
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2006; 16:801–818
Published online 29 August 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rnc.1098

Systematization of approaches to adaptive boundary
stabilization of PDEs

Miroslav Krstic*,y

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla,
CA 92093-0411, U.S.A.

SUMMARY

While adaptive control of finite dimensional systems is an advanced field that has produced adaptive
control methods for a very general class of LTI systems, adaptive control techniques have been developed
for only a few of the classes of PDEs for which non-adaptive controllers exist. We present a catalog of
approaches for the design of adaptive controllers for PDEs controlled from a boundary and containing
unknown destabilizing parameters affecting the interior of the domain. We differentiate between two major
classes of schemes: Lyapunov schemes and certainty equivalence schemes. Within the certainty equivalence
class, two types of identifier designs are pursued: passivity-based and swapping designs. Each of those
designs is applicable to two types of parametrizations: the plant model in its original form (which we refer
to as the ‘u-model’) and a transformed model to which a backstepping transformation has been applied
(which we refer to as the ‘w-model’). Hence, a large number of control algorithms result from combining
different design tools}Lyapunov schemes, w-passive schemes, u-swapping schemes, etc.
Our method builds upon the explicitly parametrized control formulae that we introduced in our earlier

work on non-adaptive backstepping control for PDEs. These formulae allow us to develop tunable
controllers that avoid solving Riccati or Bezout equations at each time step.
This paper is primarily a tutorial. Its purpose is to provide structure that helps the future reader of five

other papers currently under review which contain the detailed proofs for the designs presented here.
Additionally, the paper can serve as an entry point for a non-expert reader interested in an introduction to
adaptive boundary control of PDEs. For this reason, our presentation proceeds through a series of
examples, which are generalized in the companion papers. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While adaptive control of finite dimensional systems is a mature area that has produced
adaptive control methods for most LTI systems of interest [1], adaptive control techniques have
been developed for only a few of the classes of PDE for which non-adaptive controllers exist. In
this paper, we present a systematization of several new approaches to adaptive stabilization for
parabolic PDEs controlled from a boundary and containing unknown destabilizing parameters
affecting the interior of the domain.

1.1. Literature overview

The early efforts on adaptive control of distributed parameter systems were using tuning of a
scalar gain to a high level to stabilize some classes of (relatively degree one) infinite dimensional
plants (see the survey by Logemann and Townley [2] for an exhaustive list of references). Model
reference (MRAC) type schemes were designed by Hong and Bentsman [3], Bohm et al. [4], and
Bentsman and Orlov [5]. While the focus in these papers is on functional, spatially dependent
parametric uncertainty and the proofs of identifiability, the control is distributed in the PDE
domain, allowing access to all the uncertain terms, akin to an infinite set of parallel first-order
systems. Positive realness has played an important role in the work of Demetriou and Ito [6].
Adaptive linear quadratic control with least-squares estimation was pursued by Duncan et al. [7]
for stochastic evolution equations with unbounded input operators and stable uncontrolled
dynamics (assumption A3). Nonlinear PDEs have also received some attention. Liu and Krstic
[8] and Kobayashi [9] considered a Burgers equation with various parametric uncertainties;
Kobayashi [10] also considered the Kuramoto–Sivashinsky equation. Jovanovic and
Bamieh [11] designed adaptive controllers for nonlinear systems on lattices, which include
applications like infinite vehicular platoons or infinite arrays of microcantilevers. An
experimentally validated adaptive boundary controller got a flexible beam was presented by
de Queiroz et al. [12].

1.2. The backstepping approach

In this paper we present results for several open-loop unstable parabolic PDE systems
controlled by boundary control. We assume that physical parameters in those systems like
reaction, diffusion, or advection coefficients are unknown. We design explicit adaptive control
laws to stabilize these systems despite parametric uncertainty.

Problems like the ones considered here frequently arise in applications that incorporate
thermal-fluid or chemically reacting dynamics. No solution exists in the previous literature for
adaptive boundary}control of such problems because of the absence of parametrized families of
controllers for parabolic PDE systems. In a recent paper [13], Smyshlyaev and Krstic developed
explicit formulae for boundary control of a class of parabolic PDEs that includes the systems
considered here. Those formulae are not only explicit functions of the spatial co-ordinates of the
PDE, but also depend explicitly on the physical parameters of the plant. This is a quality not
shared by standard methods like LQR methods for PDEs because parametrized solutions to
Riccati equations cannot be obtained. While an adaptive version of an LQR approach would
require a solution to a high-dimensional Riccati equation at each time step, our approach only
requires that parameter updates be plugged into the control formula.
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1.3. The categories of designs

We differentiate between two major classes of schemes: Lyapunov schemes and certainty
equivalence schemes. Within the certainty equivalence class, two types of identifier designs
are pursued: passivity-based and swapping designs. Each of those designs is applicable to two
types of parametrizations: the plant model in its original form (which we refer to as the ‘u-
model’) and a transformed model to which a backstepping transformation has been applied
(which we refer to as the ‘w-model’). Hence, a large number of control algorithms result
from combining different design tools}Lyapunov schemes, w-passive schemes, u-swapping
schemes, etc.

