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Abstract

We consider a class of MIMO LTI models with uncertain resonant modes and time delays, which are common in control of

instabilities arising in jet engines. With uncertain delays preventing the use of model reference adaptive control, we develop an

adaptive MIMO pole placement scheme for the system. We use indirect adaptation, estimating a small number of physical

parameters from a nonlinearly parametrized plant. To address the highly noisy environment in jet engines we introduce the

deadzone in the adaptation law and present simulations that successfully stabilize the system in the presence of noise and severe

actuator saturation.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the problem of stabilization of a class of
MIMO LTI systems arising in models of various
instabilities in jet engines. These instabilities often
manifest themselves as oscillations, contaminated by
noise. They are often caused by coupling of several
resonant modes (structural, acoustic, of vortical) with
time delays present in the physical process that couple
the resonant modes. Often the control input is also
subject to delay. Possible applications of the results in
the paper include control of compressor blade flutter,
rotating stall, and aeroacoustic instabilities (coupling of
acoustic waves with vortex shedding from stator vanes).

Uncertain parameters abound in these problems:
unknown or varying natural frequencies, uncertain
delays due to poorly understood physical phenomena
e front matter r 2005 Elsevier Ltd. All rights reserved.
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governing these processes, uncertain coupling between
modes of oscillation, and of course, uncertain high
frequency gains and delays of actuators. In this paper,
we approach a class of such models using the tools of
adaptive control.

Adaptive control of multivariable systems has re-
ceived much less attention in the research community
than the classical problems of adaptive control for SISO
systems. The state of the art in model reference adaptive
control for minimum phase systems is the paper by Ling
and Tao (1997) where an adaptive backstepping
technique was developed for MIMO LTI systems.
Unfortunately, many of the models mentioned above
are either not minimum phase, or possess delays that
prevent applicability of a backstepping technique even
when the delay is approximated by the Pade approx-
imation. In such cases one needs to use a pole placement
approach to adaptive control, which is well represented
in the paper by Elliott, Wolovich, and Das (1984). This
paper develops a direct adaptive technique. Unfortu-
nately, direct adaptation, where the controller (instead
of the plant) is parametrized, leads to heavy over-
parametrization of the problem, which is prohibitive in
practice, where every redundant parameter estimate
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opens the door to nonrobustness to noise and unmo-
deled dynamics. An indirect adaptive scheme for MIMO
systems, not only LTI but also LTV, was studied in the
paper by Limanond and Tsakalis (2001). Our design in
this paper is based on this general technique.

In physical models of instability of jet engines only a
few specific physical parameters are uncertain. While the
models may be of high order (say, tenth order, after the
delay/s have been appropriately approximated, meaning
the number of uncertain coefficients in the model is on
the order of 20), the number of actual physical
parameters that are uncertain will typically be 3–5 (those
mentioned above). The transfer function coefficients will
be nonlinear (typically multilinear or polynomial) func-
tions of physical parameters. Nonlinear parametrizations
do not lend themselves to parameter estimation. One
typically has to overparametrize, i.e., define the products
or powers of physical parameters as new parameters.
Methods for avoiding this have been studied in
Dasgupta (1988) and Sun (1993) and the references
therein. However, these methods primarily succeed in
improving accuracy of the estimates, and not in reducing
the dynamic order of the parameter estimator to the
minimum, i.e., to the number of actual uncertain
physical parameters. To deal with this problem in the
model considered here we develop an estimator based on
the nonlinear parametrization. Our estimation error
(also sometimes referred to as the ‘‘prediction error’’)
has both linear and higher order dependence on the
parameter estimation error, and is valid only locally.
While this prevents us from proving any global results, it
works exceptionally well in our application.

The paper is organized as follows. We start with the
introduction of the model in Section 2. In Section 3 we
make approximations to the delay terms that allow us to
estimate the unknown delay and apply adaptive control.
In Section 4 we introduce a frequency domain MIMO
pole placement controller, which implicitly incorporates a
reduced order observer, and present calculations that
allow on-line determination of the pole-placement control
gains based on the estimation of physical parameters.
Section 5 introduces the filters and the update law for
parameter estimation, and briefly argues local stability.
Section 6 is dedicated to dealing with the effects of noise
on the adaptive feedback scheme and the use of a
deadzone to prevent parameter drift and bursting. In
Section 7 we apply the adaptive controller in simulations
to a model with a severe magnitude limit on control.
2. The model

Consider the model of the form

€y1 þ x11 _y1 þ Z11y1 þ z11y1ðt� t11Þ þ z12y2ðt� t12Þ

¼ g11 _u2ðt� tc;1Þ þ h11w1, ð1Þ
€y2 þ x22 _y2 þ Z22y2 þ z22y2ðt� t22Þ þ z21y1ðt� t21Þ

¼ g22 _u1ðt� tc;2Þ þ h22w2, ð2Þ

where y1 and y2 are temporal coefficients of the resonant
modes, w1 and w2 are the disturbance inputs, and the
parameters xij ; Zij ; zij ; tij ; gij ; hij ; tc;i are uncertain. Such a
model is common in case where two resonant modes
with close resonant frequencies couple though a physical
process that involves transport delays.

