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Output Feedback Boundary Control of a Ginzburg–Landau
Model of Vortex Shedding

Ole Morten Aamo, Andrey Smyshlyaev, Miroslav Krstić, and
Bjarne A. Foss

Abstract—An exponentially convergent observer is designed for a lin-
earized Ginzburg–Landau model of vortex shedding in viscous flow past
a bluff body. Measurements are restricted to be taken collocated with the
actuation which is applied on the cylinder surface. The observer is used
in conjuction with a state feedback boundary controller designed in pre-
vious work to attenuate vortex shedding. While the theoretical results apply
to the linearized system under sufficiently smooth initial data that satisfy
the boundary conditions, simulations demonstrate the performance of the
linear output feedback scheme on the nonlinear plant model.

Index Terms—Backstepping, flow control, observers, partial differential
equations.

I. INTRODUCTION

The dynamics of the cylinder wake, often referred to as the von
Kármán vortex street, is governed by the Navier–Stokes equation.
However, in [7] and [17], a simplified model was suggested in the
form of the complex Ginzburg–Landau equation

@A

@t
= a1

@2A

@�x2
+a2 (�x)

@A

@�x
+a3 (�x)A+a4 jAj

2
A+� (�x� 1)u (1)

where A is a complex-valued function of one spatial variable, �x 2 ,
and time, t 2 +. The boundary conditions are A (�1; t) = 0. The
control input, denoted u, is in the form of point actuation at the loca-
tion of the cylinder, and the coefficients ai; i = 1; . . . ; 4, were fitted
to data from laboratory experiments in [17]. � denotes the Dirac distri-
bution. A (�x; t) may represent any physical variable (velocities (u; v)
or pressure p), or derivations thereof, along the centerline of the 2-D
cylinder flow. The choice will have an impact on the performance of the
Ginzburg–Landau model, and associating A with the transverse fluc-
tuating velocity v (�x; �y = 0; t) seems to be a particularly good choice
[12]. As pointed out in [10], the model is derived for Reynolds numbers
close to the critical Reynolds number for onset of vortex shedding, but
has been shown to remain accurate far outside this vicinity for a wide
variety of flows.

In [13], [17], it was shown numerically that the Ginzburg–Landau
model for Reynolds numbers close to the critical Reynolds number for
onset of vortex shedding can be stabilized using proportional feedback
from a single measurement downstream of the cylinder, to local forcing
at the location of the cylinder. Controllers for the Ginzburg–Landau
model have previously been designed for finite dimensional approxi-
mations of (1) in [9] and [10] for the linearized model, and in [1] for the
nonlinear model. Numerical investigations based on the Navier–Stokes
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equation are numerous, see for instance [14], [5], [6]. Lauga and Be-
wley [10] provides an excellent review of modelling aspects using (1),
as well as an overview of previous work on stabilization of bluff body
flows. We refer the reader to that reference for further details.

We consider here a simplification of (1). We linearize around the
zero solution, discard the upstream subsystem by replacing the local
forcing at �x = 1 with boundary input at this location, and truncate the
downstream subsystem at some xd 2 (�1; 1). Notice that the fluid
flows in the negative �x direction. We justify the truncation of the system
by noting that the upstream subsystem is approximately uniform flow,
whereas the downstream subsystem can be approximated to any desired
level of accuracy by selectingxd sufficiently far from the cylinder.1 The
resulting system is given by

@A

@t
= a1

@2A

@�x2
+ a2 (�x)

@A

@�x
+ a3 (�x)A (2)

for �x 2 (xd; 1), with boundary conditions

A (xd; t) = 0; and A (1; t) = u (t) or
@A

@�x
(1; t) = u (t) (3)

