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Adaptive Boundary Control for Unstable Parabolic
PDEs—Part I: Lyapunov Design

Miroslav Krstic, Fellow, IEEE, and Andrey Smyshlyaev, Member, IEEE

Abstract—We develop adaptive controllers for parabolic par-
tial differential equations (PDEs) controlled from a boundary
and containing unknown destabilizing parameters affecting the
interior of the domain. These are the first adaptive controllers
for unstable PDEs without relative degree limitations, open-loop
stability assumptions, or domain-wide actuation. It is the first
necessary step towards developing adaptive controllers for phys-
ical systems such as fluid, thermal, and chemical dynamics, where
actuation can be only applied non-intrusively, the dynamics are
unstable, and the parameters, such as the Reynolds, Rayleigh,
Prandtl, or Peclet numbers are unknown because they vary with
operating conditions. Our method builds upon our explicitly
parametrized control formulae in [27] to avoid solving Riccati or
Bezout equations at each time step. Most of the designs we present
are state feedback but we present two benchmark designs with
output feedback which have infinite relative degree.

Index Terms—Adaptive control, backstepping, boundary con-
trol, distributed parameter systems.

I. INTRODUCTION

W HILE for linear finite dimensional systems many adap-
tive schemes have been proposed [10], adaptive control

techniques have been developed for only a few classes of partial
differential equations (PDEs) restricted by relative degree, sta-
bility, or domain-wide actuation assumptions. In this paper, we
develop the first adaptive controllers for parabolic PDEs con-
trolled from a boundary and containing unknown destabilizing
parameters affecting the interior of the domain. Our control laws
are given by explicit formulae and open the door for the use of
a wealth of certainty equivalence and Lyapunov techniques de-
veloped for finite dimensional systems. They initiate an effort
towards developing adaptive controllers for physical systems
such as fluid, thermal, and chemical dynamics, where actuation
can be only applied non-intrusively, the dynamics are unstable,
and the parameters, such as the Reynolds, Rayleigh, Prandtl, or
Peclet numbers are unknown because they vary with operating
conditions. Our method builds upon our explicitly parametrized
control formulae in [27] to avoid solving Riccati or Bezout equa-
tions at each time step.

1) Literature Overview: Early works on adaptive control
of infinite-dimensional systems, surveyed by Logemann and
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Townley [23], were for plants stabilizable by non-identifier
based high gain feedback, under a relative degree one assump-
tion. Model reference (MRAC) type schemes were designed
by Hong and Bentsman [9], Bohm, Demetriou, Reich, and
Rosen [2], Solo and Bamieh [32], Orlov [24], and Bentsman
and Orlov [1].While the strength of these results are the proofs
of identifiability of infinite dimensional parameter vectors,
their limitation is that they require control action throughout
the PDE domain. Demetriou and Rosen [7] developed robust
parameter estimation schemes using parameter projection and
sigma-modification.

Other efforts such as Demetriou and Ito [6] and Wen and
Balas [34] have employed tools from positive realness; they
have also provided some cunning examples that go beyond the
relative degree one restriction. Systems with structural perturba-
tions, including some boundary control problems, are addressed
by Curtain, Demetriou, and Ito [4].

Adaptive linear quadratic control with least-squares estima-
tion was pursued by Duncan, Maslowski, and Pasik-Duncan
[8] for linear stochastic evolution equations with unbounded
input operators and exponentially stable dynamics. Adaptive
control of nonlinear PDEs has also received some attention.
Liu and Krstic [20] and Kobayashi [13] considered a Burgers
equation with various parametric uncertainties; Kobayashi [15]
also considered the Kuramoto-Sivashinsky equation. Jovanovic
and Bamieh [11] designed adaptive controllers for nonlinear
systems on lattices, which include applications like infinite ve-
hicular platoons or infinite arrays of microcantilevers. An ex-
perimentally validated adaptive boundary controller for a flex-
ible beam was presented by de Queiroz, Dawson, Agarwal, and
Zhang [5].

2) Results of the Paper: For several unstable parabolic PDE
systems controlled from the boundary we assume that physical
parameters like reaction, diffusion, or advection coefficients are
unknown. No adaptive controllers for such models have been
proposed, even though they are frequent in applications that
incorporate thermal-fluid or chemically reacting dynamics. An
obstacle to the development of adaptive controllers has been
the lack of parametrized families of nonadaptive controllers.
This obstacle was removed by Smyshlyaev and Krstic [27]
who developed explicit formulae for boundary control of a
class of parabolic PDEs that includes the problems considered
here. Those formulae are not only explicit functions of the
spatial coordinates of the PDE, but also depend explicitly on
the physical parameters of the plant. This feature is absent
from standard methods like linear quadratic regulator (LQR)
extensions to PDEs because parametrized solutions to Riccati
equations cannot be obtained. While an adaptive version of an

0018-9286/$25.00 © 2008 IEEE



1576 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 7, AUGUST 2008

LQR approach would require a solution to a high-dimensional
Riccati equation at each time step, our approach only requires
that new parameter updates be substituted into the control
formula.

