
A
lthough proportional-integral-derivative (PID) controllers are widely used in the process indus-
try, their effectiveness is often limited due to poor tuning. The manual tuning of PID controllers,
which requires optimization of three parameters, is a time-consuming task. To address this diffi-
culty, much effort has been invested in developing systematic tuning methods. Many of these
methods rely on knowledge of the plant model or require special experiments to identify a suit-

able plant model. Reviews of these methods are given in [1] and the survey paper [2]. In many situations,
however, a plant model is not known, and it is not desirable to open the process loop for system identifica-
tion. Thus, a method for tuning PID parameters within a closed-loop setting is advantageous.

In relay feedback tuning [3]–[5], the feedback controller is temporarily replaced by a relay. Relay feedback
causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of
this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin.

An alternative tuning method, which does not require either a modification of the system or a system
model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID
parameters meets performance specifications. An adaptive algorithm is used to update the PID controller
based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate
PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has
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been developed in [7]; this approach requires a carefully cho-
sen input signal [8].

Yet another model-free PID tuning method that does not
require opening of the loop is iterative feedback tuning (IFT).
IFT iteratively optimizes the controller parameters with
respect to a cost function derived from the output signal of the
closed-loop system (see [9]). This method is based on the per-
formance of the closed-loop system during a step-response
experiment [10], [11].

In this article, we present a method for optimizing the step
response of a closed-loop system consisting of a PID controller
and an unknown plant with a discrete version of extremum
seeking (ES). Specifically, ES minimizes a cost function similar
to that used in [10] and [11], which quantifies the performance
of the PID controller. ES, which is a nonmodel-based method,
iteratively modifies the arguments of a cost function (in this
application, the PID parameters) so that the output of the cost
function reaches a local minimum or local maximum.

COST FUNCTION AND PID CONTROLLERS
ES is used to tune the parameters of a PID controller so as to
minimize a given cost function. The cost function, which
quantifies the effectiveness of a given PID controller, is eval-
uated at the conclusion of a step-response experiment. We
use the integrated square error (ISE) cost function

J(θ)
�= 1

T − t0

∫ T

t0
e2(t, θ)dt, (1)

where the error e(t, θ)
�= r(t) − y(t, θ) is the difference between

the reference and the output signal of the closed-loop system, and

θ
�= [K, Ti, Td]T (2)

contains the PID parameters. The PID
controller structure and the meaning
of K, Ti, and Td are given below.

The cost function J(θ) defined in
(1) takes into account the error over
the time interval [t0, T]. By setting t0
to approximate the time Tpeak at
which the step response of the
closed-loop system reaches the first
peak, the cost function J(θ) effective-
ly places zero weighting on the initial
transient portion of the response [10].
Hence, the controller is tuned to min-
imize the error beyond the peak time
Tpeak without constraints on the ini-
tial transient.

We use a standard PID controller,
with the exception that the derivative
term acts on the measured plant out-

put but not on the reference signal. This PID controller avoids
large control effort during a step change in the reference signal.
Figure 1 shows a block diagram of the closed-loop system, where
G is the unknown plant, the controller is parameterized as

Cr(s)= K
(

1 + 1
Tis

)
, (3)

Cy(s)= K
(

1 + 1
Tis

+ Tds
)

, (4)

and r, u, and y are the reference signal, control signal, and out-
put signal, respectively.

ES TUNING SCHEME
The cost function J(θ) should be understood as a mapping from
the PID parameters K, Ti, and Td to the tracking performance.
ES seeks to tune the PID controller by finding a minimizer of
J(θ). However, since ES is a gradient method, the PID parame-
ters found by ES are not necessarily a global minimizer of J(θ).

The overall ES PID tuning scheme is summarized in Figure
2. The step-response experiment, which is contained within
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FIGURE 1 Closed-loop servo system. The output signal y of the
unknown plant G is regulated to the reference signal r by the two-
degree-of-freedom controller Cr and Cy .
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FIGURE 2 The overall ES PID tuning scheme. The ES algorithm updates the PID controller
parameters θ(k) to minimize the cost function J(θ), which is calculated from a step-response
experiment carried out within the dashed box.
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the dashed box, is run iteratively. The cost J(θ(k)) is calculated
at the conclusion of the step-response experiment. The ES
algorithm uses the value J(θ(k)) of the cost function to com-
pute new controller parameters θ(k). Another step function
experiment is then performed with the new controller para-
meters, and the process continues iteratively.

