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Abstract

We consider the problem of seeking the source of a scalar signal using an autonomous vehicle modeled as the non-holonomic unicycle and
equipped with a sensor of that scalar signal but not possessing the capability to sense either the position of the source nor its own position.
We assume that the signal field is the strongest at the source and decays away from it. The functional form of the field is not available to
our vehicle. We employ extremum seeking to estimate the gradient of the field in real time and steer the vehicle towards the point where
the gradient is zero (the maximum of the field, i.e., the location of the source). We employ periodic forward–backward movement of the
unicycle (implementable with mobile robots and some underwater vehicles but not with aircraft), where the forward velocity has a tunable
bias term, which is appropriately combined with extremum seeking to produce a net effect of “drifting” towards the source. In addition to
simulation results we present a local convergence proof via averaging, which exhibits a delicate periodic structure with two sinusoids of
different frequencies—one related to the angular velocity of the unicycle and the other related to the probing frequency of extremum seeking.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the rapidly growing literature on coordinated motion con-
trol and autonomous agents, “autonomy” never means depriva-
tion of position information. The vehicles are always assumed
to have GPS and/or INS on board. There is, however, inter-
est in developing vehicles with full autonomy. The reasons are
twofold: (1) applications under water, under ice, or in caves
where GPS is unavailable, and (2) the high cost of INS systems
that remain accurate over longer periods of time.

In this paper we consider the problem of seeking the source
of a scalar signal. One can imagine such signal to be the concen-
tration of a chemical or biological agent, an electromagnetic,
acoustic, or even thermal signal. The strength of the signal is
assumed to decay away from the source (though not necessarily
in a symmetric/concentric pattern), however, the shape of the
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signal field is not available to the seeking vehicle. The seeking
vehicle has access only to the value of the signal at its location.
In our recent work [18] we considered this problem in the case
where the vehicle is modeled by a point mass. In this paper we
consider a more challenging (and realistic) model of the vehicle
motion—a non-holonomic unicycle. For seeking the source we
employ the extremum seeking method which uses non-model-
based gradient estimation, where the gradient is estimated us-
ing particular motion of the vehicle in space. Motions that al-
low gradient estimation are much harder to achieve with the
unicycle than with a point mass, however, we do succeed in de-
veloping a simple and provably stable scheme that drives our
kinematically constrained vehicle towards the signal source.

Somewhat related problems have been considered in the past.
Porat and Nehorai [16] considered the problem of localizing
vapor-emitting sources in spatio-temporal fields modeled by the
heat equation PDE, however, their vehicle had position infor-
mation and could move arbitrarily fast from one point in space
to another. Ogren et al. [13] considered coordination problems
with groups of vehicles where each vehicle carries a single
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sensor and gradient climbing is performed. Gradient estimation
in that work is a group effort among vehicles that have position
information and communicate amongst themselves.

Unicycle models of autonomous vehicles have been em-
ployed in several previous studies of coordinated motion
control—by Justh and Krishnaprasad [6] for convergent vehicle
formations, by Klein and Morgansen [8] for trajectory tracking,
and by Marshall et al. [12] for the cyclic pursuit problem.

The approach we employ for source seeking is the “extremum
seeking” method [2] for real-time non-model-based optimiza-
tion. Extremum seeking, in its various variants, has recently
seen several exciting applications [3,14,15,11,19]. The novelty
of our result here is in simultaneously solving a non-holonomic
steering problem and an adaptive optimization problem. This
is achieved with a scheme of utmost simplicity, as evident in
Fig. 2. We present a local convergence proof via averaging,
which exhibits a delicate periodic structure with two sinusoids
of different frequencies—one (slower) related to the angular
velocity of the unicycle and the other (faster) related to the
probing frequency of extremum seeking. The techniques in-
troduced by Tan et al. [17] can possibly be used to achieve a
semi-global version of our result.