where A : [xd; 1] � + ! , a2 2 C2 ([xd; 1]; ), a3 2

C1 ([xd; 1]; ), a1 2 , and u : + ! is the control input. a1
is assumed to have strictly positive real part. In [2], stabilizing state
feedback boundary control laws for system (2)–(3) were derived based
on the backstepping methodology [8]. The control laws made use of
distributed measurements in a finite region downstream of the cylinder.
In this note, we continue this work by restricting measurements to be
taken at the location of the cylinder only, collocated with actuation,
and solve the output feedback boundary control problem following
the lines of [16]. Although the anticollocated case (with measurement
taken in one point downstream of the cylinder) can also be solved by
a similar procedure, we focus on the collocated case since it avoids
the use of unrealistic mid-flow measurements. In order to implement
the scheme in practice, transfer functions between the modelled
Neumann actuation, @A (1; t) =@�x, and the physical actuation, and the
physical sensing and the modelled sensing, A (1; t), would have to be
determined, either experimentally or computationally. The physical
actuation could for instance be micro/synthetic jet actuators distributed
on the cylinder surface, and a possible choice for the physical sensing
could be pressure sensors distributed on the cylinder surface. For
further background material, see [3], [11], [15], [2], [16], and the
references therein.

II. PROBLEM STATEMENT

We now rewrite the equation to obtain two coupled partial differen-
tial equations in real variables and coefficients by defining � (x; t) =
<(B(x; t)) = B (x; t) + �B (x; t) =2, and � (x; t) = =(B(x; t)) =
B (x; t)� �B (x; t) = (2i), where x = (�x � xd) = (1� xd),

B (x; t) = A (�x; t) exp (1=2a1)
�x

x
a2 (� )d� , i denotes the imag-

inary unit, and denotes complex conjugation. Equation (2) becomes

�t = aR�xx + bR (x) �� aI�xx � bI (x) �
(4)

�t = aI�xx + bI (x) �+ aR�xx + bR (x) �

for x 2 (0; 1), with boundary conditions

� (0; t) = 0; � (0; t) = 0; and (5)

1This claim is postulated from the observation that the local damping effect
in (1) increases with increasing distance from the cylinder, which follows from
the coefficients reported in [17].

� (1; t) =uR (t) ; � (1; t) = uI (t) ; or
(6)

�x (1; t) =uR (t) ; �x (1; t) = uI (t)

where aR <(a1)= (1� xd)
2, aI =(a1)= (1� xd)

2, and

bR (x) < a3 (�x)�
1

2
a0

2 (�x)�
1

4a1
a22 (�x)

(7)

bI (x) = a3 (�x)�
1

2
a0

2 (�x)�
1

4a1
a22 (�x) :

The problem is to find a convergent observer for (4)–(6) with only
boundary measurements available, and use it in conjunction with the
state feedback control law found in [2] to derive stabilizing output feed-
back boundary control laws. The observer design relates to the state
feedback problem solved in [2] in a way reminiscent of the duality of
the corresponding problems for finite dimensional systems. Thus, we
start by reviewing the results in [2].

III. STABILIZATION BY STATE FEEDBACK

In [2], extending the results in [11] and [15], the state feedback sta-
bilization problem was solved by searching for a coordinate transfor-
mation in the form

�� (x; t)= � (x; t)�
x

0

[k (x; y) � (y; t) + kc (x; y) � (y; t)] dy

(8)

�� (x; t) = � (x; t)�
x

0

[�kc (x; y) �(y; t) + k (x; y) � (y; t)] dy

(9)

transforming system (4)–(6) into

��t = aR ��xx + fR (x) ��� aI��xx � fI (x)�� (10)
��t = aI ��xx + fI (x) ��+ aR��xx + fR (x)��

for x 2 (0; 1), with boundary conditions

�� (0; t) =�� (0; t) = 0; and (11)
�� (1; t) =�� (1; t) = 0; or ��x (1; t) = ��x (1; t) = 0:

By the choice of fR and fI , system (10)–(11) can be given any desired
level of stability. The corresponding stable behaviour for the original
system is ensured by the control input

uR (t) =
1

0

[k1 (y) � (y; t) + kc;1 (y) � (y; t)] dy (12)

uI (t) =
1

0

[�kc;1 (y) � (y; t) + k1 (y) � (y; t)] dy (13)

for Dirichlet actuation, where k1 (y) = k (1; y), kc;1 (y) = kc (1; y),
and

uR (t) =
1

0

[k2 (y) � (y; t) + kc;2 (y) � (y; t)] dy

+ k1 (1)� (1; t) + kc;1 (1) � (1; t) (14)

uI (t) =
1

0

[�kc;2 (y) � (y; t) + k2 (y) � (y; t)] dy

� kc;1 (1)� (1; t) + k1 (1) � (1; t) (15)

for Neumann actuation, where k2 (y) = kx (1; y), kc;2 (y) =
kc;x (1; y). The skew-symmetric form of (12)–(13) and (14)–(15) is
postulated from the skew-symmetric form of (4). The following result
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was proven in [2]2 for the Dirichlet controller (12)–(13) (it is valid
also for the Neumann controller (14)–(15), as stated here).