For clarity, in this paper we present the results for scalar and
vector parameter problems. They can be extended to functional
parameters as in [1], [2], [9], [24], [32]. With the controllers
parametrized in the physical parameters, our schemes are of in-
direct type.

Three basic approaches to the design of parameter identifiers
for adaptive control exist [18]: the Lyapunov approach, the pas-
sivity-based approach (pursued in [1], [2], [9], [24]), and the
swapping approach. The Lyapunov approach, which ensures the
best transient performance properties is seldom possible without
changing the control law to compensate the potentially destabi-
lizing effect of adaptation, even in the linear case. We exploit the
structural opportunities within the class of PDEs we are con-
sidering and develop Lyapunov adaptation schemes. In com-
panion papers [30], [31] we develop estimation-based schemes
(see Section XI for some comments on the contents of those
papers).

Our Lyapunov design is inspired by an idea Praly [25]
developed for adaptive nonlinear control under growth condi-
tions. Since our PDE problems are linear, we have found a
way to significantly simplify this approach, however, we re-
tain its main feature—a logarithm weight on the plant state in
the Lyapunov function. This results in a normalization of the
update law by a norm on the plant state, which is uncommon
for Lyapunov designs. Except for some special examples, pro-
jection is needed to keep the parameters within an a priori set.
Projection is not used as a robustification tool but to prevent
adaptation transients that would require overly conservative
restrictions on the size of the adaptation gain. The projection
set may be taken conservatively (large), however, in order for
stability to be guaranteed, the adaptation gain needs to be
taken inversely proportional to the size of the parameter set.
The bounds on the gain can be derived explicitly and are a
priori verifiable.

Most of the designs presented require full state feedback,
however, two examples are given that use only output feed-
back—scalar sensing at the boundary. These output feedback
designs employ adaptive observers which we construct as
infinite-dimensional extensions of Kreisselmeier-type filters
used in [18].

Only 1-D results are presented here. In [30] we show that
our tools extend readily to higher dimensions, in appropriate
geometries.

Simulation results are presented for one of the problems. It
is shown that the adaptive controller works in the presence of
additive disturbance in the plant and measurement noise. The
standard deadzone prevents the parameter drift.

Our adaptive boundary control results can be developed both
for Dirichlet and Neumann actuation. Most of the controller
we present are for the notationally easier Dirichlet actuation
but in the introductory example in Section II we use Neumann
actuation.

To avoid tedium and keep the concepts clear we present
designs for the simplest classes of systems for which the con-

cepts are nontrivial. For example, it is shown separately how
to deal with parametric uncertainties in boundary conditions
or reaction terms involving boundary values. A skilled de-
signer can combine these tools with the method for reaction-
advection-diffusion systems to craft solutions to more general
problems.

Throughout the paper we assume well-posedness of the
closed-loop systems, except for the very first benchmark
problem, for which well-posedness is shown under strong
assumption on initial conditions in Section IV. We later demon-
strate numerically in Section X that our design is successful for
non-smooth initial conditions as well.

3) Structure of the Paper: In Section II we present an
adaptive scheme for a benchmark plant with unknown reaction
coefficient. Closed-loop stability and well-posedness of this
scheme are proved in Sections III and IV correspondingly. The
robustness properties of the adaptation laws are discussed in
Section V. An alternative approach to the design is presented
in Section VI. In Sections VII and VIII, statefeedback and
output-feedback designs are developed for two other bench-
mark plants. The extension to reaction-advectiondiffusion
plants is presented in Section IX. The designs are illustrated
with simulation results in Section X. The paper ends with a
discussion in Section XI.

Notation: The spatial norm is denoted by . The
symbols , , denote the first order Bessel function
of the first kind and the first and second order modified Bessel
functions of the first kind, respectively.

II. CONTROL DESIGN FOR A SYSTEM WITH AN

UNKNOWN REACTION COEFFICIENT

We start the paper with a design for a benchmark system
and present extensions in subsequent sections. The benchmark
system has a destabilizing reaction term and employs control
only at the boundary. The unknown reaction coefficient is
scalar, however, an extension to spatially-varying functional
coefficients is discussed in Remark 3. A problem with multiple
parameters is discussed in Section IX.

While most of the paper, and this section in particular, as-
sumes availability of full state feedback, Section VIII presents
designs that employ only boundary sensing.