2. The model of autonomous vehicle

We consider a unicycle model of a mobile robot with a sen-
sor that is either collocated at the center of the vehicle or
mounted some distance r away from the center. A diagram de-
picting the position, heading, angular and forward velocities,
and the sensor location on the autonomous vehicle is shown in
Fig. 1. According to the diagram, the equations of motion for
the vehicle center are

ẋc = v cos �, (1)

ẏc = v sin �, (2)

�̇ = �0, (3)

where [xc, yc] is the center of the vehicle, � is the orientation,
and v, �0 are the forward and angular velocity inputs. We point

Fig. 1. Unicycle model with non-collocated sensor.

out that our extremum seeking algorithm will be tuning only
the forward velocity input v, while keeping the angular veloc-
ity input �0 constant. The sensor position is governed by the
equations

ẋs = v cos � − r�0 sin �, (4)

ẏs = v sin � + r�0 cos �, (5)

where [xs, ys] is the position of the sensor and r is the distance
between the sensor and center of the vehicle. We observe that
the relationship between the center of the vehicle and the sensor
is

xs = xc + r cos �, (6)

ys = yc + r sin �. (7)

The distance r from the sensor to the center of the vehicle is
allowed to be zero in the search approach via extremum seeking.
However, in some applications the sensor may be mounted off-
center for design reasons. Additionally, the placement of the
sensor with r > 0 tends to improve the convergence rate because
one is “sweeping” the concentration field more broadly with
lesser movement of the vehicle itself, yielding better estimation
of the gradient. For all the above reasons, we consider the
general case r �0 in our analysis.

3. The search algorithm via extremum seeking

We assume that the signal source being tracked is distributed
according to an unknown nonlinear map J = f (x, y), which
has an isolated local maximum f ∗ =f (x∗, y∗) at (x∗, y∗). Our
purpose is to control the autonomous vehicle to achieve local
convergence to the maximizer (x∗, y∗) without the knowledge
of the shape of f (x, y) and using only the measurements of its
value during the motion of the vehicle.

If we know the nonlinear function f (x, y) and if we can
directly actuate (and measure) the position of the vehicle, then
we can design a control law to force the vehicle’s motion to
evolve according to the gradient dynamical system

[ẋc, ẏc]� = −∇f (xc, yc).

In that case the trajectory of [xc, yc] will asymptotically con-
verge to the set of stationary points of f where ∇f (x∗, y∗)=0.

Even finite time tracking can be obtained with the gradient sys-
tem

[ẋc, ẏc]� = − ∇f (xc, yc)

‖∇f (xc, yc)‖2
,

as explained by Cortes [5].
In the absence of the knowledge of function f (x, y) and

of the vehicle’s position, we have to employ techniques of
non-model-based optimization. In addition, in the absence of
direct actuation of the vehicle’s position, namely, for a non-
holonomic vehicle that cannot be directly steered sideways and
all of its motion has to be produced using forward and angular
velocity inputs, the task of source seeking becomes even more
challenging.
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Fig. 2. Extremum seeking for unicycle model.

In this paper, given only the measurement of the values of the
function J = f (xs, ys), we employ extremum seeking to tune
the forward velocity v (with fixed angular velocity �0) to ensure
that [xc(t), yc(t)] asymptotically converges towards [x∗, y∗].
A block diagram of the extremum seeking scheme is shown
in Fig. 2. The designer can affect the seeking performance using
the parameters �, �, �0, and c.

4. Stability analysis

For clarity of our presentation, we assume that the nonlinear
map is quadratic and that its Hessian is diagonal, viz.,

J = f (x, y) = f ∗ − qx(x − x∗)2 − qy(y − y∗)2, (8)

where (x∗, y∗) is the maximizer, f ∗ = f (x∗, y∗) is the max-
imum and qx, qy are some unknown positive constants (since
the Hessian is negative). General non-quadratic maps with non-
diagonal Hessians are equally amenable to analysis, using the
same technique as in [2,9].

By fixing the angular velocity to be �0, we have � = �0t.

Moreover, we set the perturbation frequency � = k�0 for a
positive integer k > 3. The analysis that follows employs the
method of averaging. Let

e = h

s + h
[J ] − f ∗, (9)

then the signal after the washout filter s/(s + h) in Fig. 2 can
be expressed as

� = s

s + h
[J ] = J − h

s + h
[J ] = J − f ∗ − e.

