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Abstract

In this paper the recently introduced backstepping method for boundary control of linear partial differential equations (PDEs) is extended
to plants with non-constant diffusivity/thermal conductivity and time-varying coefficients. The boundary stabilization problem is converted
to a problem of solving a specific Klein–Gordon-type linear hyperbolic PDE. This PDE is then solved for a family of system parameters
resulting in closed-form boundary controllers. The results of a numerical simulation are presented for the case when an explicit solution
is not available.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods for boundary control of linear parabolic PDEs
are well established (see e.g.,Curtain & Zwart, 1995;
Lasiecka & Triggiani, 2000). However, even in simple cases
the existing results are not explicit and require numeri-
cal solution, e.g., solving an operator Riccati equation in
the case of the LQR method. In recent papers (Liu, 2003;
Smyshlyaev & Krstic, 2004, 2005), a new method based on
an infinite-dimensional version of the backstepping tech-
nique (Krstic, Kanellakopoulos, & Kokotovic, 1995) was
introduced. By exploiting the structure, this method allows
easier solution to the boundary stabilization problem and in
many cases leads to closed form results.
In this paper, we further extend this approach to the

parabolic 1D PDEs with space-dependent thermal con-
ductivity/diffusivity and time-varying coefficients. The
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time-varying problem is novel compared toSmyshlyaev and
Krstic (2004) and with respect to PDE control literature
in general. The extension to non-constant diffusion makes
the ideas inSmyshlyaev and Krstic (2004)applicable to
inhomogeneous media.
Although only the state-feedback results are presented in

this paper, it was shown bySmyshlyaev and Krstic (2005)
that dual output-feedback results can be obtained. This
means that every closed-form controller can be used to get
a closed-form observer, and thus a closed form output feed-
back compensator. All the controllers in the paper can also
be modified to be inverse optimal (Smyshlyaev & Krstic,
2004), i.e., minimize a cost functional that puts penalty
on both state and control giving stability margins and the
reduced control effort.

2. Plant with non-constant diffusion coefficient

2.1. Problem statement

Consider the following plant:

ut (x, t) = �(x)uxx(x, t) + b(x)ux(x) + �(x)u(x, t), (1)

ux(0, t) = qu(0, t). (2)
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We assume that�(x) >0, ∀x ∈ [0,1] andb, � ∈ C1[0,1],
� ∈ C3[0,1], q is an arbitrary constant (q = +∞ han-
dles the Dirichlet case). The PDE (1)–(2) describes a wide
variety of thermal/fluid systems including, but not limited
to, heat conduction in non-homogeneous materials (Carslaw
& Jaeger, 1959) and chemical tubular reactor (Boskovic &
Krstic, 2002). The open-loop system (u(1, t) = 0) is unsta-
ble with arbitrarily many unstable eigenvalues even in the
case of the constant coefficients. The objective is to stabi-
lize the zero solutionu ≡ 0 by usingu(1, t) (Dirichlet ac-
tuation) orux(1, t) (Neumann actuation) as a control input.
We will consider only the Dirichlet actuation in this paper
since the extension to the Neumann case is straightforward
(Smyshlyaev & Krstic, 2004).
Without loss of generality, we assumeb(x) ≡ 0 since it

can be eliminated from the equation with the transformation

u(x, t) 
→ u(x, t)e−
∫ x
0 (b(�)/2�(�)) d�, (3)

and the appropriate changes of the parameters

� 
→ � + b′

2
+ b2

4�
− b�′

2�
, q 
→ q − b(0)

2�(0)
. (4)

We do not consider other (integral and local) terms from
Smyshlyaev and Krstic (2004)for clarity, they can be easily
included and do not affect the analysis.
The main idea of our method is to use a coordinate trans-

formation

w(x, t) = u(x, t) −
∫ x

0
k(x, y)u(y, t)dy (5)

to map (1) and (2) into the stable target system:

wt(x, t) = �(x)wxx(x, t) − cw(x, t), (6)

wx(0, t) = qw(0, t), (7)

w(1, t) = 0, (8)

where a free parameterc can be used to set the desired rate of
stability. Once we find transformation (5) (namelyk(x, y)),
the boundary condition (8) gives the feedback controller in
the form

u(1, t) =
∫ 1

0
k(1, y)u(y, t)dy. (9)

From (3) and (5), it follows that for the case of non-zero
b(x) the kernel is transformed in the following way:

k(x, y) 
→ k(x, y)e−
∫ x
y (b(�)/2�(�)) d�. (10)

We face two problems now: establish a stability condition
for the target system (6)–(8) and find the equation for the
transformation kernelk(x, y) and possibly solve it.