Consider the following plant:

(1)

(2)

where is an unknown constant parameter that can have any
real value. We use a Neumann boundary controller designed in
[27] in the form1

(3)

1In the sequel, to reduce notational overload, the dependence on time will be
suppressed whenever possible.
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which employs the measurements of for and an
estimate of . Consider an invertible change of variable

(4)

(5)

Lemma A.2 in Appendix establishes that (4) maps (1)–(3) into

(6)

(7)

(8)

where is the parameter estimation error.
We will show that the update law

(9)

achieves regulation of to zero for all , for arbi-
trarily large initial data and for an arbitrarily poor initial
estimate .

Theorem 1: Suppose that the system (1)–(3), (9) has a well
defined classical solution for all . Then, for any initial
condition compatible with boundary conditions,
and any , the solutions and are uniformly
bounded and uniformly in .
Moreover, the following performance bounds hold in the closed-
loop nonlinear system:

(10)

for all , , and

(11)

for all , where .
Remark 1: Well-posedness of the closed-loop system, as-

sumed in Theorem 1, will be shown later in Section IV, which
can be skipped if the reader is interested only in the design
procedure.

Remark 2: While the bound (10) obviously quantifies the
“peak transient” performance, the bound (11) quantifies the rate
of convergence to zero.

Remark 3: In this paper we consider only parameters without
spatial variation. The extension to spatially-varying problems

[1], [2], [9], [24], [32] will be a subject of another paper. Pre-
liminary results are presented in [29].

Remark 4: The non-negative form of the adaptive law (9) is
coincidental for this particular benchmark plant and it is further
discussed in Section V.

Remark 5: It is also important to note that the update law
(9) contains normalization. Normalization is uncommon in Lya-
punov designs and is the result of including the logarithm in the
Lyapunov function [25]. Normalization is necessary because the
control law (3) is of certainty equivalence type—unlike the Lya-
punov adaptive controllers in [18] which employ non-normal-
ized adaptation and strengthened nonlinear controllers that com-
pensate for time-varying effects of adaptation. An additional
measure of preventing overly fast adaptation in (9) is the restric-
tion on the adaptation gain .

PROOF OF THEOREM 1

Consider a Lyapunov function candidate

(12)

The time derivative along the solutions of (6)–(9) can be shown
to be

(13)

(the calculation involves one step of integration by parts). Using
Lemma A.1 and Poincare’s inequality, one gets

(14)

Substituting this inequality and (9) into (13) and using the fact

that (see (9)), we get

(15)

This implies that remains bounded for all time whenever
. From the definition of it follows that and

remain bounded for all time. However, we need to show that
is bounded for all time and for all . To do this, consider

(16)
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Integration by parts was used several times to obtain the above
equalities. Using Agmon’s inequality (noting that ),
then Young’s inequality, and finally Poincare’s inequality
(noting that ), one gets that

(17)

Substituting (17) into (16), it follows that

(18)

Integrating the last inequality, we obtain

(19)

To obtain this bound, on one hand we have from (12) and (15)
that

(20)

On the other hand

(21)

From (15) we have and therefore it follows from
(12) that

(22)

Integrating (15) we get

(23)

Substituting (22) and (23) into (21), and then, along with (20),
into (19), we get

(24)

By combining Agmon’s and Poincare’s inequalities (and using
the fact that ), we get ,
thus is uniformly bounded.

Next, we prove regulation of to zero. Using (6)–(8)
and Lemma A.1 we obtain

(25)

Since and have been proven bounded, it follows that
is bounded, and thus is uniformly continuous.

By combining (21)–(23) with Poincare’s inequality we also get
that is integrable in time over the infinite time interval.
By Barbalat’s lemma it follows that as .

To show regulation also in the maximum norm, we note that,
from Agmon’s inequality, . Since

is bounded and has been shown convergent to
zero, the regulation in maximum norm follows.

Having proved the boundedness and regulation of , we now
set out to establish the same for . We start by noting that [27]

(26)

(27)

It is straightforward to show that

(28)

where

(29)

(30)

By mimicking the calculation in [27], (101), we get
, which implies

(31)

Thus, it follows that:

(32)

Noting that for all ,
by combining (32), (20), and (24), and using the fact that

for , we get (10), which proves uniform
boundedness of .

To prove regulation of to zero for all , we
start by noting that

(33)

where is finite whenever is finite
(which we have proved using Lyapunov analysis). Since is
regulated to zero, so is . By Agmon’s inequality
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, where is bounded by (32), (20), and (24). This
completes the proof of regulation of .

The bound (11) is obtained in a similar manner to (10), by
combining (32) with (20)–(23).

III. WELL POSEDNESS OF THE CLOSED LOOP SYSTEM

Since the purpose of our paper is stabilization, we focus our
effort on proving boundedness and regulation. As evident from
Section III, this is not a routine task due to the nonlinear char-
acter of the closed-loop system

(34)

(35)

(36)

The well posedness of the closed loop system, although impor-
tant, is of less interest because the systems are parabolic and
therefore are always “well behaved.” For the sake of complete-
ness, in this section we show how the well posedness is proved
for the plant considered in the previous section.