Theorem 1:
i) The pair of kernels, k (x; y) and kc (x; y), satisfy the partial dif-

ferential equation

kxx = kyy + �(x; y)k + �c(x; y)kc (16)
kc;xx = kc;yy � �c(x; y)k + �(x; y)kc

for (x; y) 2 T = fx; y : 0 < y < x < 1g, with boundary con-
ditions

k(x; x) = �
1

2

x

0

�(
; 
)d
; k (x; 0) = 0
(17)

kc(x; x) =
1

2

x

0

�c(
; 
)d
; kc (x; 0) = 0

where

�(x; y)=
aR (bR(y)�fR(x)) + aI (bI(y)� fI(x))

a2R + a2I
(18)

�c(x; y)=
aR (bI(y)�fI(x))� aI (bR(y)� fR(x))

a2R + a2I
: (19)

Equation (16) with boundary conditions (17) has a unique
C2 (T ) solution, given by

k (x; y) =

1

n=0

Gn (x+ y; x� y)

(20)

kc (x; y) =

1

n=0

Gc;n (x+ y; x� y)

where

G0 (�; �) = �
1

4

�

�

b (�; 0)d�; Gc;0 (�; �) =
1

4

�

�

bc (�; 0)d�

(21)

Gn+1 (�; �) =
1

4

�

�

�

0

b (�; s)Gn (�; s)dsd�

+
1

4

�

�

�

0

bc (�; s)Gc;n (�; s)dsd� (22)

Gc;n+1(�; �)= �
1

4

�

�

�

0

bc (�; s)Gn (�; s)dsd�

+
1

4

�

�

�

0

b (�; s)Gc;n (�; s)dsd� (23)

and

b (�; �)=�
� + �

2
;
� � �

2
; bc(�; �)=�c

� + �

2
;
� � �

2
:

(24)
ii) The inverse of (8)–(9) exists and is in the form

� (x; t) = �� (x; t)�
x

0

[l (x; y) �� (y; t) + lc (x; y) �� (y; t)] dy

(25)

� (x; t) =�� (x; t)�
x

0

[�lc (x; y) �� (y; t) + l (x; y) �� (y; t)] dy

(26)

2In the statement of Theorem 1 and in the text in [2, Sec. 8], (0 1)
should be replaced by (0 1). Furthermore, the initial conditions must be
compatible with the boundary conditions.

where l and lc are C2 (T ) functions. l and lc can be expressed
similarly to k and kc in (20)–(23), but we omit their explicit
definition due to page limitations.

iii) Suppose c > 0, and select fR and fI such that

sup
x2[0;1]

fR (x) +
1

2
f
0

I (x) � �c: (27)

Then for any initial data (�0; �0) 2 H3 (0; 1), compatible with
the boundary conditions, the system (4)–(6) in closed loop with
the control law (12)–(13) has a unique classical solution (�; �) 2
C2;1 ((0; 1)� (0;1)) and is exponentially stable at the origin
in the L2 (0; 1) and H1 (0; 1) norms. If, in addition, f 0R(1) =
f 0I(1) = 0, then the same conclusion holds for the control law
(14)–(15).