Now, let us introduce new coordinates

x̃ = xs − x∗ − � sin(�t) cos(�0t) − r cos(�0t), (10)

ỹ = ys − y∗ − � sin(�t) sin(�0t) − r sin(�0t). (11)

Then, in the time scale � = �t, we have

dx̃

d�
= 1

�

dx̃

dt

= 1

�
[v cos(�0t) − r�0 sin(�0t) − �� cos(�t) cos(�0t)

+ ��0 sin(�t) sin(�0t) + r�0 sin(�0t)]

= 1

�
[c sin(�t) cos(�0t)� + �� cos(�t) cos(�0t)

− �� cos(�t) cos(�0t) + ��0 sin(�t) sin(�0t)]

= 1

�
[c sin � cos(�/k)� + ��0 sin � sin(�/k)],

dỹ

d�
= 1

�

dỹ

dt

= 1

�
[v sin(�0t) + r�0 cos(�0t) − �� cos(�t) sin(�0t)

− ��0 sin(�t) cos(�0t) − r�0 cos(�0t)]

= 1

�
[c sin(�t) sin(�0t)� + �� cos(�t) sin(�0t)

− �� cos(�t) sin(�0t) − ��0 sin(�t) cos(�0t)]

= 1

�
[c sin � sin(�/k)� − ��0 sin � cos �/k)],

de

d�
= 1

�

de

dt
= h

�
�,

where

� = − qx(x̃ + � sin � cos(�/k) + r cos(�/k))2

− qy(ỹ + � sin � sin(�/k) + r sin(�/k))2 − e. (12)

So we summarize the system in Fig. 2 for the unicycle with
non-collocated sensor as

dx̃

d�
= 1

�
[c sin � cos(�/k)� + ��0 sin � sin(�/k)], (13)
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dỹ

d�
= 1

�
[c sin � sin(�/k)� − ��0 sin � cos(�/k)], (14)

de

d�
= h

�
�. (15)

System (13)–(15) is in the form to which the averaging method
is applicable, provided 1/� is small, i.e., provided � is large
(relative to the other parameters in the extremum seeking
scheme and relative to the parameters in the nonlinear map).
Now, averaging (13)–(15) over the larger period 2�k, we
have