Consider the system (34)–(36). Let us denote and
introduce the operator

(37)

with . Let us
also denote

(38)

Then (34)–(36) can be written in the abstract form as

(39)

with initial condition . It is straightforward
to show that for any

(40)

where the constant is independent of , . Therefore is
locally Lipschitz on . By [35, Theorem 2.6.5], (39) admits a
unique local classical solution

(41)

where either , i.e., there is a unique global solution,
or and .

To show that there is no blow-up, we make a-priori estimates.
We first observe from the first line of (18) that is square

integrable over infinite time. The same property holds for .
It is then shown that

(42)

and

(43)

where

(44)

is bounded because of (25). From the boundedness of ,

, , and the square integrability in time of , ,
by integrating (42) it follows that is bounded and
is square integrable. Then, by integrating (43) and using the
square integrability of and the other functions mentioned
above, it follows that is bounded and is square
integrable. By Agmon’s inequality, we get that is uni-
formly bounded for all values of its arguments, and the same
holds for . Therefore, we proved that is bounded
so that and the solution (44) is actually global.

The existence and uniqueness of the classical solution of the
closed-loop system (1)–(3) now follow from the invertibility
of the transformation (4)–(5), which can be used to show
that , have the same properties as ,

.
We shall not belabor on well posedness issues in the rest of

the paper both in the interest of space and due to the parabolic
character of the systems which ensures it. As in Theorem 1, in
the rest of the paper we shall simply assume well posedness.

IV. PARAMETRIC ROBUSTNESS

Let us suppose that the adaptation is turned off, i.e., ,

i.e., . Then the closed loop system is

(45)

(46)

(47)

where is a constant parameter estimate. By studying the eigen-
value problem of this system, it can be shown that parameter
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estimates which are greater than are exponentially
stabilizing, whereas those smaller than are destabi-
lizing. This means that, if an upper bound on is known—let
us denote this bound by —then (3) is a stabilizing linear con-
troller whenever is replaced by (or any constant value higher
than ).

This robustness property explains why in the adaptation
law (9) is nonnegative: overestimating cannot be harmful
within the controller structure (3).2 A caveat however is that, in
the presence of measurement noise, the parameter estimate will
drift. In the update law (9) the estimate has nowhere to drift but
up3 (which is consistent with the structure of the control law but
still undesirable). In practical implementation one would add
leakage, deadzone, or projection [10] to reduce or completely
stop the drift.

The linear/frozen-parameter robustness is an unusual feature
of the control formula (3). It is different than the “infinite gain
margin” property of inverse optimal controllers, which allow an
arbitrary increase of a scalar gain in front of the optimal con-
trol law. Infinite gain margin allows only an unplanned increase
in the “control authority” but does not guarantee robustness to
changes in the physical parameters of the system. The robust-
ness exhibited with (3) is with respect to the physical param-
eter .

Due to the ability of the controller (3) to remain stabilizing
when is overestimated, it might be tempting to view the back-
stepping design as being “high-gain.” This would not be appro-
priate because (3) resorts to high gain only when generates a
high number of unstable eigenvalues in the plant.

The form of high gain that controller (3) is capable of em-
ploying should not be confused with adaptive high gain con-
trollers surveyed in [23] where a multiplicative gain is tuned for
a controller of the form

(48)

where is the gain and is an output operator such that
is relative degree one. For the present system an

operator independent of the unknown cannot be found,
therefore, tuning of a multiplicative gain could not be
successful.

V. ALTERNATIVE APPROACH

The use of a logarithm in the Lyapunov function (12) was
inspired by Praly’s Lyapunov adaptation designs in [25]. We do
not exactly follow that method in this paper because our PDE
plants are linear. It is however of interest to see what an exact
application of that method results in, as it has potential beyond
our class of problems.

2While the update law (9) can take the estimate �� only “up,” the growth of the
estimate stops as ������ goes to zero. Since� ��� is nonincreasing and bounded
from below (by zero), it has a limit. Hence ����� has a limit. So does ����� and
it is higher than �� � ��. The size of ����� depends on the size of the initial
condition � .

3This issue is no less critical with update laws that are sign-indefinite, how-
ever, with (9) it is obvious.

Let us start by denoting

(49)

(50)

This method employs two estimates working in tandem, and
. A long Lyapunov based derivation, briefly justified after the

statement of the theorem below, yields

(51)

(52)

We have written the two update laws in a way to highlight as
much as possible the parts that are similar about them. Three
gains are employed, which need to satisfy the conditions ,

, . The last two conditions are related
to the fact that . These conditions ensure that the
denominator in the first line of (51) remains positive.

Besides its complexity, a disadvantage of the update law (51)
is that it employs , i.e., it requires the measurement of the
spatial derivative .

