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Abstract 

For the problem of stabilization of nonlinear systems linear in unknown constant parameters, we introduce the concept 
of an adaptive control Lyapunov function (aclf) and use Sontag's constructive proof of Artstein's theorem to design 
an adaptive controller. In this framework the problem of adaptive stabilization of a nonlinear system is reduced to the 
problem of nonadaptive stabilization of a modified system. To illustrate the construction of aclf's we give an adaptive 
backstepping lemma which recovers our earlier design. 
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1. Introduction 

We consider the problem of  global feedback stabilization o f  systems of  the form 

i =  f (x)+F(x)O+o(x)u,  x E R " ,  u E R ,  (1.1) 

where 0 is a constant unknown parameter vector which can take any value in •P, the mappings f (x) ,F(x)  
and O(X) are smooth, and f ( 0 )  = 0, F (0 )  = 0. This problem is, in general, not solvable with static feedback. 
This is obvious in the scalar ease n = p = 1, where a control law u = g(x) independent o f  0 would have the 
impossible task to satisfy x[f(x) + F(x)O + 9(x)ot(x)] < 0 for all x -¢ 0 and all 0 E R. Therefore, we seek 
dynamic feedback controllers to stabilize system (1.1) for all 0. 

We say that system (1.1) is olobally adaptively stabilizable if  there exists a function at(x, 0) smooth on 
( R " \ { 0 } )  x Rp with g(0, 0) _= 0, a smooth function z(x, 0), and a positive definite symmetric p × p matrix 
F, such that the dynamic controller 

u = ~(x, 0),  (1.2) 

= Fz(x, 0), (1.3) 
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guarantees that the solution (x(t), O(t)) is globally bounded, and x(t) ~ 0 as t --+ ~ ,  for any value of the 
unknown parameter 0 E R p. 

As customary in adaptive control, the state 0 plays the role of an estimate of 0. 

2. Adaptive stabilization and aeif's 

Our approach is to replace the problem of adaptive stabilization of (1.1) by a problem of nonadaptive 
stabilization of a modified system. This allows us to study adaptive stabilization in the Artstein-Sontag setting 

of control Lyapunov functions (clf). 

Definition 2.1. A smooth function Va : ~ x R p ---, R+, positive definite and proper in x for each 0, is called 
an adaptive control Lyapunov function (aclf) for (1.1) if there exists a positive definite symmetric matrix 
C E ~pxp such that for each 0 E ~P, Va(x, O) is a clf for the modified system 

( ( ~ 0 a )  T ) .~ = f ( x )  + F(x) 0 + F -4- g(x)u, (2.1) 

that is, V~ satisfies 

i n f [ ~  f ( x ) + F ( x )  O + F  +g(x)u < O. 
uER 

(2.2) 

We now show how to design an adaptive controller (1.2), (1.3) when an aclf is known. 

Theorem 2.1. The following two statements are equivalent: 
1. There exists a triple (ct, Va, F) such that ~(x,O) globally asymptotically stabilizes (2.1) at x = 0 for 

each 0 E R p with respect to the Lyapunov function Va(x, 0). 
2. There exists an aclf V~(x,O) for (1.1). 

Moreover, i f  an aclf Va(x,O) exists, then (1.1) is globally adaptively stabilizable. 

Obvious because 1 implies that there exists a continuous function W : R n x ~P ~ ~+ ,  positive 

f (x ,O) = f ( x )  -4- F(x) 0 -4- F (2.5) 

Proof. (I =~ 2) 
definite in x for each 0, such that 

] 3x f ( x ) + F ( x )  O + F  +9(x)~(x,O) <~ - W(x,O). (2.3) 

Thus Va(x,O) is a elf for (2.1) for each 0 E •P, and therefore it is an aclf for (1.1). 
(2 =~ 1) The proof of this part is based on Sontag's constructive proof [9] of Artstein's theorem [1]. We 

assume that Va is an aclf for (1.1), that is, a elf for (2.1). Sontag's 'universal formula' applied to (2.1) gives 
a control law smooth on (Rn\{0})  x RP: 