ES is a nonmodel-based method that iteratively modifies
the input θ of the cost function J(θ) to reach a local minimizer.
As shown in Figure 3, ES achieves this optimization by sinu-
soidally perturbing the input parameters θ(k) of the system
and then estimating the gradient ∇ J(θ(k)). Note that k is the
index of the step-response experiment, whereas t is the contin-
uous-time variable within an individual step-response experi-
ment. The gradient is determined by highpass filtering the
discrete time signal J(θ(k)) to remove its dc portion and then
demodulating it by multiplication with a discrete-time sinu-
soid of the same frequency as the perturbation signal. This
procedure estimates the gradient by picking off the portion of
J(θ(k)) that arises due to perturbation of the parameter esti-
mate θ̂ (k) (see “How Extremum Seeking Works’’). The gradi-
ent information is then used to modify the input parameters in
the next iteration; specifically, the gradient estimate is inte-
grated with a step size γ , yielding a new parameter estimate
θ̂ (k). The integrator both performs the adaptation function and
acts as a lowpass filter.

The time-domain implementation of the discrete-time ES
algorithm in Figure 3 is 

ζ(k)= −hζ(k − 1) + J(θ(k − 1)), (5)

θ̂i(k + 1)= θ̂i(k) − γiαi cos(ωik)[J(θ(k)) − (1 + h)ζ(k)], (6)

θi(k + 1)= θ̂i(k + 1) + αi cos(ωi(k + 1)), (7)

where ζ(k) is a scalar and the subscript i indicates the ith entry
of a vector. γi is the adaptation gain and αi is the perturbation
amplitude. Stability and convergence are influenced by the
values of γ , α, and the shape of the cost function J(θ) near the
minimizer, as explained in “How Extremum Seeking Works.”
The modulation frequency ωi is chosen such that ωi = aiπ ,
where a satisfies 0 < a < 1. Additionally, the highpass filter
(z − 1)/(z + h) is designed with 0 < h < 1 and a cutoff fre-
quency well below the modulation frequency ωi.

An overview of ES theory and some state-of-the-art
applications are given in [12]. The PID tuning in this
article comprises a novel hybrid application, where the
plant dynamics are continuous time and the ES dynam-
ics are discrete time.

EXAMPLES OF ES PID TUNING
We now demonstrate ES PID tuning and compare this
method with IFT and two classical PID tuning methods,
namely, Ziegler-Nichols (ZN) tuning rules and internal
model control (IMC). In particular, we use the ultimate sen-
sitivity method [13] version of the ZN tuning rules, which
consists of a closed-loop experiment with only proportional
feedback, where the feedback gain is increased to a critical
value until the system begins to oscillate. PID parameters
are then prescribed based on the critical gain Kc and the
period Tc of oscillation to give the closed-loop system
response approximately a quarter amplitude decay ratio,
corresponding to a damping ratio of about 0.2. The ampli-
tude decay ratio is the ratio of two consecutive maxima of
the error e after a step change of the reference signal. Specif-
ically,  the PID parameters given by ZN are
K = Kc/1.7, Ti = Tc/2, and Td = Tc/8.