Theorem 2: Suppose that the system (1)–(3), (51), (52) has a
well defined classical solution for all . Then, for any initial
condition compatible with boundary conditions,
and any , the spatial norm remains
bounded and the spatial norm is square integrable
over an infinite time interval. Moreover, the estimates
are uniformly bounded.

The proof of this result employs a Lyapunov function

(53)

It is possible to prove that

(54)
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i.e., is positive definite around the equilibrium ,
. Then, a very long calculation yields

(55)

The properties stated in Theorem 2 readily follow from this
equation.

VI. OTHER BENCHMARK PROBLEMS

In this section we will show that our method extends beyond
the basic reaction-diffusion class of parabolic PDEs. We will
consider two benchmark problems-one with a boundary value
appearing on the right-hand-side of the PDE model and another
with a parametric uncertainty in an uncontrolled boundary con-
dition. Both benchmark problems are unstable in the absence of
feedback.

These benchmarks will expose one limitation of the ’log-Lya-
punov paradigm:’ in general it requires not only a restriction on
the value of the adaptation gain but also the use of parameter
projection. A small is the main tool for preventing destabi-
lizing transients. Projection is only used to make the restriction
on a priori verifiable.

The projection operator that would be used in implementation
is defined as

and
and

else
(56)

where is the parameter estimate ( is used as a generic symbol
for an unknown parameter, which will in subsequent presenta-
tion be replaced by specific parameters labeled by , , , , ),
the interval is the interval within which is being kept by
projection, and denotes the nominal update law.

Unfortunately, the projection operator (56) is discontinuous.
This presents a problem at two levels: 1) in the analysis it is not
possible to obtain classical solutions but only Filippov solutions
and 2) in implementation the presence of noise may induce fre-
quent switching of the update law. This issue is not as serious
as controller switching in sliding mode control because the pro-
jection operator does not drive an actuator. Since the projection

drives only the update law there would be no discontinuities in
and therefore no jumps in the control action. However, ob-

taining classical solutions and not having to deal with Filippov
solutions is a good enough reason to consider a continuous ver-
sion of the projection operator where, instead of a hard switch,
a boundary layer of width is introduced

and

and
else

(57)

where the update law is scaled linearly with in the boundary
layer. With the help of [18, Lemma E.1], we get:

Lemma 3: The following properties of the projection operator
(57) are guaranteed

1) The operator is a locally Lipschitz function of , on
.

2) .

3) For , the solution of
remains in .

4) for all ,

.
All of the properties in Lemma 3 except Lipschitzness also

hold for the discontinuous projection (56), with . The
discontinuous projection would be preferable in applications
for its simplicity which does not come at the expense of con-
trol switching, and because it is a standard feature in the inte-
grator block in Simulink. For these reasons and to avoid clutter
in our further presentation, we employ (56) where projection is
needed.

Now we return to our presentation of the benchmark
problems.

A. Example 1

Consider the plant

(58)

(59)

where is a constant, unknown parameter and is the
boundary value of at . This system is inspired by
a model of a thermal instability in solid propellant rockets [3].
We will control this system via Dirichlet actuation, . In
the absence of control, , the system is unstable if and
only if . We assume that this is indeed the case, .
Let us further assume that an upper bound on is known to
us. It is important to note that such an assumption was not made
on in Section II. We will design an adaptive controller in this
section whose update law incorporates the standard projection
operator [18] to keep the parameter estimate in the interval

, while driving to zero.
A stabilizing control formula was designed in [27] as4

(60)

Consider the variable change

(61)

4This formula is written with implicit understanding that �������� �
�� ������, so that when �� becomes negative,

�
�� ����

�
���	� �� �

���� ��� �����	� ��
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It can be shown that

(62)

(63)

(64)

where . Consider the Lyapunov function candidate

(65)

Taking its time derivative we arrive at the update law

(66)

The derivative of the Lyapunov function is

(67)

It can be shown that

(68)

Stability is thus achieved whenever

(69)

This condition highlights the key differences between the design
for the PDE in Section II and for the PDE (58).

1) The adaptation gain, which was limited by 1 in Section II,
needs to decrease as increases in (58).

2) The knowledge of the parameter’s upper bound is needed
for the plant (58). Projection is used to keep the parameter
within the a priori bound, such that the condition (69) is
sufficient to achieve stability. It should also be noted that
stability can be achieved without projection, by selecting

to satisfy

(70)

where is determined using the initial state
and the initial parameter estimate . While it may be
unusual to choose the adaptation gain based on the initial

state , it is acceptable as a theoretical result and consis-
tent with the Lyapunov function (65), yielding estimates on

and that depend on and . However,
in application one would prefer projection due to its added
assurance against parameter drift.

