follows:

(133)

We take the following Lyapunov functional:

(134)

which is equivalent to the norm, whose definition in terms
of and is

(135)

Computing the derivative of (134)

(136)

where is a (possible very conservative) positive constant,
which depends on the Reynolds number (but not on )

(137)
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and where

(138)

Deriving an estimate of the norm from this estimate for ,
one reaches the following result.

Proposition 8: If and
, then for both and the

equilibrium of the uncontrolled
system (57)–(65) is exponentially stable in the sense

(139)

Since the decay rate in (139) is independent of , that allows
us to claim the following result for all uncontrolled wave num-
bers.

Proposition 9: The variables and de-
fined as in (105)–(106) decay exponentially in the norm as

(140)

C. Analysis for All Wave Numbers

From Propositions 7 and 9, and using the same argument as
in Section V-C, the stability part of Theorem 1 is proved.
One gets that

(141)

where .

VII. STABILITY

The norm of is defined as

(142)

We also define the norm of with respect to y as

(143)

The norm as a function of is related to the norm as

(144)

A. Stability for Controlled Wave Numbers

Thanks to the backstepping transformations (78) and (79) and
(88) and (89), one calculates the second order derivative of both

and from and its derivatives

(145)

(146)

(147)

(148)

It is possible then to write the following estimates, which are
derived from simple estimates on and from (75)

(149)

(150)

The positive constants and are defined as in (120) and
depend only on and .

Using these estimates the following proposition can be stated
regarding the velocity field at each in the controlled range.

Proposition 10: For any in the range , the
equilibrium of the system (57)–(65)
with control laws (72), (84) is exponentially stable in the
sense

(151)

where is defined as

(152)

Thanks to the same argument as in Proposition 3, the fol-
lowing result holds for all wave numbers .

Proposition 11: Consider (8)–(16) with control laws
(23)–(22). Then the variables and de-
fined in (93)–(94) decay exponentially in the norm

(153)

B. Stability for Uncontrolled Wave Numbers

For the uncontrolled wave number range, thanks to the
Dirichlet boundary conditions, the norm is
equivalent to the norm

(154)
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i.e., to the norm plus the norm of the Laplacian, which
we denote for short . The proof of the norm equiv-
alence is obtained integrating by parts

(155)

The next norm equivalence property is less obvious and we state
it in the following lemma.

Lemma 2: Consider and verifying (57)–(58). Then, for
the uncontrolled wave number range, the norm
is equivalent to the norm

(156)

This means the Laplacian operator in norm (154) can be re-
placed by a time derivative, when considering the norm of

and together.
Proof: Let us call

(157)

(158)

Substituting in (157) (57)–(58),

(159)

where contains the following terms:

(160)

Now one can estimate this quantity

(161)

in which we have used integration by parts, Young’s inequality,
and Lemma 1. Therefore

(162)
and

(163)

where .

From Lemma 2 one gets stability for the uncontrolled
wave numbers. This is obtained by considering the norm

as a Lyapunov functional whose derivative
can be bounded as

(164)

which follows by taking the time derivative of (57)–(58) and
applying the same argument as for stability. Thus

(165)

Noting that and , adding (165) to (139)
and employing (162), (162), we obtain the following result.

Proposition 12: If and
, then for both and the

equilibrium of the uncontrolled
system (57)–(65) is exponentially stable in the sense

(166)

Since the decay rate in (166) is independent of , that al-
lows us to claim the following result for all uncontrolled wave
numbers.

Proposition 13: The variables and de-
fined as in (105)–(106) decay exponentially in the norm as

(167)

C. Analysis for All Wave Numbers

From Propositions 11 and 13, and again by the same argument
as in Section V-C, the stability part of Theorem 1 is proved.
One gets that

(168)

where .

VIII. PROOF OF WELL-POSEDNESS AND EXPLICIT SOLUTIONS

For showing well-posedness and derive the explicit solutions
we decompose the system in two parts in the wave number
space, using (37)–(38). The star variables represent the con-
trolled wave numbers in physical space and are defined in
(93)–(94). The epsilon variables represent the uncontrolled
wave number content in physical space and are defined in
(105)–(105). Consider then the initial conditions and in
Fourier space. Define

(169)

(170)
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and similarly

(171)

(172)

Note that and also verify the required
compatibility conditions. Define the following initial-boundary
value problems for the star and epsilon variables:

- and

and
- and

By linearity and spatial invariance (implying that different wave
numbers are independent of each other), the solution of the lin-
earized Navier–Stokes equations is the sum of the solutions of

and . Hence, if both systems are well-posed then the orig-
inal problem is well-posed too.

System is the (uncontrolled) channel flow with no-slip,
no-penetration boundary conditions. See [32, Proposition 1.2,
pages 265–269] for an analysis of the linear Navier–Stokes
equations and their regularity that allows for unbounded do-
mains. It is shown that with the given degree of regularity of
the initial conditions, the problem is well posed in the space

. Combining this fact with the a priori
bounds of Section VII, it follows that is well-posed in

. Moreover the decay rate of the epsilon
variables is given in Proposition 5.

We prove now that is well-posed using a direct method,
taking advantage of the possibility of writing the exact solu-
tion of the problem. This is a classical way of showing well-
posedness, see, for example [14], where existence of solutions
is shown by solving explicitly the problems with Fourier trans-
form and series methods, and uniqueness is proved by energy
methods.