In [2], it was shown that a particular choice of fR and fI , that de-
pend on xd in a specific way, results in state feedback kernel functions
that are invariant of xd and vanish in [xd; xs], where xs is a constant
that can be deduced from the coefficients of (1). This implies that if the
domain is truncated at some xd � xs for the purpose of computing
the feedback kernel functions, the resulting state feedback will stabi-
lize the plant evolving on the semi-infinite domain (�1; 1). This is
achieved by avoiding the complete cancellation of the terms involving
bR and bI in (4) by using a target system (10) that contains the nat-
ural damping that exists in the plant downstream of xs. It ensures that
only cancellation/domination of the source of instability is performed
in the design, and is similar to common practice in design of finite di-
mensional backstepping controllers, where one seeks to leave unaltered
terms that add to the stability while cancelling terms that do not. The
result is less complexity, and better robustness properties. The signif-
icance of this with regard to the present work, is that we need to de-
sign an observer that provides an estimate of the state in the interval
[xs; 1], only. In the anticollocated case, placing the measurement at xs,
the observer can be designed on [xs; 1] and guarantee output feedback
stabilization on the semi-infinite domain (�1; 1). In the collocated
case, stability is guaranteed when the system is truncated to a finite
domain. An interesting property of our design is that it requires the
solution of a linear hyperbolic PDE, which is an advantage when com-
pared to other methods, such as LQG requiring the solution of a Riccati
equation, which is quadratic. In fact, for a plant much simpler than the
linearized Ginzburg–Landau model, solving the hyperbolic PDE is re-
ported in [15] to take an order of magnitude less computational time
than solving the Riccati equation. Although the series (20) happen to
converge rapidly, they can be computed by a more efficient numerical
scheme that was developed in [15].

IV. OBSERVER DESIGN

In the collocated case, measurements are taken at the same location
as the control input, that is on the cylinder surface. The measurements
are yR (t) = � (1; t) and yI (t) = � (1; t), which leaves �x (1; t) and
�x (1; t) for control input. Consider the following Luenberger type ob-
server (omitting the independent variable t for notational brevity)

�̂t = aR�̂xx + bR (x) �̂� aI �̂xx � bI (x) �̂

+ p1 (x) (yR � ŷR) + pc;1 (x) (yI � ŷI) (28)

�̂t = aI �̂xx + bI (x) �̂+ aR �̂xx + bR (x) �̂

� pc;1 (x) (yR � ŷR) + p1 (x) (yI � ŷI) (29)

for x 2 (0; 1), with boundary conditions �̂ (0) = �̂ (0) = 0 and

�̂x (1)= p0 (� (1)� �̂ (1))+pc;0(� (1)� �̂ (1)) + uR (30)

�̂x (1) = � pc;0(� (1)��̂ (1))+p0 (� (1)��̂ (1)) + uI : (31)
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In (28)–(31), p1 (x), pc;1 (x), p0 and pc;0 are output injection gains
to be designed. Defining the observer error ~� (x) = � (x) � �̂ (x),
~� (x) = � (x)� �̂ (x), the error dynamics are given by

~�t = aR~�xx + bR (x) ~�� aI~�xx � bI (x) ~�

� p1 (x) ~� (1)� pc;1 (x) ~� (1) (32)

~�t = aI ~�xx + bI (x) ~�+ aR~�xx + bR (x) ~�

+ pc;1 (x) ~� (1)� p1 (x) ~� (1) (33)

for x 2 (0; 1), with boundary conditions ~� (0) = ~� (0) = 0 and

~�x (1) = �p0~� (1)� pc;0~� (1) ; ~�x (1) = pc;0~� (1)� p0~� (1) : (34)

The output injection gains p1 (x), pc;1 (x), p0 and pc;0 should be
chosen to stabilize the system (32)–(34). Towards that end, we look
for a transformation

~�(x; t)= ~� (x; t)�
1

x

[p (x; y) ~� (y; t)+pc (x; y) ~� (y; t)] dy

(35)

~� (x; t) = ~�(x; t)�
1

x

[�pc (x; y) ~� (y; t)+p (x; y) ~� (y; t)] dy

(36)

that transforms system (32)–(34) into the exponentially stable system

~�t = aR~�xx + fR (x) ~� � aI~�xx � fI (x) ~� (37)
~�t = aI ~�xx + fI (x) ~� + aR~�xx + fR (x) ~�

for x 2 (0; 1), with boundary conditions

~� (0) = ~� (0) = 0; ~�x (1) = ~�x (1) = 0: (38)

When the transformation is found, the output injection gains are given
by

p1 (x) =�aRpy(x; 1)�aIpc;y (x; 1); p0=�p(1; 1) (39)

pc;1(x)= aIpy(x; 1)�aRpc;y(x;1); pc;0=�pc(1; 1) : (40)