Other than the use of projection, the rest of the results of this
section are qualitatively the same as those in Section II. One can
prove boundedness in the maximum norm in a similar manner
as in Section III. A lengthy calculation yields

(71)

which can be majorized by

(72)

Integrating (68) and (72) one gets boundedness of . Regu-
lation is shown similar as in Section III. The results in the
variable follow from the inverse transformation

(73)

Theorem 4: Suppose that the system (58)–(60), (66) has a
well defined classical solution for all . Then, for any ini-
tial condition compatible with boundary con-
ditions, and any , the solutions and
are uniformly bounded and uniformly in

.

B. Example 2

Consider the plant

(74)

(75)

where is a constant, unknown parameter. This system is also
inspired by the solid propellant rocket instability [3]. We will
control this system via Dirichlet actuation, . In the ab-
sence of control, , the system is unstable if and only
if . We assume that and also that an upper bound
on is known to us. We will design an adaptive controller with
projection [18] to keep the parameter estimate in the interval

, while achieving stability.
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A stabilizing control formula for this system is

(76)

Consider the variable change

(77)

It can be shown that

(78)

(79)

(80)

where . Consider the Lyapunov function candidate

(81)

Taking its time derivative we arrive at the update law

(82)

The derivative of the Lyapunov function is

(83)

With a lengthy, careful calculation, applying twice the Cauchy-
Schwartz inequality, one can show that

(84)

Using projection and Agmon’s inequality, it then follows that:

(85)

Stability is thus achieved whenever

(86)

Again, projection and slow adaptation are needed to mitigate the
effect of in the Lyapunov analysis.

We have thus proved stability in the variable. Square
integrability of in time also readily follows from the
Lyapunov analysis. From (85) it follows that is bounded from

above. This property is not sufficient to conclude uniform con-
tinuity of and ensure the applicability of the classical
Barbalat lemma, however, it is sufficient to meet the condi-
tions of the less restrictive [20, Lemma 3.1], which implies that

as . All of the above boundedness and regu-
lation properties for the variable are also valid in the original

variable due to the inverse transformation

(87)

Unfortunately, boundedness of and its convergence to zero
with time (uniformly in ) are difficult to prove because of the
presence of the time-varying parameter error in (79). This
difficulty is consistent with similar observations made in [1].
Boundedness and regulation despite uncertainty in the boundary
condition was achieved in [20] but this was done using a partic-
ular “nonlinear damping” feedback, which is not possible here
because we do not allow actuation at .

Theorem 5: Suppose that the system (74)–(76), (82) has a
well defined classical solution for all . Then, for any initial
condition compatible with boundary conditions, and
any , the spatial norm and the estimate

remain uniformly bounded, converges to zero as
, and is square integrable in for all .

Let us now consider the “frozen adaptation” version of
(78)–(80), with and with a constant parameter error .
This system is exponentially stable if and only if the estimate
is . The same parametric robustness observations
as those made in Section V hold for the plant-controller pair
(74)–(76). Likewise, those observations justify the use of the
estimator of the type (82) where the product of the “estimation
error and regressor” is always nonnegative.

VII. OUTPUT-FEEDBACK DESIGNS

A. Example 1

As in Section VII-A, we consider the plant

(88)

(89)

Suppose that only , the boundary value of at
, is available for measurement, whereas is available for

actuation. The transfer function from the input to the
output has infinitely many poles and no zeros (the rel-
ative degree is infinite).

Instead of the unmeasurable state , we will employ an
adaptive observer which consists of the input filter

(90)

(91)

(92)
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the output filter

(93)

(94)

(95)

and an estimate of given by . Our adaptive
controller employs the control law

(96)

and the update law

(97)

where and are positive, sufficiently small normalization and
adaptation gains. The variable change is defined
as

(98)

Theorem 6: Suppose that the system (88)–(96), (97),
(90)–(92), (93)–(95) has a well defined classical solu-
tion for all . Then, there exists , such that
for all there exists [where both

and can be a priori estimated by the designer],
such that for all the following holds: For any
initial condition compatible with
boundary conditions, and any , the solutions

, , and are uniformly bounded and

uniformly in .
Proof: We start with a target system derived in [31]

(99)

(100)

(101)

where is the parameter estimation error, signal is
defined by

(102)
and is an observer error defined as

(103)

and governed by

(104)

(105)

Consider the Lyapunov function candidate

(106)

where and are positive constants yet to be defined.
We note that

(107)

and, with (103), (98), and (93)–(95), that

(108)
With (106)–(108), and (99)–(101), we get

(109)

which can be majorized by

(110)

By applying Young’s inequality to the two cross-terms with
, we get

(111)
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where and are positive constants that we can arbitrarily
choose in our analysis. It can be shown that

(112)

which can then be used to prove that

With further calculations involving Young’s, Poincare’s, and
Agmon’s inequalities, and using that fact that , one
arrives at a conservative bound

(113)

Substituting this bound into (111), we get

(114)