Details of IMC can be found in [1], where the plant is
assumed to have the form

G(s) = Kp

1 + sT
e−sL. (8)

Based on (8), the PID parameters are chosen to be of the
form K = (2T + L)/(2Kp(Tf + L)), Ti = T + L/2, and Td =
(TL)/(2T + L), where Tf is a design parameter that affects the
tradeoff between performance and robustness. When the
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FIGURE 3 Discrete ES scheme. The input parameters θ(k) are per-
turbed by the signal αi cos(ωi k). The output of the cost function
J(θ(k)) is then highpass filtered, demodulated, and finally lowpass
filtered to yield new input parameters.
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αi cos(ωik)

J(θ(k))θ(k)
J(θ)

θ(k) z − 1−γ
z − 1 z + h

^

We present a method for optimizing the step response of a closed-loop system

consisting of a PID controller and an unknown plant with a discrete version

of extremum seeking.



plant is unknown, a step-response experiment can be used
to obtain an estimate of the form (8), as explained in [1].
Although variations of IMC that can deal with alternative
model structures are available in [14] and [15], these meth-
ods are not considered here. We note that ZN and IMC are
derived for a PID structure with derivative action on both
the reference signal and the output signal rather than the
structure (3), (4), which does not have derivative action on
the reference signal.

In [11], IFT, ZN, and IMC are applied to the models

G1(s)= 1
1 + 20s

e−5s, (9)

G2(s)= 1
1 + 20s

e−20s, (10)

G3(s)= 1
(1 + 10s)8

, (11)

G4(s)= 1 − 5s
(1 + 10s)(1 + 20s)

. (12)

The first documented use of ES is Leblanc’s 1922 application to

electric railway systems [18]. In the 1950s and 1960s, ES was

widely studied and used in applications in both the former Soviet

Union [19]–[24] and the West [25]–[28]. The ability of this technique

to force θ̂ (k) to converge to a local minimizer θ∗ of J(θ) is the sub-

ject of stability proofs obtained in the late 1990s [29]. Subsequent-

ly, ES has become a useful tool for real-time applications [30]–[34]

as well as an active area of theoretical research [12]. Here we give

an intuitive argument that explains the convergence of ES.

For simplicity, we consider the single-parameter case in which

θ(k) and θ̂ (k) are scalar and only one probing signal α cos(ωk) is

used (see Figure 3). We also assume a quadratic cost function

J(θ) of the form

J(θ) = f ∗ + f ′′

2

(
θ∗ − θ

)2
,

where f is positive. Letting θ̃
�= θ∗ − θ̂ , we expand J(θ) as

J ≈
(

f ∗ + α2f ′′

4

)
+ α2f ′′

4
cos(2ωk) − (

αf ′′ cos(ωk)
)
θ̃ ,

where a trigonometric identity is used to replace cos2(ωk). The

term (f ′′/2)θ̃2 is omitted since it is quadratic in θ̃ and we focus on

local analysis only. The role of the washout filter (z − 1)/(z + h) in

Figure 3 is to filter out the dc component of the output signal

J(θ(k)). Thus,

z − 1
z + h

[J] ≈ α2f ′′

4
cos(2ωk) − (

αf ′′ cos(ωk)
)
θ̃ . (16)

Multiplying (16) by α cos(ωk) yields

α cos(ωk)
z − 1
z + h

[J] ≈ −α2f ′′

2
θ̃ , (17)

where trigonometric identities are used for cos(2ωk) cos(ωk) and

cos2(ωk) . Moreover, the higher frequency terms with

cos(ωk), cos (2ωk), and cos (3ωk) are attenuated by the integra-

tor 1/(z − 1) and thus omitted.

Feeding the signal (17) into the integrator (−γ )/(z − 1) in Fig-

ure 3 results in

θ̃ (k + 1) ≈
(

1 − γα2f ′′

2

)
θ̃ (k) .

Hence, the estimation error θ̃ (k) decays exponentially provided the

adaptation gain γ and the probing amplitude α are chosen such

that the positive quantity (γ α2f ′′)/2 is small. The complete proof of

stability presented in [35] is considerably more involved, and is

based on two-time-scale averaging [36] for the system

θ̃ (k + 1) =θ̃k + γα cos(ωk)

(
e + f ′′

2

(
θ̃ − α cos(ωk)

)2
)

,

(18)

e(k + 1) = − he(k) − (1 + h)
f ′′

2

(
θ̃ − α cos(ωk)

)2
(19)

where e = f ∗ − ((1 + h)/(z + h))[J], with the assumption that γ

and α are small. The proof guarantees exponential convergence of

J(θ(k)) to f ∗ + O(α3).