1.4. The objective of this paper

This paper is primarily a tutorial. Its purpose is to help the future reader of the papers [14–18],
which are currently under review and contain the detailed proofs for the designs presented
here, to understand a broader context for the individual approaches and the tradeoffs
between the them. Additionally, the paper is meant to serve as an entry point for a non-expert
reader interested in an introduction to adaptive boundary control of PDEs. For this reason,
our presentation proceeds through a series of benchmark examples, which are generalized
in the companion papers. While the bulk of the designs presented in this paper are from
References [14, 15, 17], the results in Sections 6.2, 6.4, 7, and 8 are presented here for the
first time.

2. CATEGORIZATION OF ADAPTIVE CONTROLLERS AND IDENTIFIERS

Stability is the central issue in adaptive control because one often starts with an unstable plant
and no knowledge of its parameters. Approaches to adaptive control can be divided on the basis
of how closed-loop stability is achieved into two groups:

* Lyapunov approach,
* certainty equivalence approach.

The Lyapunov approach directly addresses the issue of closed loop stability and results in
controllers and identifiers designed jointly, with all the states of the closed loop system (plant,
parameter estimator, state estimator) incorporated into a single Lyapunov function. Lyapunov
adaptive controllers possess the best transient performance properties, however they are often
more complex and this approach is not applicable as broadly as the certainty equivalence
approach.

The term certainty equivalence (CE) approach refers to a broad group of methods where the
controller and the identifier are designed separately. The controller is designed, in a form
parametrized by the unknown parametersz as if they were known. The parameter identifier is
designed separately, without taking closed-loop stability into account, but only with an
objective that the parameter estimation error be bounded and the output estimation error and
the derivative of the parameter estimate be square integrable in time. That the controller/

z In this text we consider only indirect approaches as the direct approaches do not naturally extend from ODEs to PDEs.
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identifier pair would guarantee closed-loop stability is highly non-obvious and typically difficult
to prove, resulting in transient performance inferior to the Lyapunov design. However, the CE
approaches have an advantage in implementation because they combine easier-to-design
controller and identifier modules.

Parameter identifiers for use in the certainty equivalence approach can be split into two
classes:

* passivity-based identifiers,
* swapping identifiers.

The passivity-based method uses a copy of the plant, with the unknown parameter replaced
by its estimate, to generate a parametric model which is passive from the parameter
estimation error to the error between the plant state and the state of its copy. Sometimes
this method is referred to as ‘observer-based’ method because it uses a copy of the plant.
We avoid this name because it is misleading}the ‘observer’ does not serve the purpose of
state estimation}in fact, this method is seldom used in output-feedback adaptive control
problems.

The swapping method is perhaps the most common method of parameter estimation in
adaptive control. Filters of the ‘regressor’ and of the measured part of the plant are
implemented to convert a dynamic parametrization of the problem (given by the plant’s
dynamic model) into a static parametrization where standard gradient and least squares
estimation techniques can be used. Because of the prevalence of this method, it is
often (incorrectly) referred to in the literature as simply the ‘gradient’ or ‘least-squares’
method, even though such terms only describe the form of the update law and not the approach
used to eliminate the dynamics from the parametrization of the problem. The swapping
method uses the highest order of dynamics of all identifier approaches. Lyapunov is the
lowest in this respect as it only incorporates the dynamics of the parameter update,
and passivity-based is better than swapping because it uses only one filter, as opposed to
‘one-filter-per-unknown-parameter’ in the case of the swapping approach. Despite its high
dynamic order, the swapping approach is popular because it is the most transparent (its stability
proof is the simplest due to the static parametrization) and it is the only method that allows
least-squares estimation.

Both the passivity-based approach and the swapping approach can be applied to plant models
that are linear (affine, to be precise) in the unknown parameter. However, these two methods are
also applicable to models that arise in stability analysis of the controlled PDE systems. Such
models are linear in parameter estimation errors. While more complicated than the basic plant
models, and thus leading to somewhat more complicated identifiers, they result in easier closed-
loop analysis because the ‘error systems’ corresponding to the control problem and that
corresponding to the identification problem are the same. In our presentation the plant state will
be denoted by uðt;XÞ; where t is time and X is the spatial co-ordinate (which is a scalar in 1D
and a vector in 2D and 3D). The stability under feedback will be done in a different,
transformed variable denoted by wðt;XÞ: Both the u-model and the w-model will be valid
parametric models for which passivity-based and swapping identifiers can be designed, each
with its own advantages.

We will therefore be developing four categories of identifiers for the certainty
equivalence approach: u-passive, w-passive, u-swapping, and w-swapping. In summary, taking
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into account also the Lyapunov approach, adaptive controllers will be developed in the
following categories:

Certainty equivalence

Lyapunov Passive Swapping

u-passive w-passive u-swapping w-swapping

3. BENCHMARK SYSTEMS

We present adaptive designs for three benchmark plants that capture issues that recur in most
PDE problems. Our benchmark systems are parabolic PDEs in 1D, all three unstable, with
parametric uncertainties appearing in various ways in the domain and in the boundary condition:
l-system:

ut ¼ uxx þ lu ð1Þ

uð0Þ ¼ 0 ð2Þ

g-system:
ut ¼ uxx þ guð0Þ ð3Þ

uxð0Þ ¼ 0 ð4Þ
q-system:

ut ¼ uxx ð5Þ

uxð0Þ ¼ �quð0Þ ð6Þ

The parameters l; g; q in (1), (3), (5), respectively, are assumed to be unknown. The variable u
depends on time t and space x: The arguments of the function uðt; xÞ will be suppressed
whenever possible, to reduce notation. Symbols uð0Þ and uxð0Þ refer to the boundary conditions
at x ¼ 0; where the dependence on time is suppressed in the notation.