Selecting now , ,

(115)

for and we obtain

(116)

From (116) one can conclude the boundedness of ,
and the integrability in time of , (and therefore,
by Poincare’s inequality, the integrability of , ). From
this, one can conclude that is bounded and, with Agmon’s
inequality, that is square integrable over infinite time, which
implies that is square integrable. Agmon’s inequality also
guarantees that , which appears in
(99), is square integrable. These properties can be used to show
that is bounded. A similar argument, showing that

is square integrable over infinite time, can
be used to conclude that is bounded. One can show next
that and are bounded
and use that to prove that the time derivatives of ,
are bounded. By Barbalat’s lemma this implies the regulation of

, , and, by Agmon’s inequality, the regulation of ,
for all . To obtain the corresponding boundedness

and regulation results for , we first use the inverse transforma-
tion

(117)

which establishes the boundedness and regulation of , and then
invoke (103).

It is clear that the conservative values of and are for the
purposes of the proof only. In an implementation one would be
safe to choose higher values of and .

B. Example 2

As in Section VII-B, we consider the plant

(118)

(119)

where only , the boundary value of at , is
available for measurement. The transfer function from the input

to the output has infinitely many poles and no
zeros (the relative degree is infinite).

Our output feedback adaptive controller uses the same input
filter (90)–(92), but with an output filter

(120)

(121)

(122)

a control law

(123)

and an update law

(124)

The variable change is defined as

(125)

Theorem 7: Suppose that the system (118)–(123), (124),
(90)–(92), has a well defined classical solution for all .
Then, there exists , such that for all there
exists [where both and can be a priori
estimated by the designer], such that for all the
following holds: For any initial condition
compatible with boundary conditions, and any ,
the spatial norms , , and the estimate
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remain uniformly bounded, , , converge to zero
as , and , , are square integrable in

for all .
To prove this result we start with a target system derived in

[31]

(126)

(127)

(128)

and then proceed with the Lyapunov function (106), with
instead of , going through inequalities as in Section VIII-A.
The regulation is deduced as in Section VII-B, using the upper
boundedness of , the square integrability in time of ,

, and [all those properties are obtained from an
inequality similar to (116)], and [20, Lemma 3.1]. The inverse
transformation needed for deducing the properties of and
from the properties of , , is

(129)

VIII. DESIGN FOR SYSTEMS WITH UNKNOWN DIFFUSION

AND ADVECTION COEFFICIENTS

For the sake of clarity we started in Section II with a reaction-
diffusion system with only an unknown reaction coefficient. In
this section we show how one can also incorporate adaptation
for unknown diffusion and advection coefficients. Consider the
system

(130)

(131)

where , , are unknown constants.
The control law for this system is [27]

(132)

where , , are the estimates of , , and is a design
gain. Using the transformation

(133)

(134)

and its inverse

(135)

(136)

we get

(137)

(138)

where

(139)

and

(140)

Based on (137) and the Lyapunov function

(141)

we choose the update laws

(142)

(143)
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(144)

where projection is used (though we don’t explicitly include it in
the definition of the update laws) to keep the parameter estimates
within a priori bounds , , and , where . As
in the previous problems, is limited by an upper bound which
can be a priori computed.

Theorem 8: Suppose that the system (130)–(132),
(142)–(144) has a well defined classical solution for all .
Then, there exists such that, for all , for any
initial condition compatible with boundary con-
ditions, and any , , and ,
the solutions and , , are uniformly bounded
and uniformly in .

Proof: It can be shown that

(145)
where

(146)

for , 1, 2, 3. By applying the Cauchy-Schwartz inequality
twice to (146), we get

(147)

Because the functions are continuous in , , , ,
over the domain of their definition given by

, where and , it
can be shown that there exist continuous, nonnegative-valued,
nondecreasing functions such that

(148)
The simplest one among these functions is

(149)

From (145)–(148), it follows that

(150)

where we emphasize the emergence of the fourth power of
in the last term of the first line of (150). By applying Poincare’s
inequality we obtain

(151)

where

(152)
This establishes the boundedness of for .

To prove the boundedness of , we show that

(153)

where

(154)

Next we note that

(155)

where

(156)

(157)

With Young’s inequality we get

(158)

Let us denote

(159)
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for , 1, 2, 3, for which, with the Cauchy-Schwartz in-
equality, we get

(160)

Then, from (154)–(160), with the triangle inequality and
Poincare’s inequality we obtain

Substituting the last inequality into (158) and then into (153),
we get

(161)

where

(162)

is bounded. With bounded, from (151) we get that
is integrable over infinite time. By integrating (161), it follows
that is bounded. By Agmon’s inequality, is also
bounded for all and for all .

To show regulation, we calculate

(163)

All of the terms on the right hand side of this inequality have
been proved to be bounded. Therefore is bounded.
Since is also integrable over infinite time, by Barbalat’s
lemma as . Regulation in maximum norm
follows from Agmon’s inequality and the boundedness of .