To motivate this model and the adaptive control
problem considered in this paper, we use a simplified
version of a model for control of thermoacoustic
instabilities on annular domain (Banaszuk, Hagen,
Mehta, & Oppelstrup, 2003).

Thermoacoustic instabilities in gas turbine and rocket
engines develop when acoustic waves in combustors
couple with an unsteady heat release field in a positive
feedback loop. They manifest themselves as high
amplitude pressure oscillations close to resonant acous-
tic frequencies of the combustor. The oscillations can
lead to structural damage of the combustor and cannot
be tolerated. Control of thermoacoustic instabilities
using high speed fuel valves and pressure sensors was
demonstrated in numerous experiments in academia and
industry (Candel, 1992). Including a demonstration on a
full scale industrial gas turbine (Seume et al., 1997). A
simple phase-shifting controller with an appropriately
chosen phase-shift was typically sufficient for suppres-
sion of oscillations, given enough control authority, but
the control phase and gain had to be adjusted manually,
at every operating condition. The difficulty in determin-
ing the optimal phase shift that minimizes pressure
oscillations, either by analysis or by experiment,
especially in large industrial-scale combustors that
operate over a wide range of conditions, has led
researchers to call for the use of adaptive schemes
(Seume et al., 1997). A direct adaptive scheme (based on
extremum-seeking) applicable to control of thermoa-
coustic modes with large separation in frequencies (and
hence essentially decoupled) was recently demonstrated
in a 4MW industrial rig in Banaszuk, Ariyur, Krstic,
and Jacobson (2004). Benefits and limitations of the
extremum seeking scheme were examined in Ariyur and
Krstic (2003). In this paper, we investigate an indirect
adaptive scheme that overcomes some of the limitations
of the direct scheme and is applicable to the case of
multiple acoustic modes with close or identical frequen-
cies (so that the decoupling assumption is not applic-
able).

We consider an annular combustor that includes a
circumferential array of bluff body flame holders.
Flameholders extend radially from inner to outer
diameter of the annular combustor. A cut along a
constant radius surface is shown in Fig. 1.

For the purpose of modeling, we assume that the fuel
mass fraction defined at the fuel injection surface x0ðy; zÞ
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Fig. 1. 2D cut at a constant radius across the combustor showing a
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flameholders, and flame surface downstream of flameholders.
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is advected downstream to the fixed but distributed
flame surface x ¼ gflðy; zÞ by the sum of the mean
and acoustic perturbation velocity (without diffusion).
The mean fuel mass fraction at the fuel injection surface
is Y f ðx0; y; zÞ ¼ wf ðx0; y; zÞ=waðx0; y; zÞ, where wf ¼ rf Uf ,
wa ¼ raUa denote the flux and rf , ra are the fuel
and air densities and Uf , Ua are the velocities. We
define relative perturbations of pressure and heat release
as ~pðx; y; z; tÞ :¼ p0ðx; y; z; tÞ=gpðx; y; zÞ and ~qðx; y; z; tÞ :¼
ðg� 1Þ=g q0ðx; y; z; tÞ=pðx; y; zÞ, where g is the ratio of
specific heats. Using the isentropic assumption we can
express density perturbation as a function of pressure
perturbation as

r0a
ra

¼
1

g
p0

p
¼ ~p. (3)

Assuming the air velocity perturbation due to acoustics
is negligible relative to the density perturbation we can
now express the perturbation fuel mass fraction (in the
presence of acoustics) as

yf ðx0; y; z; tÞ

¼ Y f ðx0; y; zÞ
w0f ðx0; y; z; tÞ

wf ðx0; y; zÞ
�

w0aðx0; y; z; tÞ

waðx0; y; zÞ

 !

¼ Y f ðx0; y; zÞ
u0f ðx0; y; z; tÞ

uf ðx0; y; zÞ
� ~pðx0; y; z; tÞ

� �
, ð4Þ

where the fuel velocity u0f ðx0; y; z; tÞ is the control
variable. The first term on the right-hand side of (4)
represents the effect of fuel control action and the
second term represents the effect of acoustic velocity
perturbation.

The fuel–air mixture convects to the fixed flame
surface x ¼ gflðy; zÞ and the heat release density at the
flame surface is obtained as

Qðx; y; z; tÞ ¼ F hrðY f ðx; y; z; tÞÞgflameðx� gflðy; zÞÞ, (5)

where gflameð�Þ is the axial heat release distribution
function representing the flame thickness, and Fhrð�Þ

describes local heat release as function of local fuel mass
fraction.