2.2. Stability analysis

Lemma 1. System(6)–(8) is exponentially stable under the
condition

c >
�′′max
2

+ q̄2

�min
, (11)

where

�′′max= max
x∈[0,1] {�

′′(x)}, �min = min
x∈[0,1] {�(x)},

q̄ =max

{
0,

�′(0)
2

− q�(0)
}
. (12)

Proof. Consider a Lyapunov function

V = 1

2

∫ 1

0
w2(x, t)dx. (13)

Using Poincare’s and Agmon’s inequalities, we get

V̇ = − wx(0, t)w(0, t)�(0) −
∫ 1

0
�′(x)wwx dx

−
∫ 1

0
�(x)w2

x dx − c

∫ 1

0
w2 dx

� q̄w2(0, t) −
∫ 1

0
�(x)w2

x dx

−
∫ 1

0

(
c − �′′(x)

2

)
w2 dx

� −
∫ 1

0

(
c − �′′max

2
− q̄2

�min

)
w2 dx, (14)

which, due to (11), gives the stability result.�

Estimate (11) is rather conservative, it can be substantially
improved for specific�(x).

2.3. Kernel PDE analysis

Substitution of (5) into (6)–(8) and (1)–(2) leads to the
following PDE fork(x, y):

�(x)kxx(x, y) − (�(y)k(x, y))yy

= (�(y) + c)k(x, y) (15)

for 0< y < x <1 with boundary conditions

ky(x,0) = (q − �′(0)/�(0))k(x,0), (16)

2�(x)
d

dx
k(x, x) = −�′(x)k(x, x) − �(x) − c, (17)

k(0,0) = 0. (18)

By solving the ODE (17) and (18) with respect tok(x, x)

the last two conditions can be combined into one:

k(x, x) = − 1

2
√

�(x)

∫ x

0

(�(�) + c)√
�(�)

d�. (19)

The PDE (15), (16), (19) is more complicated than the one
in Smyshlyaev and Krstic (2004)since the first derivatives
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of k appear and the coefficients depend on bothx and y.
Note, that not only�, but �′ and �′′ are also involved. Our
goal now is to manipulate (15) into the form for which the
analysis fromSmyshlyaev and Krstic (2004)can be applied.
First, we transform this hyperbolic PDE into the canonical

form by introducing the change of variables:

k̆(x̄, ȳ) = �(y)k(x, y), x̄ = �(x), ȳ = �(y),

�(x) =√
�(0)

∫ x

0

d�√
�(�)

. (20)

In these variables the PDE (15), (16), (19) becomes

k̆x̄x̄ − k̆ȳȳ = �′(x)

2
√

�(0)�(x)
k̆x̄ − �′(y)

2
√

�(0)�(y)
k̆ȳ

+ �−1(0)(�(y) + c) k̆, (21)

k̆ȳ (x̄,0) = qk̆(x̄,0), (22)

k̆(x̄, x̄) = −1

2

√
�(x)

�(0)

∫ x̄

0
(�(�−1(�)) + c)d�. (23)

For clarity we leave old variables in the coefficients for a
while. The second step is to further simplify the equation
by eliminating the terms with the first derivatives ofk̆. It is
possible in this case since the coefficients in front of these
terms depend only on a single variable. We introduce

k̄(x̄, ȳ) = (�(x)�(y))−1/4k̆(x̄, ȳ), (24)

which now satisfies the following PDE:

�(0)(k̄x̄x̄ (x̄, ȳ) − k̄ȳȳ (x̄, ȳ)) = �̄(x̄, ȳ)k̄(x̄, ȳ), (25)

with boundary conditions

k̄ȳ (x̄,0) =
(

q − �′(0)
4�(0)

)
k̄(x̄,0), (26)

k̄(x̄, x̄) = − 1

2
√

�(0)

∫ x̄

0
(�(�−1(�)) + c)d�, (27)

where

�̄(x̄, ȳ) = 3

16

(
�′2(x)

�(x)
− �′2(y)

�(y)

)
+ 1

4
(�′′(y) − �′′(x))

+ �(y) + c. (28)

andx, y are given in (20).
We can see now from (25) to (28) that when�(x) is not

a constant, there is only one qualitative change to the PDE,
namely the coefficient̄�(x̄, ȳ) depends on both̄x and ȳ (it
depends only on̄y when�(x)= const). In the proof of well-
posedness of the PDE (25)–(27) only the bound on this co-
efficient is used bySmyshlyaev and Krstic (2004)and thus
the same proof applies here. The closed-loop stability fol-
lows from the stability of the target system (6)–(8) (Lemma
1) along with the invertibility of transformation (5) (because
of the smooth kernelk(x, y), seeLiu, 2003, for details). The
results can be summarized in the following theorem.

Theorem 2. The PDE(25)–(27)has a uniqueC2(0< ȳ <

x̄ <�(1)) solution. For any initial conditionu0 ∈ L2(0,1)
system(1), (2), (9)with k given by(20), (24), (25)–(27)has
a unique classical solutionu ∈ C2,1((0,1) × (0, ∞)) and
is exponentially stable at the origin, u ≡ 0, in theL2(0,1)
andH1(0,1) norms.

3. Closed-form controllers

By extending the results ofSmyshlyaev and Krstic (2004)
to the case of space-dependent�(x) we open many new
opportunities to find families of closed-form controllers for
some classes of�(x). We consider two cases.