Another intuitive point of view is to observe that the term

f ′′θ̃ in the signal (17) at the output of the multiplier is the gradi-

ent (derivative) of J = f ∗ + (f ′′/2)(θ̃ − α cos(ωk))2 with respect

to θ̃ for α = 0. Hence, the role of the additive probing term

cos(ωk) and the multiplicative term of the same form (along

with the filtering effects of the washout filter and the integrator)

is to estimate the gradient of J , which is then fed into the inte-

grator, employing classical gradient-based optimization with

step size γ . While gradient-based methods usually require a

model to determine the gradient, ES estimates the gradient in

a nonmodel-based manner.

An interesting aspect of ES is the role of the signal

cos(ωk), which mimics amplitude modulation (AM) in analog

communications. This similarity is not obvious since ES

employs one addition and one multiplication block rather than

two multipliers. The addition block is used because the nonlin-

earity J(θ) provides the effect of multiplication since its qua-

dratic part generates a product of cos(ωk) and θ̃ that carries

the gradient information discussed above. The modulation,

demodulation, and filtering serve to extract the gradient infor-

mation f ′′θ̃ (k) from the signal J(θ(k)).

How Extremum Seeking Works
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Notice that G1 and G2 have time delays, G3 has repeated
poles, and G4 is nonminimum phase. We apply ES to (9)–(12)
to facilitate comparison with the IFT, ZN, and IMC PID con-
trollers found in [11].

The closed-loop systems are simulated using a time step of
0.01 s, and the time delays are approximated using a third-
order Padé approximation to be consistent with [11]. The PID
controller parameters given by ZN are used as a starting point
for ES tuning. For all simulations, the parameters a and h in
the ES scheme (5)–(7) are set to 0.8 and 0.5, respectively.

Tuning for G1
ES PID tuning is applied to G1 in (9), which has a time delay 
of 5 s. For these simulations, the cost function spans from
t0 = 10 s to T = 100 s, α = [0.1, 1, 0.1]T, γ = [200, 1, 200, 200]T ,
and ωi = aiπ . Figure 4 shows that ES minimizes the cost func-
tion (1) with convergence in less than ten iterations to PID
parameters that produce a local minimum. ES achieves this
step response by increasing the value of the integral time Ti

to almost three times that given by the ZN tuning rules,
thereby reducing the influence of the integral portion of the

controller (see Table 1). The per-
formance of the PID parameters
obtained from ES tuning is rough-
ly equivalent to the IFT perfor-
mance. This similarity is expected
since both methods attempt to
minimize the same cost function.
Figure 4 shows that IFT and ES
yield closed-loop systems with less
overshoot and smaller settling
times than ZN and IMC.

Tuning for G2
For G2 , which is identical to G1

except with a longer time delay of
20 s,  we set t0 = 50 s, T = 300 s,
α = [0.06, 0.3, 0.2]T, γ = [2,500,
2,500, 2,500]T, and ωi = aiπ . Figure
5 shows that ES reduces the cost
function by an order of magni-
tude in less than ten iterations.
Moreover, ES yields a closed-loop
system whose step response is
similar to that produced by IMC
and IFT and, thus, has improved
overshoot and settling time com-
pared to ZN tuning.  The PID
parameters determined by the
four tuning methods are present-
ed in Table 2.
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TABLE 2 PID parameters for G2 . Although ES and IFT yield
different parameters, the resulting responses are similar, as
shown in Figure 5.

Tuning Method K Ti Td
ZN 1.33 31.0 7.74
IMC 0.935 30.5 6.48
IFT 0.930 30.1 6.06
ES 1.01 31.5 7.16

FIGURE 4 ES PID tuning of G1 illustrated by (a) the evolution of the cost function and (b) the PID
parameters during ES tuning of the closed-loop system with G1(s). The lower plots present (c)
the output signal and (d) the control signal during step-response experiments of the closed-loop
systems with G1(s) and the PID controllers obtained from the four methods. ES reduces the cost
function in (a) by increasing the integral time in (b), which produces a more favorable step
response similar to that given by IFT in (c).
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TABLE 1 PID parameters for G1. The PID parameters given by
IFT in [11] and ES in the present article are similar. Both
methods increase the  integral time Ti markedly over ZN. 