We also assume that the acoustic velocity perturba-
tion is purely potential, i.e., u0ðx; y; z; tÞ ¼ rfðx; y; z; tÞ
for some smooth scalar fðx; y; z; tÞ called the velocity

potential. Under additional assumption that the mean
fuel mass fraction is uniform downstream of flame-
holders, we obtain a linear distributed thermoacoustic
model (see Banaszuk et al., 2003 for details) as

q
qt
~pðx; y; z; tÞ þ uðx; y; zÞ � r ~pðx; y; z; tÞ þ Dfðx; y; z; tÞ

¼ ~qðx; y; z; tÞ, ð6Þ

q
qt

fðx; y; z; tÞ þ uðx; y; zÞ � rfðx; y; z; tÞ þ a2 ~pðx; y; z; tÞ

¼ Zðx; y; z; tÞ, ð7Þ

q
qt

yf ðx; y; z; tÞ þ uðx; y; zÞ � ryf ðx; y; z; tÞ ¼ 0, (8)

~qðx; y; z; tÞ

¼ F 0hrðY f ðx; y; zÞÞgflameðx� gflðy; zÞÞyf ðx; y; z; tÞ, ð9Þ

where driving disturbance (broad-band noise) Zðx; y; z; tÞ
represents the effect of local turbulence.

The acoustic boundary conditions are provided on the
combustor boundary surface in terms of the normal
velocity u0nðx; tÞ ¼ rfðx; tÞ � n̂ðxÞ (where n̂ðxÞ is the
normal vector to the boundary). The acoustic boundary
condition serves as another possible control input. We
assume that the acoustic boundary conditions are
described by a local admittance relation (described here
in the frequency domain)

U 0nðx; joÞ ¼ Gbcðx; joÞ ~Pðx; joÞ (10)

(see e.g. Morse & Ingard, 1968) for x 2S, where S
denotes the boundary surface.

The fuel–air mixture is responsible for the burning at
the flame and the subsequent heat release. This heat
release at the flame surface excites the acoustic waves in
the combustor volume. The acoustic waves in turn travel
upstream and perturb the transport of the fuel/air
mixture. This feedback coupling can lead to instability if
the driving resulting from this feedback mechanism
dominates the damping resulting from absorption of the
acoustic energy at the boundary. Control over fuel rate
at the fuel injection surface x0ðy; zÞ, control of the shear
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layer dynamics using flow control at the flameholders,
or control of the air injection at the combustor
boundary can provide ways of influencing the process
and eliminating instability. The control could be
provided at various temporal and spatial scales.

Now we introduce a reduced order model suitable for
control design obtained from the thermoacoustic
instability model presented above. The model is also
suitable for optimization of the control architecture. In
order to obtain model reduction, we expand the pressure
and potential perturbations in terms of the acoustic
modes fPkðxÞgk¼1;2;... as ~pðx; tÞ ¼

P
k ykðtÞPkðxÞ, fðx; tÞ

¼
P

k fkðtÞPkðxÞ and apply standard Galerkin proce-
dure involving integration by parts and using the
admittance condition (10) (see Banaszuk et al., 2003
for details) to obtain a two-mode model represented in
the frequency domain as

jo

F1ðjoÞ

F2ðjoÞ

Y 1ðjoÞ

Y 2ðjoÞ

2
666664

3
777775 ¼

0 0 �a2 0

0 0 0 �a2

l1 0 0 0

0 l2 0 0

2
666664

3
777775

F1ðjoÞ

F2ðjoÞ

Y 1ðjoÞ

Y 2ðjoÞ

2
666666664

3
777777775

þ

N1ðjoÞ

N2ðjoÞ

Q1ðjoÞ � V 1ðjoÞ

Q2ðjoÞ � V 2ðjoÞ

2
666664

3
777775, ð11Þ

where Y mðjoÞ is the Fourier transform of ymðtÞ, FmðjoÞ
is the Fourier transform of fmðtÞ, and QmðjoÞ, NmðjoÞ,
and V mðjoÞ denote the Fourier transforms of

qmðtÞ ¼

Z
V

PmðxÞ~qðx; tÞdx, (12)

ZmðtÞ ¼

Z
V

PmðxÞ~Zðx; tÞdx, (13)

vmðtÞ ¼

Z
S

PmðxÞu
0
nðx; tÞdx, (14)

respectively, and
lm :¼

R
V jrPmðxÞj

2 dx=
R
V jPmðxÞj

2 dx (V and S de-
notes the combustor volume and boundary surface,
respectively). Solving (11) for the velocity potential
coefficient as function of pressure and perturbation
coefficients yields the formula

F1ðjoÞ ¼
�a2

jo
Y kðjoÞ þ

1

jo
NkðjoÞ; k ¼ 1; 2. (15)

Now we can simplify (11) as follows:

ððjoÞ2 þ lka2ÞY kðjoÞ ¼ ðjoÞðQkðjoÞ � VkðjoÞÞ

þ lkNkðjoÞ; k ¼ 1; 2. ð16Þ
The fuel velocity u0f ðx0ðy; zÞ; y; z; tÞ at the fuel injection
surface is the control variable. We assume that the
control is realized using Ninj fuel injectors with ith fuel
injector providing fuel mass flux equal wf ;iðtÞ with
spatial distribution kf ;iðy; zÞ (representing initial fuel
spread in the direction perpendicular to the mean flow).
Thus, we will represent the distributed velocity as
u0f ðx0ðy; zÞ; y; z; tÞ ¼

PNinj

i¼1 kf ;iðy; zÞwf ;iðtÞ, with wf ;iðtÞ re-
presenting the control inputs. Since we will be interested
in controlling two acoustic modes, we will further
assume the control in the frequency domain as

W f ;kðjoÞ ¼
X

i

GkiZiðjoÞ. (17)

The quantities ZkðjoÞ will be the new control inputs.
The coefficients Gki will be determined later to simplify
the control design.