L/vo + ,÷ (L0 Va)4 
~(x, 0) = -- L, ga , Lg Va(x, 0) ~ 0, (2.4) 

O, L o ga(x, O) = O, 

where the Lie derivatives are taken only with respect to x, and 
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With the choice (2.4), inequality (2.3) is satisfied with the continuous function 

~/(LfVa(x,  8))  2 + (Lo Va(x, 8))  4 , (2.6) W(x, O) 

which is positive definite in x for each 0, because (2.2) implies that LfVa(x,O) < 0 whenever LoVa(x,O ) = 0 
and x # 0. We note that the control law ~(x, 0) will be continuous at x = 0 if and only if the aclf Va satisfies 
the following property, called the small control property [9]: for each 0 E •P and for any e > 0 there is a 
6 > 0 such that, i f x  ¢ 0 satisfies Ix[<<.6, then there is some u with [u[~<e such that 

ax f ( x )  + F(x) 0 + r + g(x)u < o .  (2.7)  

Assuming the existence of an aclf we now show that (1.1) is globally adaptively stabilizable. Since (2 =~ 1 ), 
there exists a triple (~, Va, F)  and a function W such that (2.3) is satisfied, that is, 

OV a OV a I{ ~ V a .~ r 
(~x [f(x)  + F(x)O + O(x)~(x, 8)] + --~-F ~--~x F(X)) <<. - W(x, 8). (2.8) 

Consider the Lyapunov function candidate 

V(x,O) = Va(x,O)+ ½(0 - 0)TF- ' (0 -- 0). (2.9) 

With the help of (2.8), the derivative of V along the solutions of (1.1), (1.2), (1.3), is 

¢, OVa[f OVar,(x,O)_-, . = 0 ~(x, 8) Ox + FO + g~(x, 0)] + c30 

OVaFO _ -r ^ _ OV.[f O~Fz(x,O)+ 0 z(x,O) Ox + FO + Oa(x, 0)] + O0 Ox 

<<. - W ( x , O ) -  OVaF F + F~(x,O)+ F 0 z(x,O). (2.10) oT _ ~T 

O0 

Choosing 

z(x, O)= (x,O)F(x) , (2.11) 

we get 

(~<~ - W(x,O), V0 E R p. (2.12) 

Thus the equilibrium x = 0, 0 = 0 of (1.1)-(1.3) is globally stable, and by LaSalle's theorem, x(t) --~ 0, that 
is, (1.1) is globally adaptively stabilizable. [] 

The adaptive controller constructed in the proof of Theorem 2.1 consists of a control law u = ~(x, 0) given 

by (2.4), and an update law 0 = Fz(x,O) with (2.11). 
It is of interest to interpret this controller as a certainty equivalence controller. The certainty equivalence 

approach, prevalent in the adaptive control of linear systems, is not applicable to nonlinear systems without 
severe restrictions on system nonlinearities. This has been a major obstacle to estimation-based designs of 
adaptive controllers for nonlinear systems. The control law ~(x, 8) given by (2.4) is stabilizing for the modified 
system (2.1) but may not be stabilizing for the original system (1.1). However, as the proof of Theorem 2.1 
shows, its certainty equivalence form 0t(x,0) is an adaptive globally stabilizing control law for the original 
system (1.1). Hence, if a certainty equivalence approach is to be applied to a nonlinear system, the system 
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is to be modified to require a control law which anticipates the parameter estimation transients. In the proof 
of Theorem 2.1, as well as in the tuning functions design [5], this is achieved by incorporating the tuning 
function z in the control law ~. Indeed, the formula (2.4) for ~ depends on z via 

LfZa(x,O) = LfZa + ~(x,O) x O + F (2.13) 

which is obtained by combining (2.5) and (2.11). Using (2.11) to rewrite the inequality (2.8) as 

dx [f(x) + F(x)O -4- g(x)ot(x,O)] + Fr(x,O)<~ - W(x,O), (2.14) 

it is not difficult to see that the 
of the Lyapunov derivative. 