By subtracting (32)–(34) from (37) and (38), and using (35) and (36),
it can be shown that the kernels p (x; y) and pc (x; y) must satisfy

pxx = pyy � �� (x; y) p� ��c (x; y) pc (41)
pc;xx = pc;yy + ��c (x; y) p� �� (x; y) pc

with boundary conditions

p (x; x) = �
1

2

x

0

�� (
; 
) d
; p (0; y) = 0
(42)

pc (x; x) =
1

2

x

0

��c (
; 
) d
; pc (0; y) = 0

where

��(x; y)=
aR (bR (x)�fR (y))+aI (bI (x)�fI (y))

a2R + a2I
(43)

��c(x; y)=
aR (bI (x)�fI (y))�aI (bR (x)�fR (y))

a2R + a2I
: (44)

Changing coordinates according to �x = y, �y = x, defining �p (�x; �y)
p (x; y), �pc (�x; �y) pc (x; y), and noticing that �� (�y; �x) = � (�x; �y)
and ��c (�y; �x) = �c (�x; �y), we obtain

�p�x�x = �p�y�y + � (�x; �y) �p+ �c (�x; �y) �pc (45)
�pc;�x�x = �pc;�y�y � �c (�x; �y) �p+ � (�x; �y) �pc

with boundary conditions

�p (�x; �x) = �
1

2

�x

0

� (
; 
) d
; �p (�x; 0) = 0
(46)

�pc (�x; �x) =
1

2

�x

0

�c (
; 
) d
; �pc (�x; 0) = 0:

From (39) and (40), we have �p1 (�y) = �aR�p�x (1; �y) � aI �pc;�x (1; �y),
�pc;1 (�y) = aI �p�x (1; �y) � aR�pc;�x (1; �y), p0 = ��p (1; 1), and pc;0 =
��pc (1; 1). Since (45) and (46) is identical with (16) and (17), it follows
that the output injection gains can be obtained from the state feedback
gains as

p1 (x) = � aRkx (1; x)� aIkc;x (1; x) (47)
pc;1 (x) = aIkx (1; x)� aRkc;x (1; x)

p0 = � k (1; 1) ; pc;0 = �kc (1; 1) (48)

and we get the following result directly from Theorem 1.
Theorem 2: Suppose fR and fI satisfy (27) and f 0

R(1) = f 0

I(1) =
0, and let k; kc be the solution of (16)–(17). Then for any initial data
(~�0; ~�0) 2 H3 (0; 1), compatible with the boundary conditions, the
system (32)–(34) with output injection gains given by (47)–(48) has a
unique classical solution (~�; ~�) 2 C2;1 ((0; 1)� (0;1)) and is expo-
nentially stable at the origin in the L2 (0; 1) and H1 (0; 1) norms.

V. OUTPUT FEEDBACK CONTROL DESIGN

The state feedback control law presented in Section III can be im-
plemented by replacing � (y; t) and � (y; t) by their estimates �̂ (y; t)
and �̂ (y; t) in (14) and (15). This adds the dynamics of the observer
into the feedback loop, and we need to verify that closed loop stability
is preserved. We formulate the solution to the ouput-feedback problem
as follows.

Theorem 3: Suppose fR and fI satisfy (27) and f 0

R(1) = f 0

I(1) =
0, and let k; kc be the solution of (16)–(17). Then for any initial data
(�0; �0; �̂0; �̂0) 2 H3 (0; 1), compatible with the boundary conditions,
system (4)–(5) with the controller

�x (1) =
1

0

[kx (1; y) �̂ (y) + kc;x (1; y) �̂ (y)] dy

+ k (1; 1)� (1) + kc (1; 1) � (1) (49)

�x (1) =
1

0

[�kc;x (1; y) �̂ (y) + kx (1; y) �̂ (y)] dy

� kc (1; 1) � (1) + k (1; 1) � (1) (50)

and the observer

�̂t = aR�̂xx + bR (x) �̂ � aI �̂xx � bI (x) �̂

+ p1 (x) (� (1)� �̂ (1)) + pc;1 (x) (� (1)� �̂ (1))

(51)