The systems will be controlled through the boundary input uð1Þ: In the absence of control,
when l > p2; g > 2; q > 1; the corresponding systems are unstable.

4. CONTROLLERS

For l; g; q known, explicit control formulae were derived in Reference [13]. With the estimates
for l; g; q; the controllers become:}

l-controller:

uð1Þ ¼ �#l
Z 1

0

x

I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#lð1� x2Þ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#lð1� x2Þ

q uðxÞ dx ð7Þ

}The symbols I1ð�Þ; J1ð�Þ; I2ð�Þ; etc., denote Bessel functions of the appropriate kinds.
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g-controller:

uð1Þ ¼ �
Z 1

0

ffiffiffi
#g

p
sinhð

ffiffiffi
#g

p
ð1� xÞÞuðxÞ dx ð8Þ

q-controller:

uð1Þ ¼ �
Z 1

0

#q e#qð1�xÞuðxÞ dx ð9Þ

These controllers were motivated by ‘backstepping’ (spatially causal) changes of variable
which transform the closed-loop system into the heat equation wt ¼ wxx; which is exponentially
stable. The three respective transformations and their inverses are given by
l-transformation:

wðxÞ ¼ uðxÞ þ
Z x

0

#lx
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#lðx2 � x2Þ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#lðx2 � x2Þ

q uðxÞ dx ð10Þ

uðxÞ ¼ wðxÞ �
Z x

0

#lx
J1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#lðx2 � x2Þ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#lðx2 � x2Þ

q wðxÞ dx ð11Þ

g-transformation:

wðxÞ ¼ uðxÞ þ
Z x

0

ffiffiffi
#g

p
sinhð

ffiffiffi
#g

p
ðx� xÞÞuðxÞ dx ð12Þ

uðxÞ ¼ wðxÞ þ #g

Z x

0

ðx� xÞwðxÞ dx ð13Þ

q-transformation:

wðxÞ ¼ uðxÞ þ
Z x

0

#q e#qðx�xÞuðxÞ dx ð14Þ

uðxÞ ¼ wðxÞ þ #q

Z x

0

wðxÞ dx ð15Þ

While for #l ¼ l; #g ¼ g; #q ¼ q the transformed variables are governed by the heat equation
wt ¼ wxx; when the estimates are imperfect and, moreover, time variable, the transformed
systems are much more complicated:
l-target system:

wt ¼ wxx þ
’#l
Z x

0

x
2
wðxÞ dxþ *lw ð16Þ

wð0Þ ¼ 0 ð17Þ

wð1Þ ¼ 0 ð18Þ
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g-target system:

wt ¼ wxx þ ’#g

Z x

0

sinhð
ffiffiffi
#g

p
ðx� xÞÞffiffiffi
#g

p wðxÞ dxþ *gwð0Þ coshð
ffiffiffi
#g

p
xÞ ð19Þ

wxð0Þ ¼ 0 ð20Þ

wð1Þ ¼ 0 ð21Þ

q-target system:

wt ¼ wxx þ ’#q

Z x

0

e#qðx�xÞwðxÞ dx ð22Þ

wxð0Þ ¼ �*qwð0Þ ð23Þ

wð1Þ ¼ 0 ð24Þ

where *l ¼ l� #l; *g ¼ g� #g; *q ¼ q� #q are the parameter estimation errors and
’#l; ’#g; ’#q are the

derivatives of the parameter estimates, which will be defined by the parameter update laws, yet
to be designed.

5. LYAPUNOV DESIGN

Even for linear finite dimensional systems, quadratic Lyapunov functions work for adaptive
stabilization only for a very restrictive class of systems of relative degree one. For systems with
higher relative degree Lyapunov-based adaptive controllers become nonlinear even when the
plants are linear, and the corresponding Lyapunov functions are highly nonlinear [19].

Inspired by Praly’s old idea for adaptive nonlinear control in the presence of growth
conditions [20], we have identified a class of Lyapunov functions suitable for boundary control
problems for linear PDEs. This Lyapunov function is

V ¼
1

2
logð1þ jjwjj2Þ þ

1

2g
*y2 ð25Þ

where g is a positive adaptation gain, jjwjj denotes the spatial L2 norm of wðx; tÞ; and *y denotes a
generic parameter estimation error, i.e. *y ¼ *l; *g; or *q: The logarithm in (25) is crucial. Due to
this term one can tolerate the potentially destabilizing effect of the derivatives

’#l; ’#g; ’#q in (16), (19),
and (22).