To infer the results for the original variable from those
for , we recall the inverse transformation (135)–(136),
which is a bounded operator in both and .

While the Lyapunov design requires the use of projection and
a low adaptation gain, one of its remarkable properties is that,
even though the plant has parametric uncertainties multiplying

and , the adaptive scheme does not require the measure-
ment of neither nor . The update laws (142)–(144) em-
ploy only the measurement of . This is in contrast with adaptive
controllers in [1], [2], [9], [32] for reaction-advection-diffusion
systems which require the measurement of to estimate the
unknown diffusion coefficient .

The update laws employ which is given in quadra-
tures. The integral in (139) would be calculated numerically,

just like the other integrals appearing in the update laws and
depending on the measured state .

Remark 6: It should be pointed out that in the Lyapunov
approach the diffusion coefficient need not be estimated di-
rectly. This is analogous to the finite dimensional adaptive con-
trol [18] where the “high frequency gain” need not be estimated
directly in the Lyapunov approach, whereas in the passive or
swapping approaches it needs to be estimated. The estimation of

is avoided by denoting the unknown parameters
and and by replacing the adaptive controller (132) by

(164)

by replacing the update laws (142)–(144) by

(165)

(166)

(equipped with appropriate projection), and by using and
as defined in (133) and (139), respectively, with , ,
and redefined as

IX. SIMULATION

To illustrate the designs, we present the simulation results for
the plant (1)–(2) with the unknown parameter . The ini-
tial estimate is set to . The initial condition of the plant
is chosen to be non-smooth to show that theorems’ restriction
for initial conditions to be in is not crucial. Even though the
bound on the adaptation gain used in the proof of the closed
loop stability is , in simulation we took so
that the adaptation is not too slow. To model the realistic situa-
tion, we assume that there is an additive disturbance in the plant:
zero-mean white noise (both in time and space) of intensity 3.
We also assume that measurements are corrupted by noise. In
Fig. 1 the evolution of the parameter estimate is shown. We
can see that the estimate reaches the stabilizing value and starts
to drift due to the noise. To prevent the drift we use the stan-
dard robustification tool—deadzone. As can be seen from Fig. 1
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Fig. 1. Evolution of the parameter estimate (dashed—without deadzone,
solid—with deadzone).

Fig. 2. Closed loop response. The initial condition is non-smooth. The control
input ���� �� fluctuates due to measurement noise and due to additive noise on
the right-hand side of the PDE.

(solid line), introducing the deadzone prevents the parameter
from drifting. In Fig. 2 the closed loop response is shown.

X. CONCLUSION

The need for projection and a bound on the adaptation gain
are the key limitations of the Lyapunov approach. In a com-
panion paper on “estimation-based” approaches to adaptive con-
trol of PDEs [30] we present methods which do not require pro-
jection and which work without limits on the adaptation gain.
These methods employ ’passivity/observer-based’ and ’swap-
ping-based’ identifiers presented for finite-dimensional systems
in [18]. However, in the case of uncertain diffusion and ad-
vection coefficients, these schemes require the measurement of

(and in some cases of ), like the schemes in
[1], [2], [9], [32]. The Lyapunov schemes in Section IX require
only the measurement of .

While, for the sake of clarity, we chose to present our design
tools through benchmark problems, it is possible to develop an
adaptive controller for the class of systems

(167)

(168)

where , , , , are unknown. It is also possible to do so
when these coefficients are spatially varying, as explained in
Remark 3.

At present we have not worked out how to extend the result of
Section IX to the output-feedback case. Even though boundary
observers for this class of systems were developed in [28] for the
case where , , are known, the design of adaptive observers
will be more complex than for the systems in Section VIII. In
[31] we present the estimation-based versions of the Lyapunov
output-feedback designs presented here.

It is possible to extend the results of this paper to special ge-
ometries in arbitrary dimension. For example, in 3-D it is pos-
sible to extend them to domains in the shape of a rectangular
parallelepiped with in (167) replaced by and re-
placed by . It is shown in [30] how to deal
with higher dimensions, thus we do not pursue them here.

APPENDIX

Lemma A.1:

(A1)

Proof: Using the Cauchy-Schwartz inequality twice we
obtain the following sequence of inequalities:

(A2)

Lemma A.2: The transformation (4)–(5) maps the system
(1)–(3) into (6)–(8).

Proof: Boundary conditions (7) and (8) are obviously sat-
isfied. Substituting (4) into (1) we get

(A3)
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To replace with we use an inverse transformation (26) with
a kernel (27). We have

(A4)

The inner integral is computed as follows:

(A5)

Here the last integral was computed with a help of [26]. Finally,
substituting (A5) into (A4), we get

(A6)

which, combined with (A3), gives (6).
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