dx̃avg

d�
= 1

�

1

2k�

∫ 2k�

0

dx̃

dt
d�

= 1

�

1

2k�

∫ 2k�

0
[c sin � cos(�/k)�+��0 sin � sin(�/k)]d�

= 1

�

1

2�

∫ 2�

0
[c sin(k�) cos �� + ��0 sin(k�) sin �] d�

= 1

�

1

2�

{
−

∫ 2�

0
c sin(k�) cos �(qxx̃

2 + qyỹ
2 + e) d�

−
∫ 2�

0
c sin(k�) cos �[2qxx̃� sin(k�) cos �

+ 2qxx̃r cos � + 2qx�r sin(k�)cos2 �

+ 2qyỹ� sin(k�) sin � + 2qyỹr sin �

+ 2qy�r sin(k�)sin2 �] d�

−
∫ 2�

0
c sin(k�) cos �[qx�

2sin2(k�) cos2 �

+ qxr
2 cos2 � + qy�

2 sin2(k�) sin2 �

+ qyr
2 sin2 �] d�

+
∫ 2�

0
��0 sin(k�) sin � d�

}

= − 1

�

1

2�

�

2
c2qxx̃avg�

= − 1

2�
�cqxx̃avg,

dỹavg

d�
= 1

�

1

2k�

∫ 2k�

0

dỹ

dt
d�

= 1

�

1

2k�

∫ 2k�

0
[c sin � sin(�/k)�−��0 sin � cos(�/k)]d�

= 1

�

1

2�

∫ 2�

0
[c sin(k�) sin �� − ��0 sin(k�) cos �] d�

= 1

�

1

2�

{
−

∫ 2�

0
c sin(k�) sin �(qxx̃

2 + qyỹ
2 + e) d�

−
∫ 2�

0
c sin(k�) sin �[2qxx̃� sin(k�) cos �

+ 2qxx̃r cos � + 2qx�r sin(k�)cos2�

+ 2qyỹ� sin(k�) sin � + 2qyỹr sin �

+ 2qy�r sin(k�) sin2 �] d�

−
∫ 2�

0
c sin(k�) sin �[qx�

2 sin2(k�) cos2 �

+ qxr
2 cos2 � + qy�

2 sin2(k�) sin2 �

+ qyr
2 sin2 �] d�

−
∫ 2�

0
��0 sin(k�) cos � d�

}

= − 1

�

1

2�

�

2
c2qyỹavg�

= − 1

2�
�cqyỹavg,

dẽavg

d�
= 1

�

1

2k�

∫ 2k�

0

dẽ

dt
d�

= h

�

1

2k�

∫ 2k�

0
� d�

= h

�

1

2�

{
−

∫ 2�

0
(qxx̃

2 + qyỹ
2 + e) d�

−
∫ 2�

0
[2qxx̃� sin(k�) cos � + 2qxx̃r cos �

+ 2qx�r sin(k�) cos2 � + 2qyỹ� sin(k�) sin �

+ 2qyỹr sin � + 2qy�r sin(k�) sin2 �] d�

−
∫ 2�

0
[qx�

2 sin2(k�) cos2 � + qxr
2 cos2 �

+ qy�
2 sin2(k�) sin2 � + qyr

2 sin2 �] d�

}

= − h

�

[
qxx̃

2
avg + qyỹ

2
avg + eavg

+ 1

2�

�

2
qx�

2+ 1

2�
�qxr

2+ 1

2�

�

2
qy�

2+ 1

2�
�qyr

2
]

= − h

�

[
qxx̃

2
avg+qyỹ

2
avg+eavg+

(
�2

4
+ r2

2

)
(qx+qy)

]
.

Then, summarizing the average model we have

dx̃avg

d�
= − 1

2�
�cqxx̃avg, (16)

dỹavg

d�
= − 1

2�
�cqyỹavg, (17)

deavg

d�
= − h

�

[
qxx̃

2
avg+qyỹ

2
avg+eavg+

(
�2

4
+ r2

2

)
(qx+qy)

]
.

(18)

The equilibrium of the average model (16)–(18) is

x̃e
avg = 0, ỹe

avg = 0, ee
avg = −

(
�2

4
+ r2

2

)
(qx + qy). (19)
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The Jacobian of (16)–(18) at (x̃e
avg, ỹ

e
avg, e

e
avg) is

Javg = 1

�

[−�cqx/2 0 0
0 −�cqy/2 0
0 0 −h

]
. (20)

Given the knowledge that the extremum is a maximum, it fol-
lows that qx, qy are known to be positive, though their actual
values are unknown. Therefore, if we choose � > 0, c > 0, and
h > 0, Jacobian (20) is Hurwitz and equilibrium (19) of the
average system (16)–(18) is locally exponentially stable. Then
according to the averaging theorem [7], we have the following
result.

Theorem 4.1. There exists �̄ such that for all 1/� ∈ (0, 1/�̄)

the system in Fig. 2 has a unique exponentially stable periodic
solution (x̃2�/�, ỹ2�/�, e2�/�) of period 2�/� and this solution
satisfies∥∥∥∥∥∥
⎡
⎣ x̃2�/�

ỹ2�/�

e2�/�+
(

�2

4 + r2

2

)
(qx+qy)

⎤
⎦

∥∥∥∥∥∥ �O(1/�), ∀��0. (21)

Since

xs − x∗ = x̃ + � sin(�t) cos(�0t) + r cos(�0t)

=
(
x̃ − x̃2�/�

)
+ x̃2�/� + � sin(�t) cos(�0t)

+ r cos(�0t),

the above theorem implies that the first term converges to zero,
the second term is O(1/�), the third term is O(�) and the forth
term is O(r). Thus

lim sup
�→∞

|xs − x∗| = O(� + 1/� + r).

Similarly, we obtain

lim sup
�→∞

|ys − y∗| = O(� + 1/� + r).

Hence, we have

lim sup
�→∞

|f (xs, ys) − f ∗| = O(�2 + (1/�)2 + r2).

The above limits characterize the asymptotic performance of
the extremum seeking loop in Fig. 2. The vehicle converges to
neighborhood of the maximizer [x∗, y∗], the size of which is
proportional to the amplitude of the periodic perturbation, the
reciprocal of the perturbation frequency and the vehicle radius.
Since we choose � and r as small and � as large, the tracking
error between the vehicle and the source is small. A direct trade-
off between the tracking error and the speed of convergence is
evident from the fact that two of the eigenvalues of the Jacobian
become more negative as � increases.