The update laws designed with the Lyapunov function (25) are [14]:
l-update:

’#l ¼ g
jjwjj2

1þ jjwjj2
; 05g51 ð26Þ

g-update:

’#g ¼
g

1þ jjwjj2
Proj½

%
g;%g� wð0Þ

Z 1

0

wðxÞ coshð
ffiffiffi
#g

p
xÞ dx

� �
; g5

1

2
e
�2

ffiffi
%g

p
ð27Þ
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q-update:

’#q ¼
g

1þ jjwjj2
Proj½

%
q;%q�fwð0Þ

2g; g5

ffiffiffi
2

p
2

e�%q ð28Þ

Except for the l-update law (26), the Lyapunov update laws (28) and (28) employ parameter
projection defined as

Proj½
%
y;%y�fag ¼

0; #y ¼
%
y and a50

0; #y ¼ %y and a > 0

a else

8>><
>>: ð29Þ

It is assumed that bounds %g >
%
g50 and %q >

%
q50 are a priori known for g and q: In addition, the

update laws require restrictions on the size of the adaptation gain g: The upper bounds on g that
guarantee stability are known to the designer.

In addition to the limit on the adaptation gain, the Lyapunov update laws incorporate
normalization by 1þ jjwjj2: This normalization slows down the adaptation to prevent the
harmful effect of the derivatives

’#l; ’#g; ’#q in (16), (19), and (22). While normalization is common in
adaptive laws of swapping type, it is seldom possible to incorporate it into Lyapunov schemes
where it is much more common that the effect of fast adaptation is compensated by additional
terms in the control law.

Closed-loop adaptive systems are nonlinear even when the plants are linear. For example, in
the simplest case (the l-plant), the closed-loop is given by

wt ¼ wxx þ
g
2

jjwjj2

1þ jjwjj2

Z x

0

xwðxÞ dxþ *lw ð30Þ

wð0Þ ¼ 0 ð31Þ

wð1Þ ¼ 0 ð32Þ

’*l ¼ �g
jjwjj2

1þ jjwjj2
ð33Þ

Besides the quadratic nonlinearities in the update law, the system has a product nonlinearity *lw
and the nonlinearity that has arisen from

’#l on the right-hand side of wt: Despite these
nonlinearities, boundedness and regulation to zero are achieved globally (for arbitrarily large
initial conditions of the plant uðx; tÞ). By boundedness and regulation we mean not just the

properties that hold for the spatial L2 norm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1
0 uðx; tÞ

2 dx

q
but also pointwise in x: This

property requires H1 stability analysis, which goes beyond the Lyapunov function (25). It is
shown in Reference [14].

6. CERTAINTY EQUIVALENCE DESIGN

6.1. u-passive identifier

The u-passive identifiers are designed on the basis of the parametric models (1)–(6). While the
Lyapunov identifiers are finite dimensional for finite dimensional unknown parameters (in fact,
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they are one dimensional in our examples), the u-passive identifiers each employ a copy of the
PDE plant, which makes them infinite dimensional even when the unknown parameter is a
scalar. The ‘observers’ and the update laws are stated next [15]:
l-system:

#ut ¼ #uxx þ #luþ gjjujj2ðu� #uÞ ð34Þ

#uð0Þ ¼ 0 ð35Þ

#uð1Þ ¼ uð1Þ ð36Þ

’#l ¼ g
Z 1

0

ðuðxÞ � #uðxÞÞuðxÞ dx ð37Þ

g-system:

#ut ¼ #uxx þ #guð0Þ þ guð0Þ2ðu� #uÞ ð38Þ

#uxð0Þ ¼ 0 ð39Þ

#uð1Þ ¼ uð1Þ ð40Þ

’#g ¼ guð0Þ
Z 1

0

ðuðxÞ � #uðxÞÞ dx ð41Þ

q-system:

#ut ¼ #uxx ð42Þ

#uxð0Þ ¼ �#quð0Þ � g2uð0Þ2ðuð0Þ � #uð0ÞÞ ð43Þ

#uð1Þ ¼ uð1Þ ð44Þ

’#q ¼ guð0Þðuð0Þ � #uð0ÞÞ ð45Þ

The properties of these identifiers are established with the Lyapunov function

V ¼
1

2
jju� #ujj2 þ

1

2g
*y2 ð46Þ

where *y denotes *l; *g; or *q: It can be shown that

’V4� jjðu� #uÞxjj
2 � ’#y2 ð47Þ

This establishes that jju� #ujj and *y are bounded and jjðu� #uÞxjj and
’#y are square integrable over

infinite time. These properties are essential for proving boundedness and regulation of uðt; xÞ:
The term ‘passive identifier’ comes from the fact that the nonlinear operator from, say, *l toR 1

0 ðuðxÞ � #uðxÞÞuðxÞ dx is strictly passive. This property is achieved by adding the observer #u:
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The terms like þgjjujj2ðu� #uÞ in (34) act as nonlinear damping terms whose task is to ensure

square integrability of
’#l: They slow down the adaptation and act as an alternative to update law

normalization.