Tuning Method K Ti Td
ZN 4.06 9.25 2.31
IMC 3.62 22.4 2.18
IFT 3.67 27.7 2.11
ES 3.58 27.8 2.15

Extremum seeking converges to parameters that yield performance

comparable to the best achievable with other popular PID tuning methods.



Tuning for G3
For G3 with a single pole of order eight, we use
α = [0.06, 1.1, 0.5]T , γ =[800, 3,500, 300]T,
ω1 = ω2 = aπ (with α2 cos(ω2k) replaced by
α2 sin(ω2k) in Figure 3), and ω3 = a3π . Further-
more, the cost function accounts for the error
from t0 = 140 s to T = 500 s. Figure 6 shows that
ES improves the step-response behavior obtained
by the ZN tuning rules and returns a response
that is similar to that achieved by IFT, yet with a
smaller settling time than the IMC controller.
Table 3 indicates that ES reduces the integral time
Ti and controller gain K to reduce the value of the
cost function. This plant, which is more challeng-
ing than G1 and G2, requires roughly 30 iterations
for parameter convergence.

Tuning for G4
The PID controller for the closed-loop system with
nonminimum phase G4 in (12) is tuned using ES.
We set t0 = 30 s, T = 200 s, α = [0.05, 0.6, 0.2]T ,
γ = [2, 000, 10, 000, 2, 000]T , ω1 = ω2 = aπ (with
α2 cos(ω2k) replaced by α2 sin(ω2k) in Figure 3),
and ω3 = a3π . Figure 7 shows that ES produces a
step response similar to IFT; both ES and IFT yield
no overshoot and a smaller settling time than the
ZN and IMC controllers. However, ES produces a
slightly larger initial control signal than IFT.
Table 4 shows that an increased integral time
improves the system response.

COST FUNCTION COMPARISON
The cost function dictates the performance of the
PID controller obtained from ES. It is therefore
important to choose a cost function that empha-
sizes the relevant performance aspects, such as
settling time, overshoot, and rise time. To illus-
trate the dependence of the optimal PID parame-
ters θ∗ on the cost function, we use ES for plant
G2(s) to minimize the ISE cost function (1) with
t0 = 0 and t0 = Tpeak as well as the cost functions

IAE = 1
T

∫ T

0
|e|dt, (13)

ITAE = 1
T

∫ T

0
t|e|dt, (14)

ITSE = 1
T

∫ T

0
te2dt. (15)

Note that (14) and (15) involve a time-depen-
dent weighting, which de-emphasizes the
transient portion of the response. Figure 8
shows that ISE with t0 = Tpeak produces the
response with the smallest overshoot and
fastest settling time. Integrated time absolute
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FIGURE 5 ES PID tuning of G2 illustrated by (a) the evolution of the cost function
and (b) the PID parameters during ES tuning of the closed-loop system with G2(s).
The lower plots present (c) the output signal and (d) the control signal during step-
response experiments of the closed-loop systems with G2(s) and PID controller
parameters obtained using the four methods. ES reduces the cost function in (a)
after a few iterations and finds PID parameters in (b), which produce a step
response similar to the IFT and IMC controllers in (c).
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FIGURE 6 ES PID tuning of G3 illustrated by (a) the evolution of the cost function
and (b) the PID parameters during ES tuning of the closed-loop system with G3(s).
The lower plots present (c) the output signal and (d) the control signal during step-
response experiments of the closed-loop systems with G3(s) and the PID con-
trollers obtained by means of the four methods. ES reduces the cost function in (a),
although not as quickly as for the other plants, by decreasing the integral time Ti in
(b), which produces a more favorable step response in (c).
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error (ITAE) and integrated absolute error (IAE) perform
slightly worse than ISE with t0 = Tpeak, whereas ISE with
t0 = 0 and integrated time square error (ITSE) are similar to

ZN in terms of overshoot and settling time. However,
Figure 8 also indicates that using a cost function comprised
of the squared error (ISE and ITSE) versus the absolute error
(IAE and ITAE) decreases the time required for the output of
a closed-loop system to initially reach the setpoint. 