5. Simulation results

In the following simulations, we set the parameters of the
stationary source as [x∗, y∗] = [0, 0], f ∗ = 1, qx = 0.5 and

Fig. 3. Extremum seeking of unicycle with non-collocated sensor, stationary
target case, �0 = �/5. (a) Output of nonlinear map; (b) vehicle center and
sensor trajectories; (c) forward velocity before modulation.

qy = 0.25. The parameters of the extremum seeking loop are
chosen as � = 25, � = 0.1, c = 20, h = 1, and �0 = �/5. The
starting position of the autonomous vehicle is [xs(0), ys(0)] =
[2, 2], r=0.2, �0=�, and therefore [xc, yc]=[1.8, 2]. As shown
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Fig. 4. Extremum seeking of unicycle with non-collocated sensor, stationary
target case, �0 =�/3. (a) Vehicle center and sensor trajectories; (b) triangular
pattern of the vehicle center movement; (c) sensor position trajectory.

in Fig. 3(b), the autonomous vehicle starts at [1.8, 2] by prob-
ing around to climb the gradient of the unknown map in a
star pattern, eventually circling around the maximizer [0, 0].
The output of the unknown signal J = f (xs, ys) is shown in

Fig. 5. Moving target. Extremum seeking of unicycle with non-collocated
sensor and �0 =�/5. (a) Vehicle center and target trajectories; (b) output of
the nonlinear map.

Fig. 3(a), while the forward velocity before modulation v is
shown in Fig. 3(c). The trajectories of the vehicle center and
sensor are compared in Fig. 3(b). Because of the vehicle radius,
the steady state position of the sensor forms a star pattern with
the vertex nearly 0.2 away from the maximizer [0, 0]. There-
fore, the observations from the simulation coincide with the
theoretical analysis presented above.

The reason we observe a star pattern with five vertices in the
vehicle trajectory (Fig. 3(b)) is due to the scaling constant k.
In this case �0 = �/5. If we change �0 = �/3, we observe a
triangular pattern in the trajectory of the vehicle center, and a
star pattern with three vertices in the trajectory of the sensor,
refer to Fig. 4.

Finally, we consider a slow moving source whose trajectory
is in the shape of the number 8, that is, x∗ =am sin(�mt), y∗ =
am sin(2�mt), where �m>�, the initial position of the tar-
get is [0, 0], and am = 1, �m = 0.03. Here, we maintain the
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same parameter settings as in the above simulations, except
� = 0.04, c = 50, and �0 = �/5. The simulation results in
Fig. 5 show successful tracking in a non-stationary case.

6. Conclusions

The star- or triangle-patterned motion of our vehicle is per-
haps the most interesting part of our result. The gradient is be-
ing estimated due to the local exploration of space in a pattern
that our kinematically constrained vehicle can execute. Though
such motion may appear a little awkward, it should not be en-
tirely surprising because it has come up in motion planning
problems for non-holonomic systems such as the “snakeboard,”
see the work by Lewis et al. [10] and by Bullo and Lewis [4].

The star patterned motion does not seem like the most en-
ergy efficient way to move around in space, however, an even
bigger problem is that it requires motion both forward and in
reverse. As such, it is implementable by mobile robots, ground
vehicles, and some underwater vehicles, but not by aircraft. Our
future work will deal with an approach dual to the approach in
this paper—the forward velocity will be held constant and the
angular velocity will be tuned.

We plan on performing experiments with the scheme pre-
sented in the present paper.1 The mobile robot in Fig. 6 is
equipped with a light sensor and will be made to seek the ex-
tremum on a large printed paper surface, produced on a plotter,
and blending smoothly in color from white in the center to gray
to black away from the center, as shown in Fig. 7. Our mobile
robot is not a unicycle. The motion of its two wheels will be
scheduled (in the same or in the opposite direction) to produce
arbitrary forward and angular velocities, similar to what is done
for the “Caltech hovercraft” [1].

Fig. 6. A two-wheel autonomous vehicle for future experiments.

1 This implementation, along with an implementation of a future scheme
that tunes the angular velocity, will be the subject of a future paper that will
be submitted to an applications-oriented journal.

Fig. 7. The mobile robot in Fig. 6 will be made to seek the extremum on a
printed paper surface, which varies in color from white in the center to gray
to black away from the center.
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