As it is always the case in 
V(x, O) given by (2.9), which 
the linear dependence of (1.1) 
the quadratic form of (2.9) is 

control law (2.4) containing (2.13) prevents z from destroying the nonpositivity 

adaptive control, in the proof of Theorem 2.1 we used a Lyapunov function 
is quadratic in the parameter error 0 - 0. The quadratic form is suggested by 
on 0, and the fact that 0 cannot be used for feedback. We will now show that 
both necessary and sufficient for the existence of an aclf. 

We say that system (1.1) is globally adaptively quadratically stabilizable if it is globally adaptively stabi- 
lizable and, in addition, there exists a smooth function Va(x, O) positive definite and proper in x for each 0, 
and a continuous function W(x, O) positive definite in x for each 0, such that for all (x(0), 0(0)) E ~n+p and 
all 0 E R p, the derivative of (2.9) along the solutions of (1.1)-(1.3) is given by (2.12). 

Corollary 2.1. System (1.1) is globally adaptively quadratically stabilizable if  and only if there exists an 
aclf Va(x, 0). 

Proof. The ' if '  part is contained in the proof of Theorem 2.1 where the Lyapunov function V(x,O) is in the 
form (2.9). To prove the 'only if' part, we start by assuming global adaptive quadratic stabilizability of (1.1), 
and first show that z(x,O) must be given by (2.11). The derivative of V along the solutions of (1.1)-(1.3), 
given by (2.10), is rewritten as 

I ?=  ~-x + F 0 + g ~ ( x ,  0 ) ]+  - F - z  + 0  T F - z  . (2.15) 

This expression has to be nonpositive to satisfy (2.12). Since it is affine in 0, it can be nonpositive for all 
(x,0) E R n+p and all 0 E R p only if the last term is zero, that is, only if z is defined as in (2.11). Then, it 
is straightforward to verify that 

~x f ( x ) + F ( x )  O + F  - ~ /  ,] +g(x)a(x,O) 

- O0 / z F <~ - W ( x , O )  (2.16) 

for all (x, 0).E ~"+P. By (1 ~ 2) in Theorem 2.1, Va(x, O) is an aclf for (2.1). [] 

3. Adaptive backstepping 

With Theorem 2.1, the problem of adaptive stabilization is reduced to the problem of finding an aclf. This 
would be only an esthetically pleasing result if it were not for backstepping procedures [4, 2, 5, 8] with which 
aclf's can actually be designed. 
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In this section we reinterpret the adaptive backstepping design with tuning functions [5]. Using backstepping, 
an aclf for a higher order system is recursively constructed starting with an aclf for a lower order system. 

Lemma 3.1. I f  the system 

2 = f ( x )  + F(x)O + 9(x)u, 

is globally adaptively quadratically stabilizable with ~ E C 1, then the augmented system 

2 = f (x )  + F(x)O + g(x)~, 

is also globally adaptively quadratically stabilizable. 

(3.1) 

(3.2) 

Proof. Since system (3.1) is globally adaptively stabilizable, then by Corollary 2.1 there exists an aclf Va(x, 0), 
and by Theorem 2.1 it satisfies (2.3) with a control law u = ot(x,O). We will now show that 

V~(x,¢,o) = Va(x,O) + ½ ( ¢  - ~(x,O)) 2 

is an aclf for the augmented system (3.2) by showing that it satisfies [ T) 
(3V~ f + F O + F + g¢ 

0(x, ¢-----~ ~ - w - ( ~  - ~ ) 2  

~1(x,¢,0) 
with the control law 

OV a got OO~ ( ~__lcl ) T OV a ['got "\ T 
u=oq(x,~,O)=--~x-xxO-(~-a)+-~--xx(f +FO+g~)+-~-oF \ - . .  +-~F~,NF ) . 