Thanks to the flexibility of ES, the cost function can be
modified on the fly, allowing the PID parameters to be re-
tuned whenever it is desirable to emphasize a different per-
formance aspect. However, stability of ES must be
maintained for the new cost function through the choice of
the ES parameters.  

CONTROL SATURATION
Many applications of PID control must deal with actuator sat-
uration. Actuator saturation can result in integrator windup,
in which the feedback loop becomes temporarily disconnected
since the controller output is no longer affected by the feed-
back signal. During saturation, the integral term grows while
the error remains either positive or negative. Hence, the inte-
grator is slow to recover when the actuator desaturates.

To examine ES tuning in the presence of saturation, we
apply ES with and without the tracking antiwindup scheme
[1] depicted in Figure 9, which modifies the integral control
signal using a feedback signal proportional to ũ, the differ-
ence between the requested control signal urequested and the

actual control signal uactual pro-
duced by the actuator. The track-
ing time constant Tt for the case of
ES is set to Tt = (TiTd)

1/2 . For IMC,
this choice of Tt results in a slow
controller response; thus, we use
Tt = 18.

We compare ES and IMC in the
presence of saturation with and
without antiwindup. Figure 10
shows that overshoot is a problem
for the IMC controller without
antiwindup, whereas ES increases
the integral time (see Table 5) to
improve the performance of the
controller. ES finds controller
parameters that perform almost as
well as the systems with anti-
windup. However, for small
changes in the reference signal, the
actuator will not saturate and the
ES controller without antiwindup,
with its large integral time, may
demonstrate inferior performance.
It is,  therefore, preferable to
always employ antiwindup rather
then rely on the ability of ES to
tune the PID controller without
antiwindup at a fixed reference
size to attain similar performance.
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FIGURE 7 ES PID tuning of G4 illustrated by (a) the evolution of the cost function and (b) the PID
parameters during ES tuning of the closed-loop system with G4(s). The lower plots present (c)
the output signal and (d) the control signal during step-response experiments of the closed-loop
systems with G4(s) and PID controllers obtained using the four methods. ES reduces the cost
function in (a) by increasing the integral time Ti and the derivative time Td in (b), which produces
a more favorable step response similar to that found using IFT in (c).
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TABLE 4 PID parameters for G4 . IMC, IFT, and ES
progressively decrease the influence of the integral term
while increasing the effect of the derivative term.

Tuning Method K Ti Td
ZN 3.53 16.8 4.20
IMC 3.39 31.6 3.90
IFT 3.03 46.3 6.08
ES 3.35 49.2 6.40

TABLE 3 PID parameters for G3 . IMC, IFT, and ES  decrease
the proportional gain K and the integral time Ti versus the
parameters found using ZN. Furthermore, IMC reduces the
derivative time Td more so than IFT and ES.

Tuning Method K Ti Td
ZN 1.10 75.9 19.0
IMC 0.760 64.7 14.4
IFT 0.664 54.0 18.2
ES 0.684 54.9 19.5



SELECTING PARAMETERS
FOR ES TUNING
Implementation of ES requires the
choice of several parameters, name-
ly, the perturbation amplitudes αi,
adaptation gains γi , perturbation
frequencies ωi, and the parameter h
in the highpass filter. However, it
turns out that the minimizer found
by ES is fairly insensitive to the ES
parameters. To investigate this
sensitivity, we use ES to tune the
closed-loop system with G2 in (10)
while varying α and γ . The para-
meters h and ωi are chosen to be
h = 0.5 and ωi = 0.8iπ .