6.2. w-passive identifier

Consider the ‘target systems’ (16)–(24). These systems incorporate the unknown parameters
through the parameter errors *l; *g; *q and thus are valid parametric models. It can be noted that,
for example, (16) would be strictly passive from *l to jjwjj2 if it weren’t for the perturbation
’#l
R x
0 ðx=2ÞwðxÞ dx: The observers in w-passive identifiers serve the purpose of eliminating those

perturbations. The identifiers are defined as follows:}

l-system:

#wt ¼ #wxx þ
’#l
Z x

0

x
2
wðxÞ dxþ g2jjwjj2ðw� #wÞ ð48Þ

#wð0Þ ¼ 0 ð49Þ

#wð1Þ ¼ 0 ð50Þ

’#l ¼ g
Z 1

0

wðxÞ � #wðxÞð ÞwðxÞ dx ð51Þ

g-system:

#wt ¼ #wxx þ ’#g

Z x

0

sinh
� ffiffiffi

#g
p
ðx� xÞ

�
ffiffiffi
#g

p wðxÞ dxþ g2wð0Þ2ðw� #wÞ ð52Þ

#wxð0Þ ¼ 0 ð53Þ

#wð1Þ ¼ 0 ð54Þ

’#g ¼ gwð0Þ
Z 1

0

ðwðxÞ � #wðxÞÞ coshð
ffiffiffi
#g

p
xÞ dx ð55Þ

q-system:

#wt ¼ #wxx þ ’#q

Z x

0

e#qðx�xÞwðxÞ dx ð56Þ

#wxð0Þ ¼ �g2wð0Þ
2ðwð0Þ � #wð0ÞÞ ð57Þ

#wð1Þ ¼ 0 ð58Þ

’#q ¼ gwð0Þðwð0Þ � #wð0ÞÞ ð59Þ

}These designs are present only in this paper. They are not contained in Reference [15] or the other companion papers.
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The properties of this identifier are established with the Lyapunov function

V ¼
1

2
jjw� #wjj2 þ

1

2g
*y2 ð60Þ

where *y denotes *l; *g; or *q: It can be shown that

’V4� jjðw� #wÞxjj
2 � ’#y2 ð61Þ

which implies boundedness of jjw� #wjj and *y and square integrability of jjðw� #wÞxjj and
’#y:

It is evident in the target system ‘observers’ (48), (52), (56) that the explicit form of the
backstepping transformations is the key to designing the w-passive identifiers.

6.3. u-swapping identifier

This class of identifiers would be the most readily recognizable for a reader with lay knowledge
of identification. Filters are employed which convert the dynamic models (1)–(6) into static
parametric models. For all three problems the update law is chosen as the normalized gradient
scheme [15],

’#y ¼ g

R 1
0 ðuðxÞ �

#yvðxÞ � ZðxÞÞvðxÞ dx

1þ jjvjj2
ð62Þ

where #y denotes #l; #g; or #q: Of the two filters Z and v; one is common to all three systems,k

Zt ¼ Zxx ð63Þ

Zxð0Þ ¼ 0 ð64Þ

Zð1Þ ¼ uð1Þ ð65Þ

and the other is given as:
l-system:

vt ¼ vxx þ u ð66Þ

vð0Þ ¼ 0 ð67Þ

vð1Þ ¼ 0 ð68Þ

g-system:

vt ¼ vxx þ uð0Þ ð69Þ

vxð0Þ ¼ 0 ð70Þ

vð1Þ ¼ 0 ð71Þ

q-system:
vt ¼ vxx ð72Þ

vxð0Þ ¼ �uð0Þ ð73Þ

kFor the l-system, Zð0Þ ¼ 0 rather than Zxð0Þ ¼ 0:
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vð1Þ ¼ 0 ð74Þ

For the Lyapunov function

V ¼
1

2
jju� yv� Zjj2 þ

1

2g
*y2 ð75Þ

it can be proved that

’V4�
1

2
jjðu� yv� ZÞxjj

2 �
1

2g2
’#y2 ð76Þ

The above identifiers look extremely simple, however, they employ the highest dynamic order
and the proof of stability for u-swapping scheme is the most complicated of all the schemes
because the regressor in the output estimation error v*y is not closely related to the regressor in
the target system. For instance, in the g-system, the former regressor is v (which is a filtered
version of uð0Þ), whereas the latter regressor is uð0Þ coshð

ffiffiffi
#g

p
xÞ:

6.4. w-swapping identifier

The w-swapping identifiers use the ‘target systems’ (16)–(24) as the parametric models. They all
employ the update law**

’#y ¼ g

R 1
0 ðwðxÞ �

#ypðxÞ � cðxÞÞpðxÞ dx

1þ jjpjj2
ð77Þ

and two separate filters p and c defined as
l-system:

pt ¼ pxx þ w ð78Þ

pð0Þ ¼ 0 ð79Þ

pð1Þ ¼ 0 ð80Þ

ct ¼ cxx þ
’#l
Z x

0

x
2
wðxÞ dx� w#l ð81Þ

cð0Þ ¼ 0 ð82Þ

cð1Þ ¼ 0 ð83Þ

g-system:

pt ¼ pxx þ wð0Þ coshð
ffiffiffi
#g

p
xÞ ð84Þ

pxð0Þ ¼ 0 ð85Þ

pð1Þ ¼ 0 ð86Þ

**These designs are present only in this paper. They are not contained in Reference [15] or the other companion papers.
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ct ¼ cxx þ ’#g