Let us start by introducing for brevity a new error state z = ~ - ot(x,O). With (3.3) we compute 

C3Vl [ f + FO + g~ ] OVI OV1 
O(x,¢) . oq(x,~,O) J = -~xx ( f  + FO + g¢) + --O-~ °q(x'~'O) 

= (OVa -Z-~x ( f + F O + g ~ ) + z o q  \Ox 
OVa OVa O~ 

= Ox ( f + F O + 9 o O +  - - ~ x g Z - z N ( f + F O + g ~ ) + z a !  

ova ( ~va o, ) 
= Ox ( f + F O + o a ) + z  al+-ff--xxO--~--x(f+FO+o~) . 

On the other hand, in view of  (3.3), we have 

or, Fr = OV1FF 
O(x, ~) o Ox 

= ( - go k, Ox FF - z -~  

- - o x O V a F F ( ~ )  T --Z (O0~o_O F (OV1F~ T + OV a (O~tF~T ~ . 
j -gg r \ ox ,/ ) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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Adding (3.6) and (3.7), with (2.3) and (3.5) we get 

[ / OV1 f + F  O + F  +g~  

~(x, ~) ~l(x, ~, O) 

= Ox ( f + F O + g ~ t ) +  Ox 

OVa c~ O~ (OVIF~ T OVa (O~F~'r ~ 
+z ~ I + W g - ~ ( f + F O + g ¢ ) - ~ F \ O  x ) - - ~ - f f F \ O  x ) ] 

<~ - rV(x,O) - z 2 . (3.8) 

This proves by Theorem 2.1 that Vi(x, ~, O) is an aclf for system (3.2), and by Corollary 2.1 this system is 
globally adaptively quadratically stabilizable. [] 

The new tuning function for system (3.2) is determined by the new aclf Vl and given by 

[o]) • \e(x,~) = t a x  ) = - ( ~ -  & )  

(OCtv~T 
= Z(X, O) -- \ OX ) (~ -- ~)" (3.9) 

The control law ~l(x,~,0) in (3.5) is only one out of many possible control laws. Once we have shown 
that Vl given by (3.3) is an aclf for (3.2), we can use, for example, the C o control law ~ti given by Sontag's 
formula (2.4) with Lo~ V1 = z and 

T] 
Li, V,(x, ~, O) = ~(x, ~---5 \ 60 ) ) + o~ 

0 

=--~-x + g ~ ) + z l ( x , ~ , O )  T O + F  . (3.10) 

It can be shown that the following function, used as a clf in [6], is a mo~e general aclf than (3.3): 

V1 (x, ~, O) = Va(x, O) + L ¢-~(x' 0) n(s) ds, (3.11 ) 

where q is a C o function such that sq(s) > 0 whenever s # 0, q'(0) > 0, and q ~ ~l((-cx~,0])ULal([0, +cx~)). 
A repeated application of Lemma 3.1 recovers our earlier result [5]: 

Corollary 3.2. The followino system is 91obally adaptively stabilizable 

Yci = xi+l + q~i(xi . . . . .  xi)To, i = 1 . . . . .  n -- 1, 
(3.12) 

~, = u + ~0,(xi . . . .  ,X,)TO. 
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4. Conclusions 

The aclf framework reduces the problem of adaptive stabilization to the problem of nonadaptive stabilization 
of a modified system. 

The adaptive stabilization problem is difficult because the function Va which modifies the system (2.1) has 
to be its Lyapunov function. 

The above analysis applies also to the case where the unknown parameters enter the control vector field: 

£c = f ( x )  + F(x)O + (g(x) + G(x)O)u. (4.1) 

In this case the existence of an aclf Va is equivalent to the existence of a elf for the system 

£ ~ = f ( x ) + F ( x )  O+F + g(x)+G(x)  O+F u. (4.2) 

The extension to the multi-input case is also straightforward. 
A difficult open problem is: if (1.1) is globally asymptotically stabilizable for each 0, is it globally adaptively 

stabilizable, and vice versa? In other words, does the existence of a pair (~0, V o) satisfying (2.3) for F = 0 
imply the existence of a pair (at, Va) satisfying (2.3) for some F > 0, and vice versa? Adaptive Lyapunov 
designs available in the literature [2-5, 7, 8, 10] are all for systems which are not only globally asymptotically 
stabilizable for each 0, but also globally adaptively stabilizable. 
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