�̂t = aI �̂xx + bI (x) �̂ + aR �̂xx + bR (x) �̂

� pc;1 (x) (� (1)� �̂ (1)) + p1 (x) (� (1)� �̂ (1))

(52)
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�̂ (0) = 0; �̂ (0) = 0 (53)

�̂x (1) = p0 (�(1)� �̂(1)) + pc;0 (�(1)� �̂(1)) + �x(1) (54)

�̂x (1) = � pc;0(�(1)��̂(1))+p0 (�(1)� �̂(1)) + �x(1) (55)

has unique classical solutions (�; �; �̂; �̂) 2 C2;1 ((0; 1)� (0;1))
and is exponentially stable at the origin in the L2 (0; 1) and H1 (0; 1)
norms.

Proof: The coordinate transformation

�̂ (x; t) = �̂(x; t)�
x

0

[k (x; y) �̂ (y; t) + kc (x; y) �̂ (y; t)] dy

(56)

�̂ (x; t) =�̂(x; t)�
x

0

[�kc (x; y) �̂(y; t) + k (x; y) �̂ (y; t)] dy

(57)

maps (51)–(55) into the system

�̂t = aR�̂xx + fR (x) �̂ � aI �̂xx � fI (x) �̂

� 
 (x) ~� (1)� 
c (x) ~� (1) (58)

�̂t = aI �̂xx + fI (x) �̂ + aR�̂xx + fR (x) �̂

+ 
c (x) ~� (1)� 
 (x) ~� (1) (59)

for x 2 (0; 1), with boundary conditions

�̂ (0; t) = �̂ (0; t) = 0; �̂x (1; t) = �̂x (1; t) = 0 (60)

where


 (x) =
x

0

[k (x; y) p1 (y)� kc (x; y) pc;1 (y)] dy (61)


c (x) =
x

0

[k (x; y) pc;1 (y) + kc (x; y) p1 (y)] dy: (62)

Notice that systems (37) and (38) and (58)–(60) form a cascade, where
the (�̂; �̂) subsystem is driven by the (~�; ~�) subsystem. Well posed-
ness of the (~�; ~�) subsystem is established in Theorem 2. From stan-
dard results for uniformly parabolic equations (see, e.g., [4]; system
(58)–(60) is uniformly parabolic in (0, 1), with module of parabol-
icity aR) it follows that system (58)–(59) with boundary conditions
(60) and initial data �̂0; �̂0 2 H3 (0; 1), has a unique classical solution
�̂; �̂ 2 C2;1 ((0; 1)� (0;1)). The smoothness of k, kc and of the ker-
nels for the inverse transformation, l, lc, as stated in Theorem 1, provide
well posedness of system (4)–(5) in closed loop with (49)–(55). Next,
we establish stability. Let k�k denote the L2 (0; 1) norm, and consider

E (t) =
1

2

1

0

�̂2 + �̂2 + �~�2 + �~�2 dx

=
1

2
k�̂k2 + k�̂k2 + � k~�k2 + � k~�k2 (63)

where � is a strictly positive constant to be determined. Due to (27),
the time derivative of E (t) along solutions of system (37) and (38) and
(58)–(60) satisfies

_E (t) � � cE (t)� c

2
k�̂k2 + k�̂k2 + � k~�k2 + � k~�k2

+ �

1

0

(j�̂~� (1)j+ j�̂~� (1)j+ j�̂~� (1)j+ j�̂~� (1)j)dx

� aR k�̂xk2 � aR k�̂xk2 � �aR k~�xk2 � �aR k~�xk2
(64)

where �
 max supx2[0;1] j
 (x)j ; supx2[0;1] j
c (x)j .
Using Schwartz’ inequality twice, along with (38), we have
1

0
j�̂~� (1)jdx � k�̂k k~�xk, and similarly for the other terms

appearing in the integrand in the right hand side of (64), so upon
completion of squares we get

_E (t)

� � cE (t)�
p
c

2
k�̂k � �
p

c
k~�xk

2

�
p
c

2
k�̂k � �
p

c
k~�xk

2

�
p
c

2
k�̂k � �
p

c
k~�xk

2

�
p
c

2
k�̂k� �
p

c
k~�xk

2

+ 2
�
2

c
��aR k~�xk2+k~�xk2 :