Explicit solutions (39)–(40) are obtained in the following
way. Equation (75) is a heat equation in and can be
solved explicitly. The initial condition for this equation is

(173)

and, since , then , moreover the com-
patibility condition is verified from
(173) and (48). Hence, the solution of (75), a stable heat equa-
tion, is . Using then (79) and (89), and ap-
plying the inverse Fourier transform, the solution for and

is recovered in physical space, as given by (39)–(40). Both
the inverse backstepping transformation and the inverse Fourier

transform map back into itself; hence, the
existence of a solution with the desired regularity properties
follows. Explicit formulas can be written for the control laws;
in particular is well-defined as the traces and

appearing in (25) can be computed due to the regu-
larity of .

Remark 8: Note that, in fact, a higher regularity can be proved
for , due to the smoothing properties of the heat equation. We
don’t pursue more than regularity in this work. Note also
that regularity in , which is determined in Fourier space by the
behavior of the solution for large values of , is guaranteed for

because the solution is nonzero only for a finite subset of
wave numbers. Hence, the solution of is smooth in .

Uniqueness follows from the a priori bounds shown in Sec-
tions V–VII. Given two solutions in the same space, their differ-
ence verifies as well the a priori bounds with zero initial con-
ditions; hence, its norm is zero for all times and both solutions
must be the same.

IX. PROOF OF THEOREM 2

Consider expressions (22)–(32).
Points i and iv are deduced trivially from the fact that (22) and

(25) are defined as convolutions, and properties of the heat (24).
Point ii is verified if

(174)

From the definition of the Fourier transform of

(175)

Therefore, as lies on the uncontrolled wave number range
, then and the property is

verified.
Point iii bounds the decay rate of kernels (26)–(28). Kernel

definitions are of the form

(176)

for some analytic in and smooth in . Then, integrating by
parts, we find that

(177)

showing that the kernels decay at least like . This bound
is made explicit in Remark 2.

From the definition of the inverse Fourier transform (50), it is
straightforward to show that if the real part of is even and
the imaginary part of is odd, then the resulting
will always be real. Then, Point v can be proved showing that
the functions under the integrals in (26)–(28), which are inverse
Fourier transforms, have this property. This is immediate for
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(27) and (28). For (26), the property must be shown for the
kernel , defined by the sequence (31)–(32). Since is the
limit of the sequence, it will have the property if all share
the property. This can be proved by induction. For , the prop-
erty is evident from its definition (31) and can be immediately
verified. For , if the property is assumed for , then from
expression (32) and taking into account that the product of even
or odd functions is even and the product of an even function
times an odd function is odd, then follows that also shares
the property. Therefore, the limit has a real inverse transform,
and kernel is real.

Point vi is deduced from the definition of the kernels
(26)–(28) as truncated Fourier inverse integrals, which makes
the kernels smooth in . Smoothness in is deduced from
smoothness of the functions under the integrals.

For Point vii, consider expression (22) and (26). Then

(178)

and the result follows from Theorem 1.
On the other hand, for one has to use its dynamic

(24)–(25), and a Lyapunov functional consisting in half its
norm. One then has, using Young’s inequality

(179)

and supposing the control law is initialized at zero (see Remark
1), and using the norm to bound the second line of (179) one
gets

(180)

Integrating in

(181)

and then the result follows from Theorem 1.

For Point viii, consider the th spatial derivative of and
calculate its spatial norm

(182)

so the result for follows from Point vii. We proceed similarly
for , thus proving Point viii.

X. DISCUSSION

The result was presented in 2-D for ease of notation. Since 3-D
channels are spatially invariant in both streamwise and spanwise
direction, it is possible to extend the design to 3-D, by applying
the Fourier transform in both invariant directions and following
the same steps, with some refinements which include actuation
of the spanwise velocity at the wall. The result also trivially ex-
tends to periodic channel flow of arbitrary periodic box size, 2-D
or 3-D; it only requires substitution of the Fourier transform by
Fourier series, with all other expressions still holding.

Our control laws are presented with full state feedback. How-
ever, for parabolic PDEs, in [29], we developed an observer
design methodology, which is dual to the backstepping con-
trol methodology in [28], which we extended to Navier–Stokes
equations here to solve the state feedback stabilization problem
for the channel flow. Extending the observer concepts in [29]
to the Navier–Stokes PDEs has allowed us to also develop an
observer for the channel flow, which is presented in the con-
ference paper [33]. While the observer is of interest in its own
right (one can use it to estimate turbulent flows without control-
ling/relaminarizing them), the state feedback controller in the
present paper and the observer in [33] can be combined into
an output feedback compensator, which uses measurements of

and only, and the actuation of .
Our controller requires actuation of both velocity components

at the wall. An assumption made throughout the flow control
literature is that the boundary values of velocity are actuated
through micro-jet actuators that perform “zero-mean” blowing
and suction. Effective actuation of wall velocity at angles as low
as 5 relative to the wall has been demonstrated experimentally
using differentially actuated pairs of jets.

Unlike in our earlier publications [1], [7], where we included
DNS simulation results that demonstrated relaminarization
with our controllers, we do not present simulation results in
this paper. In another publication, to be submitted to a fluid
mechanics journal, we will present an extension to 3-D, without
the stability estimates and without the explicit closed-
loop Navier–Stokes solutions (these two issues extend in a
rather straightforward manner to 3-D because we deal with
linearized Navier–Stokes equations), but with simulations
results included. The 3-D controller will include actuation
in the spanwise direction. The numerical tests will focus on
turbulence-critical issues like the behavior of the controller at

for moderate-to-large and other issues which come
up only in 3-D.
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