Let us assume that we are dealing with a reduced
order model describing evolution of two acoustic
eigenmodes corresponding to a double imaginary
eigenvalue and assume that the acoustic mode P2 is
obtained from the acoustic mode P1 by rotation by 90�.
In this case, because of rotational symmetry of the
annular domain, one can verify that G

f2q
11 ¼ G

f2q
22 ,

G
f2q
21 ¼ �G

f2q
12 , etc. Let

Gz
mkðjoÞ :¼

XNinj

i¼1

G
uf 2q

mi ðjoÞGki. (18)

The closure equations to (11) are given by

V mðjoÞ ¼ Gbc
m ðjoÞY mðjoÞ, (19)

QmðjoÞ ¼
X2
k¼1

G
p2q
mk ðjoÞY mðjoÞ þ

XNinj

i¼1

G
uf 2q

mi ðjoÞW f ;iðjoÞ.

(20)

The transfer functions in the above expression have the
form

Gbc
m ðjoÞ :¼

Z
S

Gbcðx; joÞjPmðxÞj
2 dx, (21)

G
p2q
mk ðjoÞ ¼

Z
W

k
p2q
mk ðy; zÞe

�jotðy;zÞ dydz, (22)

G
uf 2q

mi ðjoÞ ¼
Z

x0

k
uf 2q

mi ðy; zÞe
�jotðy;zÞ dy dz, (23)

k
p2q
mk ðy; zÞ :¼ �Pkðx0ðy; zÞ; y; zÞPmðgflðy; zÞ; y; zÞ

�F 0ðY f ðy; zÞÞ, ð24Þ

tðy; zÞ :¼
gflðy; zÞ � x0ðy; zÞ

uðy; zÞ
, ð25Þ

k
uf 2q

mi ðy; zÞ :¼
kf ;iðy; zÞ

uf ðx0ðy; zÞ; y; zÞ
Pmðgflðy; zÞ; y; zÞ

�F 0ðY f ðy; zÞÞ. ð26Þ
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Now, combining Eqs. (16), (20), and (20), we obtain

ððjoÞ2 þ ðjoÞGbc
k ðjoÞ þ lka2ÞY kðjoÞ

¼
X2
m¼1

ðjoÞGp2q
km Y mðjoÞ

þ
XNinj

i¼1

G
uf 2q

mi ðjoÞðjoÞW f ;iðjoÞ

þ lkNkðjoÞ; k ¼ 1; 2. ð27Þ

While the reduced order frequency domain model looks
simple, it is in fact an infinite dimensional model, as the
heat release response transfer functions include a
distributed delay. Moreover, the parameters describing
the model (mean flow, flame, fuel distribution, boundary
condition admittance) are known only approximately,
and hence need to be estimated. The distributed delay
model parameter estimation is not tractable. We will
simplify the model further, replacing the distributed
delays by (unknown) lumped delays. This is a reason-
able approximation in a narrow frequency band around
the acoustic mode resonant frequency.

The first simplifying assumption is that the acou-
stic boundary admittance (20) is a real positive number,
that is

Gbc
k ðjoÞ ¼ xkk. (28)

This is a reasonable assumption since in the engines the
acoustic boundary conditions are designed to maximize
the real and minimize the imaginary part of the
admittance for optimal acoustic damping.

The second simplifying assumption is that the heat
release transfer functions representing the distributed delay
can be represented as (20) is a real positive number,
that is

G
uf 2q

kk ðjoÞ � gkk e
jotc;k , (29)

ðjoÞGp2q
km ðjoÞ � �zkm ejotkm , (30)

for some zkm, tkm, k;m ¼ 1; 2. These assumptions are
justified by the fact that in the narrow frequency band
around the acoustic resonant frequency ok :¼ a

ffiffiffiffiffi
lk

p
any

transfer function with relatively flat magnitude response
and rolling off phase response can be approximated
as a lumped delay and a static gain. Now, Eq. (27),
when represented in time domain, becomes (1) (with
hkk ¼ lk).