Z x

0

sinh

� ffiffiffi
#g

p
ðx� xÞ

�
ffiffiffi
#g

p wðxÞ dx� #gwð0Þ coshð
ffiffiffi
#g

p
xÞ ð87Þ

cxð0Þ ¼ 0 ð88Þ

cð1Þ ¼ 0 ð89Þ

q-system:

pt ¼ pxx ð90Þ

pxð0Þ ¼ �wð0Þ ð91Þ

pð1Þ ¼ 0 ð92Þ

ct ¼ cxx þ ’#q

Z x

0

e#qðx�xÞwðxÞ dx ð93Þ

cð0Þ ¼ #qwð0Þ ð94Þ

cð1Þ ¼ 0 ð95Þ

For the Lyapunov function

V ¼
1

2
jjw� yp� cjj2 þ

1

2g
*y2 ð96Þ

it can be proved that

’V4�
1

2
jjðw� yp� cÞxjj

2 �
1

2g2
’#y2 ð97Þ

7. TRADEOFFS BETWEEN THE DESIGNS

With five designs per benchmark problem, the reader will probably wonder why so many
different designs are needed. As we will explain here, each design has some advantage over the
others, so it is important to be aware of all the five design options.

We make a comparison for the case of the g-plant. The Lyapunov identifier is given by (27),
the u-passive identifier by (38)–(41), the w-passive identifier by (52)–(55), the u-swapping
identifier by (62), (63)–(65), (69)–(71), and the w-swapping identifier by (77), (84)–(89).

The Lyapunov identifier (27) clearly has the lowest dynamic order. It employs only one scalar
differential equation, whereas the other designs in addition incorporate PDEs. However, the
Lyapunov identifier is functionally more complex than the u-passive and the u-swapping
identifiers because the Lyapunov identifier incorporates the change of variable uðxÞ/wðxÞ;
which is non-dynamic but nevertheless high dimensional (integration in x).
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Between the identifiers based on the u-model, the u-passive identifier (38)–(41) has a lower
dynamic order than the u-swapping identifier (62), (63)–(65),(69)–(71) because, while the former
incorporates only one PDE (the ‘observer’ #u), the latter incorporates two PDEs (the input filter Z
and the output filter v). However, the u-swapping identifier is able to employ the standard
gradient update law, with simple normalization, whereas the u-passive identifier utilizes an
unusual form of nonlinear damping in the ‘observer.’

The w-passive (52)–(55) and w-swapping (77), (84)–(89) identifiers may seem a little harder to
justify because they have both the high dynamic order of the u-passive and u-swapping
identifiers, as well as the functional complexity of the Lyapunov identifier. However, their
advantage is in the fact that they are based on the w-system as the parametric model. This
quality endows them with transient performance properties that are easier to quantify, as
demonstrated in Reference [19] for finite dimensional nonlinear systems (note that the x-models
in Reference [19] correspond to u-models here and z-models in Reference [19] correspond to
w-models here).

8. STABILITY

For each of the three benchmark systems we have presented five adaptive schemes, for a total of
15 schemes. While stability of the identifiers (taken separately from the plant stability) is quite
immediate for some of the schemes, the closed-loop stability of the complete dynamics consisting
of the plant, controller, parameter update law, and the filters, is far from immediate. Even in the
simplest among the cases the stability analysis is quite involved, as in the case of classical
adaptive control for linear ODEs [1]. In this section we give a stability proof for one of the 15
schemes presented earlier to give an idea of what is involved in such analysis. This proof is not
contained in Reference [15] or the other companion papers (the particular scheme we analyse is
presented only here).

Consider the w-passive identifier (48)–(51) for the l-system given in its error form by
(16)–(18). From (60), (61) we get boundedness of jjw� #wjj and *y and square integrability of
jjðw� #wÞxjj and

’#l: However, it is not the boundedness of w� #w that we need but the bounded-
ness of both w and #w: Consider the Lyapunov function U ¼ 1

2

R 1
0
#w2 dx: With some calculations

that involve integration by parts and Cauchy–Schwartz and triangle inequalities, we get

’U4� jj #wxjj2 þ
j’#lj
2
jj #wjjðjj #wjj þ jjejjÞ þ g2jjwjjðjj #wjj þ jjejjÞjj #wjjjjejj ð98Þ

where e ¼ w� #w:Denoting l ¼ ð1
2
j’#lj þ g2jjwjjjjejjÞ2; using Poincare’s and Young’s inequalities, we

get

’U4� 1
4
U þ 6lðtÞU þ 1

4
jjeðtÞjj2 ð99Þ

Since the functions lðtÞ and jjeðtÞjj2 are integrable over infinite time,yy using Reference [19,
Lemma B.6], we get from (99) that jj #wðtÞjj is bounded and square integrable, which together with
boundedness and square integrability of jjeðtÞjj; implies the same properties for jjwðtÞjj and ’#l:

One of the difficulties in working with PDEs is that the boundedness of jjwjj does not imply
boundedness of wðt; xÞ pointwise in x: To show the boundedness of maxx2½0;1�jwðt;xÞj we can

yy It can be shown independently of (61) that jjwjj2jjejj2 in l is integrable.
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show the boundedness of jjwxðtÞjj and use Agmon’s inequality. Towards this end, we first derive
the bound

1

2

d

dt
jjwxðtÞjj24 *l2 þ

j’#lj2

4

 !
jjwðtÞjj2 ð100Þ

Since *l; ’#l are bounded and jjwðtÞjj is integrable, integrating (100) with respect to time we get
boundedness of jjwxðtÞjj:

Next, we set out to prove regulation. First we note from (16)–(18) that

1

2

d

dt
jjwjj2

����
����4jjwxjj2 þ j

’#ljjjwjj2 þ j*ljjjwjj251 ð101Þ

So, jjwðtÞjj2; ðd=dtÞjjwðtÞjj2 are bounded and jjwðtÞjj2 is integrable. By Barbalat’s lemma jjwðtÞjj ! 0
as t!1: To show the convergence to zero for all x 2 ½0; 1�; we use Agmon’s inequality and the
fact that jjwxðtÞjj is bounded:

lim
t!1

max
x2½0;1�

jwðx; tÞj4 lim
t!1
ð2 jjwðtÞjjjjwxðtÞjjÞ

1=2 ¼ 0 ð102Þ

The remaining step is to show that the properties established for w also hold for u: This is
done by proving from (11) that jjujj4Cjjwjj and maxx2½0;1�juðx; tÞj4Cmaxx2½0;1�jwðx; tÞj for some
finite C; which yields boundedness and regulation of uðx; tÞ pointwise in x 2 ½0; 1�:

9. DESIGN FOR SYSTEMS WITH UNKNOWN DIFFUSION
AND ADVECTION COEFFICIENTS

In this section, we show how one can also incorporate adaptation for unknown diffusion and
advection coefficients}in addition to unknown reaction coefficients. Consider the system

ut ¼ euxx þ bux þ lu ð103Þ

uð0Þ ¼ 0 ð104Þ

where e; b; l are unknown constants. The control law for this system is

uð1Þ ¼ �
Z 1

0

#l
#e
x e�ð

#b=2#eÞð1�xÞ
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð#l=#eÞð1� x2Þ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð#l=#eÞð1� x2Þ

q uðxÞ dx ð105Þ

where #e; #b; #l are the estimates of e; b; l: The Lyapunov approach results in the update laws [14]

’#l ¼ g
jjwjj2

1þ jjwjj2
ð106Þ

’#b ¼ g

R 1
0
wðxÞ

R x
0
jðx; xÞwðxÞ dx dx

1þ jjwjj2
ð107Þ

’#e ¼ �
#l’#lþ #b

’#b

#e
ð108Þ
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where

wðxÞ ¼ uðxÞ �
Z x

0

kðx; xÞuðxÞ dx ð109Þ

kðx; xÞ ¼ �
#l
#e
x e�ð

#b=2#eÞðx�xÞ
I1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð#l=#eÞðx2 � x2Þ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð#l=#eÞðx2 � x2Þ

q ð110Þ

jðx; xÞ ¼ div kðx; xÞ þ
Z
xx
ðdiv kðx; sÞÞlðs; xÞ ds ð111Þ

div kðx; xÞ ¼
1

x
kðx; xÞ þ

#l
#e
e�ð

#b=2#eÞðx�xÞ x
xþ x

I2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#l
#e
ðx2 � x2Þ

s0
@

1
A ð112Þ

and projection is used (though we do not explicitly include it in the definition of the update laws)
to keep the parameter estimates within a priori bounds ½

%
l; %l�; ½

%
b; %b�; and ½

%
e; %e�; where

%
e > 0: As in

the previous Lyapunov designs, g is limited by an upper bound which can be a priori computed.

10. ADAPTIVE CONTROL IN THE PRESENCE OF FUNCTIONAL
PARAMETRIC UNCERTAINTIES

In the previous sections we considered only unknown parameters of scalar ðl; g; qÞ or vector
ð½e; b; l�Þ type. In heterogeneous media (or in non-Cartesian co-ordinate systems) physical
parameters like diffusion, viscosity, reaction, convection, etc., can be non-constant. Our method
is capable of handling such problems. We will illustrate this on the simplest example that fits the
space limit:

ut ¼ uxx þ lðxÞu ð113Þ

with uncontrolled boundary condition uð0Þ ¼ 0 and a boundary controller

uð1Þ ¼
Z 1

0

kð1; x; #lÞuðxÞ dx ð114Þ

where #lðt;xÞ is the online functional estimate of lðxÞ; and the gain kernel kð1; x; #lÞ is obtained by
solving the integral equation

kðx; x; #lÞ ¼ �
1

4

Z xþx

x�x

#l
z
2

� �
dzþ

1

4

Z xþx

x�x

Z x�x

0

#l
z� s
2

� �
k

zþ s
2

;
z� s
2

; #l
� �

ds dz ð115Þ

for each new update of #lðt;xÞ:Well posedness of this integral equation for arbitrary continuous
functions #lðxÞ was proved in Reference [13] and several methods for solving it (symbolically or
numerically) were proposed and illustrated. It was observed that the computational expense of
solving this equation is at least an order of magnitude lower than solving a Riccati equation.
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The adaptive controller (114)–(115) is made stabilizing with the Lyapunov update law [17]

#ltðt;xÞ ¼ g
uðt;xÞðwðt; xÞ �

R 1
x
kðx;x; #lðtÞÞwðt; xÞ dxÞ

1þ jjwðtÞjj2
ð116Þ

for g sufficiently small and with w defined as wðxÞ ¼ uðxÞ �
R 1
0 kðx; x;

#lÞuðxÞ dx:

11. FUTURE WORK AND OPEN PROBLEMS

All of the designs presented here are for the state feedback problem. Output feedback designs
for the g- and q-benchmarks are presented in Reference [16]. These extensions are relatively
straightforward because the plants are already in a form which is a PDE analog of the ‘observer
canonical form’. Output feedback designs for the l- and lðxÞ-benchmarks are much more
complex because they first require a transformation of the plant into the ‘PDE observer
canonical form’. These designs are presented in Reference [18].