(65)

Setting � = 2�
2= (caR), and applying the comparison principle, we
obtain

E (t) � E (0) e�ct (66)

which proves exponential stability of the (�̂; �̂; ~�; ~�)-system in the
L2 (0; 1) norm. Next, consider

V (t) =
1

2

1

0

�̂2
x + �̂2

x + �~�2
x + �~�2

x dx

=
1

2
k�̂xk2 + k�̂xk2 + � k~�xk2 + � k~�xk2 : (67)

Due to (27), the derivative of V (t) along solutions of system (37)–(38)
and (58)–(60) satisfies

_V (t)

� � aR k�̂xxk2 + k�̂xxk2 + � k~�xxk2 + � k~�xxk2
+�
(k�̂xxk k~�xk+k�̂xxk k~�xk+k�̂xxk k~�xk+k�̂xxk k~�xk)
� 3c

4
k�̂xk2 + k�̂xk2 + � k~�xk2 + � k~�xk2

+
2

c

1

0

f 0R (x)2 + f 0I (x)
2 �̂2 + �̂2 + �~�2 + �~�2 dx:

(68)

Defining c2 = 4 supx2[0;1] f 0R (x)2 + f 0I (x)
2 =c, we have

_V (t) � � c

2
V (t) + c2E (t)

� aR k�̂xxk2 + k�̂xxk2 + � k~�xxk2 + � k~�xxk2
+�
(k�̂xxk k~�xk+k�̂xxk k~�xk+k�̂xxk k~�xk+ k�̂xxk k~�xk)
� c

2
k�̂xk2 + k�̂xk2 + � k~�xk2 + � k~�xk2 : (69)

Completing squares, using (66), and applying the comparison prin-
ciple, we obtain V (t) � (V (0) + 2c2E (0)=c) e�(c=2)t. From the
Poincaré inequality, E � V=2, we get

V (t) � 1 +
c2
c

V (0) e�(c=2)t (70)

which proves exponential stability of the (�̂; �̂; ~�; ~�)-system in
H1 (0; 1). Since transformation (56)–(57) and its inverse imply
equivalence of norms of (�̂; �̂; ~�; ~�) and (�̂; �̂; ~�; ~�) in L2 (0; 1) and
H1 (0; 1), the properties proven for system (58)–(60) also hold for
system (51)–(55). Since (�̂; �̂; ~�; ~�) is exponentially stable at the origin
in L2 (0; 1) and H1 (0; 1), so is (�̂; �̂; �; �).
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Fig. 1. Left graph: Open-loop simulation of nonlinear system. Middle graph: Output injection gains ( ) (solid) and ( ) (dashed). Right graph: Observer
error converging to zero for the linearly unstable nonlinear plant.

VI. SIMULATIONS WITH NONLINEAR MODEL

A. Observer

If we are using an observer for state estimation only, without a con-
troller that suppresses vortex shedding, the observer must incorporate
the nonlinearities in the system (in the same manner as an extended
Kalman filter), in addition to linear output injection designed by the
backstepping method. Including the nonlinear term in (1), the plant
model (4) in the (�; �) coordinates is

�t = aR�xx + bR (x) + cR (x) �2 + �2 �� aI�xx

� bI (x) + cI (x) �2 + �2 � (71)

�t = aI�xx + bI (x) + cI (x) �2 + �2 �+ aR�xx

+ bR (x) + cR (x) �2 + �2 � (72)

for x 2 (0; 1), where cR (x) = (a4) exp (�r (x)),
cI (x) = (a4) exp (�r (x)), and r (x) =

(1=a1)
(1�x )x+x

x
a2 (� )d� ). The leftmost graph

in Fig. 1 shows the open-loop plant response for the nonlinear system
for xd = �7, at Reynolds number Re = 60.3 (Only � is shown; �
looks qualitatively the same). The system is linearly unstable and
goes into a quasi-steady/limit-cycling motion reminiscent of vortex
shedding. The middle graph of Fig. 1 shows the output injection
gains (47). The observer consists of a copy of (71)–(72) with linear
output injection given by (47) in terms of the state feedback gains,
which are computed using (20)–(24). The rightmost graph in Fig. 1
shows the convergence of that observer, despite the plant undergoing
unsteady motion, governed by a linear instability and kept bounded
by the cubic nonlinearities.