In this paper, we are interested in a particular case of
(1) when, because of the assumption of circular
symmetry of the combustor, (1) models the strong
cross-coupling of identical lightly damped resonant
modes represented by the equations

€y1 þ Zy1 þ zy2ðt� tÞ ¼ g _u2ðt� tÞ þ hw1, ð31Þ

€y2 þ Zy2 � zy1ðt� tÞ ¼ � g _u1ðt� tÞ þ hw2. ð32Þ
We assume that pressure measurements ~pðxi; tÞ ¼P2
k¼1 ykðtÞPkðxiÞ at at least two locations xi are

available. This allows to reconstruct the model coeffi-
cients ykðtÞ. Therefore, we will assume that the
coefficients ykðtÞ are directly available for measurement.
We also assume that disturbance terms N1ðjoÞ, N2ðjoÞ
are broad band uncorrelated stochastic processes. The
objective of the feedback control is to reduce the
pressure terms P1, P2 to guarantee that the pressure
level is below acceptable level.
3. Approximating the delay

We denote f ¼ 2=t, take the Laplace transform of
(31), (32), and get a control model:

ððs2 þ ZÞI þ zP e�2s=f Þy ¼ g e�2s=f sPuþ hw, (33)

where

y ¼ ½y1 y2�
T, (34)

u ¼ ½u1 u2�
T (35)

and I is a 2� 2 identity matrix, whereas P is defined as

P ¼
0 1

�1 0

� �
. (36)

To model the delay, we use the first-order Pade
approximation. A second-order Pade would be more
appropriate to simulate a delay, but for control design,
especially adaptive, where inaccuracy in the order of
approximation at relevant frequencies can be accom-
modated by automatic adjustment of the delay para-
meter estimate to produce the right phase, first-order
Pade should be sufficient. Moreover, higher order Pade
would complicate the parametrization issues for adap-
tive control. Thus,

e�2s=f �
f � s

f þ s
. (37)

With this approximation, we can write the model in
one of the standard forms for MIMO systems:

AðsÞy ¼ BðsÞuþ CðsÞw, (38)

where

AðsÞ ¼ Is3 þ fIs2 þQTsþ fQ, (39)

BðsÞ ¼ gðf � sÞsP, (40)

CðsÞ ¼ hðsþ f ÞI (41)

and

Q ¼ ZI þ zP. (42)

Even though the model ‘‘denominator’’ is third-order,
since the coefficients are 2� 2 matrices, the model is of
order 6.
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4. Frequency domain pole placement MIMO design

We will use a compensator of the form

ðIs2 þD1sþD0Þu ¼ �ðN2s
2 þN1sþN0Þy. (43)

This structure is capable of the same type of pole
placement+Luenberger observer design as the state
space methods. The fact that the compensator order is
lower by 2 (or 1 in the matrix sense) than the plant is due
to this structure using a reduced order observer.

The coefficients in the above compensator are
matrices which need to be computed by solving a
polynomial (Bezout) equation with matrix coefficients to
place the closed-loop poles at the location of the
polynomial (again with matrix coefficients)

aðsÞ ¼ ðs5 þ a4s4 þ a3s3 þ a2s2 þ a1sþ a0ÞI . (44)

Note that, while the ai’s are scalars, I is multiplying the
whole polynomial. This polynomial will be the matrix
denominator of the entire closed-loop system. The
closed loop system will be or order 10, where 6
integrators come from the plant and 4 come from the
compensator.

The pole placement approach is uniquely suited for
the given plant. The plant is not minimum phase, even
for f ¼ 1, i.e., without delay (by inspection of y ¼

AðsÞ�1BðsÞu one can see that, in addition to a zero at the
origin, there is a pair of zeros on the imaginary axis).
The presence of any Pade approximation of the delay
makes the system strictly non-minimum phase. Since the
control objective is stabilization, not tracking, pole
placement (where one does not pursue assignment of
closed-loop zeros, which cannot be done stably for a
nonminimum phase system) is an appropriate approach,
which is also compatible with adaptation. One cannot
pursue adaptive model reference control, which requires
a minimum phase plant.

The solution of the Bezout equation

DðsÞAðsÞ þ BðsÞNðsÞ ¼ aðsÞ (45)

for the compensator coefficient matrices is

D0 ¼
a0

f ðZ2 þ z2Þ
QT, (46)

D1 ¼
1

2f ðZþ f 2
Þ
ðā1I �D0ð2f 2I þQTÞÞ, (47)

N0 ¼
1

g
PTðD1ð2f 2I þQT Þ þ 2fD0 � ā2IÞ, (48)

N1 ¼
1

g
PTð2fD1 þD0 þQT � ā3IÞ, (49)

N2 ¼
1

g
PTðD1 � ā4IÞ, (50)
where

ā4 ¼ a4 � f , (51)

ā3 ¼ a3 þ f ā4, (52)

ā2 ¼ a2 þ f ā3 � 2f Z, (53)

ā1 ¼ a1 þ f ā2. (54)

Note the recursive character of these relations, and
that the right order to compute the quantities is
ā4 ! ā3 ! ā2 ! ā1 ! D0! D1! N0! N1 ! N2.