For the plant G2 , Figure 11
shows the evolution of the cost
function during tuning with vari-
ous ES parameters. Table 6 shows
that ES yields almost identical PID
parameters even though α is varied
by 50% and γ is reduced by an
order of magnitude relative to the
values we use in the section “Tun-
ing for G1.” However, the conver-
gence is slower due to the reduced
perturbation amplitudes αi and
adaptation gains γi . The tradeoff
between the speed of convergence
and the domain of initial conditions
that yield the minimizer θ∗ is quan-
tified in [16], where the ability of ES
to avoid getting trapped in local
minima, when its parameters are
chosen appropriately, is demon-
strated analytically.

COMPARISON OF
TUNING METHODS
ES and IFT use the same cost func-
tion and, thus, yield similar results.
Therefore, it is interesting to com-
pare how these methods minimize
the cost function. Both methods are
nonmodel based and estimate the
gradient of the cost function with
respect to the controller parame-
ters. The estimated gradient is then
used in a gradient search scheme to
find a local minimizer of the cost
function. The difference lies in how
these algorithms estimate the gra-
dient. IFT uses signal information
from three experiments, including
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FIGURE 8 The effect of the cost function illustrated by the output signal (a) and the control signal
(b) during step-response experiments of the closed-loop systems with G2(s) and PID controllers
obtained using ES with various cost functions. The use of different cost functions in ES yields dif-
ferent step responses, with the ISE (t0 = Tpeak) cost function producing the best result.
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FIGURE 9 Tracking antiwindup scheme. This approach reduces integrator windup by feeding back
the error signal ũ = uactual − urequested , which is the difference between the requested control sig-
nal urequested and the actual control signal uactual .
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FIGURE 10 The effect of actuator saturation illustrated by the output signal (a) and the control sig-
nal (b) during step-response experiments of the closed-loop systems with G1(s), control satura-
tion of 1.6, and PID controllers obtained using IMC and ES both with and without antiwindup. ES
finds PID parameters that produce a step response with little overshoot even without the aid of
antiwindup. Furthermore, the step response for ES without antiwindup is comparable to IMC and
ES with antiwindup.
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a special feedback experiment, and assumes that the system is
linear time invariant to estimate the gradient. Although IFT is
based on linear theory, the technique can be applied to non-
linear systems [17].

On the other hand, ES requires only one experiment per
iterative gradient estimate, and its derivation does not
assume that the system is linear. ES uses simple filters along
with modulation by sinusoidal signals to estimate the gradi-
ent. However, ES requires a choice of several design para-
meters, whereas IFT requires that only the step size be
specified.

While both ES and IFT are more difficult to implement
than ZN and IMC, ES and IFT often yield improved perfor-
mance. For G3, which has repeated poles, these benefits can
be seen in Figure 6; benefits can also be seen for the nonmini-
mum phase plant G4 in Figure 7. Additionally, ES outper-
forms IMC in the presence of control saturation, as shown in
Figure 10. 

CONCLUSIONS
ES tunes PID controllers by minimizing a cost function that
characterizes the desired behavior of the closed-loop system.
This tuning method is demonstrated on four typical plants
and found to give parameters that yield performance better
than or comparable to that of other popular tuning methods.
Additionally, ES produces favorable results in the presence of
actuator saturation. The ES method thus has an advantage
over model-based PID tuning schemes in applications that
exhibit actuator saturation. However, since ES requires initial
values of the PID parameters, the method can be viewed as a
complement to another PID parameter design method. Fur-
thermore, the ES cost function can be chosen to reflect the
desired performance attributes.
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TABLE 6 PID Parameters for G2 with different values of α and
γ . ES arrives at similar PID parameters for reduced values of
the perturbation amplitude α and the adaptation gain γ .

ES Tuning Parameters K Ti Td

α, γ 1.01 31.5 7.16
α
2 , γ 1.00 31.1 7.60

α,
γ
10 1.01 31.3 7.54

α
2 ,

γ
10 1.01 31.0 7.65

TABLE 5 PID parameters for G1 with saturation. ES without
antiwindup increases the integral time to decrease the
effect of integral windup, whereas ES with antiwindup can
use a smaller integral time because of the antiwindup
scheme.

Tuning Method K Ti Td
IMC 3.62 22.4 2.18
ES 3.61 47.6 1.81
ESaw 4.07 12.8 2.20
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