B. Output-Feedback Controller

The left graph in Fig. 2 shows the feedback gain kernels, kx (1; y)
and kc;x (1; y), used in (49)–(50). It is interesting to notice the simi-
larity with the middle graph of Fig. 1, which is due to the definition of
output injection gains in terms of state feedback gains in (47), and the
fact that aI = 0 in this numerical example. When a stabilizing con-
troller is present, simulations show that one can use either a linear or a
nonlinear observer. The middle graph in Fig. 2 shows the closed-loop
response with a nonlinear observer. Although our controller (49)–(50)
is linear, it is easy to understand why it is stabilizing for large initial
conditions (the i.c.’s of the uncontrolled vortex shedding). This is due

3Defined as = , where is the free stream velocity,
is the cylinder diameter, and and are density and viscosity of the fluid,

respectively. Vortex shedding occurs when 47.

to the nonlinearities being cubic damping terms, which have a stabi-
lizing effect on large states. The ability of our linear controller to sta-
bilize vortex shedding is in agreement with recent results by Lauga
and Bewley [10], where linearH2=H1 optimal control methods were
used for a spatially discretized Ginzburg–Landau model, and stabiliza-
tion was achieved up to Re = 97. Their controller is structurally sim-
ilar to ours—a linear state feedback controller plus an observer con-
sisting of a copy of the nonlinear system and linear output injection.
The difference is twofold: Our design is for the continuum model and
it places both the sensor(s) (in addition to the actuator(s)) on the bluff
body. It was pointed out in [10] that stabilization becomes increasingly
difficult when the Reynolds number and the number of open-loop un-
stable modes is increased, as these unstable modes become nearly un-
controllable and unobservable. When designed for the exact Reynolds
number of the plant, our controller with nonlinear observer stabilizes
the nonlinear plant (71)–(72) up to Re = 127. A controller designed
for Re = 60, stabilizes the nonlinear plant up to Re = 78, while a
controller designed for Re = 80 stabilizes the nonlinear plant up to
Re = 88. This indicates some degree of robustness. The right graph in
Fig. 2 shows the closed-loop response when a linear observer is used,
and the controller is applied to the linearized plant. This is exactly the
case proven mathematically in the previous sections, and the states con-
verge to zero as expected.

C. A Fully Linear Compensator

As mentioned above, simulations show that either a nonlinear or a
linear observer suffices in the presence of a stabilizing controller. When
the observer is linear one can take a Laplace transform of the observer
and get a transfer function of the linear compensator. The compensator
is two-input–two-output, however due to the symmetry in the plant,
only two of the four transfer functions are different. Fig. 3 shows the
Bode plots of the transfer function of the linear compensator, as well as
the stable closed-loop response of the nonlinear plant under the linear
compensator. The linear compensator can be approximated very accu-
rately with a 10th order reduced model, which is stable and minimum
phase.

D. An Alternative Actuator/Sensor Architecture

In Fig. 3, we used an opportunity to show that actuation/sensing can
also be done in a Dirichlet–Neumann configuration (in addition to the
Neumann/Dirichlet configuration used in Fig. 2). In this case we used
the measurements of yR (t) = �x (1; t) and yI (t) = �x (1; t), the
linear observer (28)–(29) with output injection gains

p1 (x) = aRk1 (x) + aIkc;1 (x) (73)
pc;1 (x) = � aIk1 (x) + aRkc;1 (x)
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Fig. 2. Left graph: State feedback gain kernels (1 ) (solid) and (1 ) (dashed). Middle graph: Closed-loop response. Right graph: Closed-loop re-
sponse for linear controller applied to linearized plant.

Fig. 3. Compensator transfer functions from (1) to (1) (solid) and (1) to (1) (dashed), and closed-loop plant response.

and actuation via � (1; t) = �̂ (1; t) = uR (t) and � (1; t) = �̂ (1; t) =
uI (t). Fig. 3 shows the compensator Bode plots from �x (1) to � (1)
(solid line) and from �x (1) to � (1) (dashed line).
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