The plant parameters Z; z; g; f are unknown and will
be estimated on-line. Their estimates are denoted by
Ẑ; ẑ; ĝ; f̂ . To obtain the estimates D̂i; N̂i of the controller
parameter matrices Di;Ni, replace Z; z; g; f by Ẑ; ẑ; ĝ; f̂
and Q ¼ ZI þ zP by

Q̂ ¼ ẐI þ ẑP (55)

in (46)–(54). The state space (implementation-ready)
representation of the pole placement compensator (43) is

_l ¼
�D̂1 I

�D̂0 0

" #
lþ

D̂1N̂2 � N̂1

D̂0N̂2 � N̂0

" #
y, (56)

u ¼ ½I 0�l� N̂2y. (57)

Note that this system is of order 4.
5. Adaptation law

Because the plant, even though high dimensional and
MIMO, includes only a few uncertain physical para-
meters, Z; z; g; f , it is amenable to the use of ‘‘indirect’’
adaptive control, which employs an estimator of a small
number of plant parameters, rather than an estimator of
a high number of controller parameters. To make this
statement quantitative, we will be estimating only 4
parameters, whereas a ‘‘direct’’ adaptive scheme for a
plant of this structure would estimate up to 20
parameters.

From (38)–(42), setting w ¼ 0, we get the parametric
model

d3

dt3
y1 þ f €y1 þ Z _y1 � z _y2 þ f Zy1 þ f zy2

þ g €u2 � fg _u2 ¼ 0. ð58Þ

This parametric model is linear but involves three
derivatives, which are not available for implementation.
The standard tool is to employs third-order filters,

_f1 ¼ f2, (59)

_f2 ¼ f3, (60)

_f3 ¼ �l0f1 � 1f2 � l2f3 þ y1, (61)
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_c1 ¼ c2, (62)

_c2 ¼ c3, (63)

_c3 ¼ �l0c1 � 1c2 � l2c3 þ y2, (64)

_o1 ¼ o2, (65)

_o2 ¼ o3, (66)

_o3 ¼ �l0o1 � 1o2 � l2o3 þ u2, (67)

where lðsÞ ¼ s3 þ l2s
2 þ l1sþ l0 should be chosen Hur-

witz. Assuming zero initial conditions, we get

y1 � l2f3 � l2f2 � l0f1 þ Zf2 � zc2 þ go3

þ f ðf3 þ Zf1 þ zc1 � go2Þ ¼ 0. ð68Þ

Let us now denote the vector of unknown parameters
and the vector of their estimates, respectively as

y ¼

Z

z

g

f

2
66664

3
77775; ŷ ¼

Ẑ

ẑ

ĝ

f̂

2
66664

3
77775. (69)

A straightforward but relatively lengthy calculation
leads to

y1 � l2f3 � l2f2 � l0f1 þ Ẑf2 � ẑc2 þ ĝo3

þ f̂ ðf3 þ Ẑf1 þ ẑc1 � ĝo2Þ

¼ �OT ~yþ ~y
T
S~y, ð70Þ

where ~y ¼ y� ŷ (and similarly for Z; z; g; f ), the ‘‘re-
gressor’’ vector is defined as

O ¼

f2 þ f̂f1

�c2 þ f̂c1

o3 � f̂o2

f3 þ Ẑf1 þ ẑc1 � ĝo2

2
66664

3
77775 (71)

and ‘‘second-order’’ effects (of the parameter error ~y)
are given by the matrix

S ¼

0 0 0 0

0 0 0 0

0 0 0 0

�f1 �c1 o2 0

2
66664

3
77775. (72)

We now choose the update law for the pole placement
algorithm as

_̂y ¼ � G
O

1þ gjOj2
ðy1 � l2f3 � l1f2 � l0f1 þ Ẑf2 � ẑc2

þ ĝo3 þ f̂ ðf3 þ Ẑf1 þ ẑc1 � ĝo2ÞÞ, ð73Þ

where g is a positive constant and G is a positive definite
symmetric matrix that can either be constant (in which
case the update law is of the gradient type) or be
computed via a Riccati equation

_G ¼ �G
OOT

1þ gjOj2
G (74)

which makes the update law of the least-squares type.
The stability of the update law (73) can be studied by
writing it as

_~y ¼ �G
OOT

1þ gjOj2
~yþ G

O
1þ gjOj2

~y
T
S~y, (75)

where we note the stabilizing effect of the first term
on the right-hand side (linear in ~y) and the poten-
tially destabilizing effect of the second term (quadratic
in ~y). We refrain from stating theorems and proofs in
this paper. However, it is possible to establish local
stability of the parameter error system (75) under an
appropriate persistency of excitation condition. It
is also possible to establish local closed-loop stability
of the overall system consisting of the plant, the
adaptive pole placement controller, and the filters, and
the update law.

Due to the presence of the quadratic term, the
estimator (73) is only locally stable. A globally stable
estimator for the parametric model (68) would require
f Z; f z; fg to be estimated separately from Z; z; g; f , i.e., it
would require overparametrization. Overparametrization
not only increases the dynamic order of the com-
pensator (by 3 in the case of gradient adaptation,
and by as much as 36 in the case of least-squares
adaptation), but it aggravates the robustness issues
because the persistency of excitation conditions are
much harder to satisfy for 7 parameters than for 4
parameters.