While the extension from parabolic to hyperbolic PDEs is the obvious next problem of
interest, the most exciting opportunities lie in developing adaptive tracking controllers for PDEs
where the system output, for example uð0; tÞ; is being forced to track a prescribed reference
signal urð0; tÞ using control uð1; tÞ at the other boundary. To solve such a problem one first needs
to solve the motion planning problem, i.e. finding the function urðx; tÞ that corresponds to the
output reference urð0; tÞ: Even in the non-adaptive case this is a very challenging problem. We
have recently solved the motion planning problem in closed form for reference trajectories that
are sinusoidal, exponential, and polynomial functions of time. The remaining work is to develop
adaptive versions of these results, with stabilization around the reference trajectories.

These advancements will also create exciting prospects for the analysis of persistence of
excitation of the new adaptive boundary control schemes. Since the PE has to be enforced by
scalar actuation from the boundary, achieving parameter convergence will be a challenging
problem.

ACKNOWLEDGEMENT

This work was supported by NSF grant number CMS-0329662.

REFERENCES

1. Ioannou P, Sun J. Robust Adaptive Control. Prentice-Hall: Englewood Cliffs, NJ, 1996.
2. Logemann H, Townley S. Adaptive stabilization without identification for distributed parameter systems: an

overview. IMA Journal of Mathematical Control and Information 1997; 14:175–206.
3. Hong KS, Bentsman J. Direct adaptive control of parabolic systems: algorithm synthesis, and convergence, and

stability analysis. IEEE Transactions on Automatic Control 1994; 39:2018–2033.
4. Bohm M, Demetriou MA, Reich S, Rosen IG. Model reference adaptive control of distributed parameter systems.

SIAM Journal on Control and Optimization 1998; 36(1):33–81.
5. Bentsman J, Orlov Y. Reduced spatial order model reference adaptive control of spatially varying distributed

parameter systems of parabolic and hyperbolic types. International Journal of Adaptive Control and Signal Processing
2001; 15:679–696.

6. Demetriou MA, Ito K. Optimal on-line parameter estimation for a class of infinite dimensional systems using
Kalman filters. Proceedings of the American Control Conference, Denver, Colorado, U.S.A., 2003.

ADAPTIVE BOUNDARY STABILIZATION OF PDEs 817

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:801–818

DOI: 10.1002/rnc



7. Duncan TE, Maslowski B, Pasik-Duncan B. Adaptive boundary and point control of linear stochastic distributed
parameter systems. SIAM Journal on Control and Optimization 1994; 32(3):648–672.

8. Liu W, Krstic M. Adaptive control of Burgers’ equation with unknown viscosity. International Journal of Adaptive
Control and Signal Processing 2001; 15:745–766.

9. Kobayashi T. Adaptive regulator design of a viscous Burgers’ system by boundary control. IMA Journal of
Mathematical Control and Information 2001; 18:427–437.

10. Kobayashi T. Adaptive stabilization of the Kuramoto–Sivashinsky equation. International Journal of Systems
Science 2002; 33:175–180.

11. Jovanovic M, Bamieh B. Lyapunov-based distributed control of systems on lattices. IEEE Transactions on
Automatic Control 2005; 50:422–433.

12. Queiroz de MS, Dawson DM, Agarwal M, Zhang F. Adaptive nonlinear boundary control of a flexible link robot
arm. IEEE Transactions on Robotics and Automation 1999; 15(4):779–787.

13. Smyshlyaev A, Krstic M. Closed form boundary state feedbacks for a class of 1-D partial integro-differential
equations. IEEE Transactions on Automatic Control 2004; 49:2185–2202.

14. Krstic M. Adaptive boundary control for unstable parabolic PDEs}Part I: Lyapunov design. IEEE Transactions on
Automatic Control, submitted.

15. Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs}Part II: Estimation-based
designs. Automatica, submitted.

16. Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs}Part III: Output-feedback
examples with swapping identifiers. Automatica, submitted.

17. Smyshlyaev A, Krstic M. Adaptive boundary control of reaction-diffusion-advection PDEs with spatially varying
parameters. 2006 American Control Conference, Minneapolis, Minnesota, U.S.A., 2006.

18. Smyshlyaev A, Krstic M. Output-feedback adaptive control for parabolic PDEs. 2006 Conference on Decision and
Control, San Diego, California, U.S.A., 2006.

19. Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. Wiley: New York, 1995.
20. Praly L. Adaptive regulation: Lyapunov design with a growth condition. International Journal of Adaptive Control

and Signal Processing 1992; 6:329–351.

M. KRSTIC818

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:801–818

DOI: 10.1002/rnc



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