The block diagram of the closed-loop adaptive system
is shown in Fig. 2. The adaptive controller consists of
three major blocks: the adaptive pole placement
compensator (which includes the state l and the on-
line adjusted N̂i’s and D̂i’s), the parameter estimator
(consisting of filters f;c;o, the computation of the
regressor, the estimation error, and the update law), and
the Bezout solver (which computes the N̂i’s and D̂i’s on
the basis of ŷ). The dynamic order of the parameter
estimator is 13 (for the gradient update): 9 for the filter
states f;c;o, and 4 for the parameter estimate ŷ. The
total dynamic order of the adaptive controller (including
the l states) is 17.
6. Dealing with the noise

It is important to first understand the noise rejection
properties of the nonadaptive system, designed with the
perfect knowledge of the parameters. Combining (45)
with (38), one gets

y ¼ SðsÞw, (76)
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Fig. 2. Adaptive system block diagram.
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where

SðsÞ ¼
hðsþ f Þ

s5 þ a4s4 þ a3s3 þ a2s2 þ a1sþ a0
ðIs2 þD1sþD0Þ.

(77)

Note that D0 and D1 depend on the ai’s [through
(46)–(54)] and on Z; z; g; f . One can influence the H1
norm of the sensitivity function SðsÞ by varying the ai’s.
Assuming that one has persistency of excitation, the ai’s
also become a tool for noise rejection in the adaptive
case because the estimates of Z; z; g; f would converge to
the true values.

The biggest issue in the adaptive case is that the noise
can cause the parameter estimates to drift. The scenario
is usually as follows. The unstable plant generates
enough percistency of excitation for the parameter
estimates to enter the region of stabilizing values in
the parameter space. This ‘‘stabilizes’’ the plant state to
a small value. However, then the noise, whose value was
small to make a difference relative to the unstable
transient of the open-loop system, takes over. The
adaptation starts being dominated by the noise. The
parameter estimates start to ‘‘drift’’. After sufficient
time, they drift out of the region of stabilizing parameter
values. The moment they exit this region, the system
output starts growing. This, in turn, generates persis-
tency of excitation, where the signals are again
dominated by the plant transient, rather than the noise.
The excitation returns the estimates to the stabilizing
region in the parameter space. This entire process of the
parameters being returned to the stabilizing region is
fast and is referred to as a ‘‘burst.’’ Bursting is
undesirable because the size of the output regains the
values comparable to those during the initial learning
transient. Bursting is periodic in appearance and
continues as long as the adaptation is active. The good
asymptotic performance, the very reason for employing
adaptive control, is lost.

Fortunately, a solution to the problem of parameter
drift and bursting does exist. It is the deadzone that is
applied to the estimation error. The parameter update is
modified as

_̂y ¼ � G
O

1þ gjOj2
Dbðy1 � l2f3 � l1f2 � l0f1 þ Ẑf2 � ẑc2

þ ĝo3 þ f̂ ðf3 þ Ẑf1 þ ẑc1 � ĝo2ÞÞ, ð78Þ

where Dbð�Þ represents the deadzone nonlinearity with a
threshold (break point) b and with a slope equal to one
outside of the deadzone. The deadzone prevents
bursting by not adapting to small estimation errors,
which would primarily be caused by the noise.
7. Simulations with saturated actuator

We present simulations done for the plant (38),
employing the controller (56), the filters (59)–(67), the
update law (78), and the algebraic equations (46)–(54).
In addition, the control inputs u1 and u2 were saturated.

The plant was represented in the MIMO observer
canonical form. For the simulations presented here the
plant initial condition was y1ð0Þ ¼ 1; y2ð0Þ ¼ 0, and all
the derivatives of the outputs set initially to zero.
The design was also tested for a wide variety of
initial conditions and has failed only for those
choices unreasonably above the saturation level of the
control inputs. The plant parameters were all set
to unity, Z ¼ z ¼ g ¼ f ¼ h ¼ 1. With these parameters
the open-loop plant was unstable, with eigenvalues
�1:3� j0:75;þ0:11� j1:4;þ0:23� j0:63. One of the
zeros was unstable, at þ1.

The noise power was set to a fairly high value (for this
problem) of 0:25. The control inputs were limited to the
interval ½�3:5; 3:5�.

The desired closed-loop poles were at �2;�2;�2;
�1:5� j0:5. By varying the desired poles one can
improve the performance and robustness. We did not
try to do this here. Rather than present results polished
through extensive trial and error, we show that the
design is successful even when the design parameter
choices are made without much experience and insight.
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Guided by the same logic, the initial conditions of the
compensator and the filters were all chosen zero,
lð0Þ ¼ 0;fð0Þ ¼ cð0Þ ¼ oð0Þ ¼ 0. The filter poles were
chosen at �4;�3� j1:7, which is faster than the desired
closed-loop poles, indicating that we want the parameter
estimation to complete fast. For adaptation parameters
we have chosen G ¼ 10I and g ¼ 1.

The initial values for the estimates of the unknown
parameters were chosen with a little more care:
�
 Ẑð0Þ: Among the four parameters, this one, being the
natural frequency of the open-loop plant, is the one
that is the least uncertain. We have chosen
Ẑð0Þ ¼ 1:3Z.

�
 ĝð0Þ: Since we have limited control authority, it is

better to not start off too agressively with control. If
we chose ĝð0Þ small, this would signal to the
compensator that it needs to put out a large input
because its gain is small. So we have chosen this
parameter large, ĝð0Þ ¼ 2g.

�
 f̂ ð0Þ: Since the delay introduces a non-minimum

phase effect in the Pade approximated plant, it is
important to not underestimate the value of the
delay. Thus, we start with f̂ ð0Þ chosen large,
f̂ ð0Þ ¼ 2:4f .

�
 ẑð0Þ: The parameter z is the measure of coupling

between the two subsystems. By choosing ẑð0Þ small,
we would be deceiving ourselves that the coupling is
small and we would start the control with a
predominantly SISO design. Thus we start with ẑð0Þ
set to a relatively large value, ẑð0Þ ¼ 1:7z.
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Fig. 3. Time traces of y1ðtÞ; u2ð
These initial estimates are actually destabilizing—with-
out adaptation this controller would not work.
For selecting the deadzone breakpoint b we first ran
the simulations without the deadzone. As predicted, the
parameter estimates drifted and they, as well as the
system output, went through periodic bursting. The
value of the deadzone was chosen based on the value of
noise driven estimation error, y1 � l2f3 � l1f2�

l0f1 þ Ẑf2 � ẑc2 þ ĝo3 þ f̂ ðf3 þ Ẑf1 þ ẑc1 � ĝo2Þ. It
was set at b ¼ 0:06. A much smaller value would still
result in bursting. A much larger value would prevent
adaptation, the estimates would stay at their initial
values, and the system would go unstable.

Fig. 3 shows simulation results. We do not show both
outputs y1 and y2, nor do we show both inputs, u1 and
u2. They are qualitatively similar between each other.
We show only the first output y1ðtÞ and the second input
u2ðtÞ.

The time traces show four distinct intervals in the
behavior of the system:
�

tÞ, a
During the first interval, approximately up to 15 s,
the system output is growing because the initial
control parameters have destabilizing values. The
adaptation is starting slow because the signals to
drive it need to get large first.

�
 During the second interval, from 15 to 20 s, the

adaptation is active and the parameters all move
towards the correct values (Z ¼ z ¼ g ¼ f ¼ 1). They
do not quite reach the correct value due to the lack of
persistency of excitation but they all get near the
80 100 120

80 100 120

80 100 120

f hat
eta hat
zeta hat
g hat

nd ẐðtÞ; ẑðtÞ; ĝðtÞ; f̂ ðtÞ.
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value of 1. It is not necessary for the parameter
estimates to reach the correct parameter value, it
suffices for them to reach stabilizing values.

�
 In the third interval, 20–45 s, the controller is working

hard at stabilizing the system, and it succeeds. The
controller gets deeply into saturation. Without the
saturation at 3.5, it would be applying control values
on the order of 8.

�
 The fourth interval, after 45 s, shows the quasi-steady

state of the system. The noise prevents the output
from being zero but the output is not going unstable
due to the action of the control. The adaptation
seems to not be active any more. This is due to the
deadzone. Since the estimation error does occasion-
ally exceed b ¼ 0:06, the parameters do drift, but
extremely slowly. A burst after an extremely long
period of time is possible. The length of this time can
be controlled with the size of b.

One phenomenon that we do not show in the figure is
that y1ðtÞ and y2ðtÞ are not symmetric, in a statistical,
quantitative sense. They qualitatively behave similarly
but most of the time y1ðtÞ is larger than y2ðtÞ. This only
happens in the presence of the deadzone. It might be
puzzling that a perfectly symmetric plant with a
perfectly symmetric controller, driven by symmetric
noise, responds asymmetrically (even when the initial
conditions are chosen symmetric). The explanation lies
in the estimation algorithm. The parametric model used
for designing adaptation is only the first of the two
physical equations (31), which is given in (58) with the
Pade approximation. This makes the entire feedback
system respond differently to perturbations in y1 versus
those in y2.
8. Conclusions

For a two-input–two-output LTI model with a time
delay, which qualitatively fits both thermoacoustic
combustor instabilities and compressor blade flutter
instabilities in jet engines, we have designed an adaptive
controller that simultaneously estimates the uncertain
time delay and resonant modes. Our adaptive controller
is a MIMO pole placement scheme with indirect
adaptation. Instead reverting to a textbook linear
parametrization, which would overparametrize the
problem to avoid nonlinear parameter dependence,
our scheme estimates only physical parameters. We
present simulations in which, with the help of a
deadzone in the adaptation law, our controller success-
fully stabilizes the uncertain system in the presence of
noise and severe actuator saturation.
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