3.1. Plant with constant�

Consider the following plant:

ut (x, t) = �(x)uxx(x, t) + �u(x, t), (29)

u(0, t) = 0. (30)

Here� = const. The boundary condition at zero end can be
Neumann or mixed as well (see Remark 1 after Theorem 3).
The PDE (25)–(27) takes the form

�(0)(k̄x̄x̄ (x̄, ȳ) − k̄ȳȳ (x̄, ȳ)) = �̄(x̄, ȳ)k̄(x̄, ȳ), (31)

k̄(x̄,0) = 0, (32)

k̄(x̄, x̄) = − � + c

2
√

�(0)
x̄. (33)

Suppose that for some constantC, we have

3

16

�′2(x)

�(x)
− 1

4
�′′(x) = C. (34)

As one can see from (28), in this case�̄(x̄, ȳ) = � + c =
const. The PDE (31)–(33) can be solved now in closed form
(Smyshlyaev & Krstic, 2004):

k̄(x̄, ȳ) = −ȳ
� + c√

�(0)

I1

(√
((� + c)/�(0))(x̄2 − ȳ2)

)
√

((� + c)/�(0))(x̄2 − ȳ2)
, (35)

whereI1 is a modified Bessel function of order one. There
are two solutions to the ODE (34). The first solution is

�(x) = �0(x − x0)
2, (36)

where�0 and x0 are arbitrary (not violating the condition
�(x) >0) constant parameters andC = �0/4.
The other solution is three-parametric and thus is more

interesting:

�(x) = �0(1+ �0(x − x0)
2)2, (37)

where�0, �0, x0 are arbitrary constants andC =−�0�0. This
solution can give a very good approximation onx ∈ [0,1]
to many functions, including (36). So, we will focus our
attention on solution (37).
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Fig. 1. The function�(x) for different values of�0, �0, andx0. From left to right: peak value and flatness are arbitrary; extremum can be set to max or
min; location of extremum is arbitrary; linear functions matched.

Function (37) always has one maximum or one minimum
(for the range of the parameters that do not violate the con-
dition �(x) >0). The value and the location of the maximum
(minimum) can be arbitrarily set by�0 andx0, correspond-
ingly. The sign of�0 determines if it is a maximum or mini-
mum and the value of�0 can set arbitrary “sharpness” of the
extremum (Fig.1 a–c). By selecting the extremum outside
of the region [0,1] and changing its value and sharpness we
can almost perfectly match any linear function as well (Fig.
1d).

Theorem 3. Controller (9) with

k(x, y) = − ȳ
� + c√

�(0)

�1/4(x)

�3/4(y)

×
I1

(√
((� + c)/�(0))(x̄2 − ȳ2)

)
√

((� + c)/�(0))(x̄2 − ȳ2)
, (38)

wherex̄ = �(x), ȳ = �(y),

�(�) = 1+ �0x20√
�0

×
(
atan

(√
�0(� − x0)

)
+ atan

(√
�0x0

))
(39)

exponentially stabilizes the zero solution of system(29) and
(30)with �(x) given by(37).

Remark 1. If the boundary condition (30) is changed to
ux(0, t) = 0, the only change in the control gain (38) would
be the leading factor̄x instead ofȳ. For the mixed boundary
conditionux(0, t)=qu(0, t) the closed form solution is also
possible and can be inferred fromSmyshlyaev and Krstic
(2004).

3.2. Unstable heat equation with non-constant thermal
conductivity

Many problems (e.g., heat conduction in non-homo-
geneous materials (Carslaw & Jaeger, 1959)) have a struc-
ture different from that of (29). The heat equation with

space-dependent thermal conductivity is usually written as

ut (x, t) = d

dx

(
�(x)

d

dx
u(x, t)

)
+ �u(x, t), (40)

u(0, t) = 0. (41)

With a change of variablesu = √
�(x)v, we have

vt = �(x)vxx +
(

� + �′2(x)

4�(x)
− �′′(x)

2

)
v, (42)

v(0, t) = 0. (43)

One can see now that if the expression in the brackets in
(42) is constant, then we can apply the results of Section
3.1. By direct substitution of solutions (36) and (37) we find
that only (36) makes this expression constant (equal to�).
Using (35), (36) with (20), (24) we get the following result.

Theorem 4. Controller (9) with

k(x, y) = − ȳ
� + c√

�(0)

�3/4(x)

�5/4(y)

×
I1

(√
((� + c)/�(0))(x̄2 − ȳ2)

)
√

((� + c)/�(0))(x̄2 − ȳ2)
, (44)

where

x̄ = −x0 log(1− x/x0), ȳ = −x0 log(1− y/x0) (45)

exponentially stabilizes the zero solution of system(40) and
(41)with �(x) given by(36).

Note, that Remark 1 holds here as well. Since the mini-
mum of function (36) is always a zero,x0 should be chosen
outside of the region [0,1] to keep�(x) >0 for x ∈ [0,1].
This means that�(x) given by (36) can approximate linear
functions on [0,1] very well. InFig. 2, the function�(x)

and the corresponding control gains are shown for different
parameter values.

4. Plant with time-dependent coefficients

The next natural extension of the method is including
time-dependence in the equation coefficients. Consider the
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Fig. 2. The function�(x) from (36) and the corresponding kernelk(1, y)

for different parameter values. Dotted line shows the kernel for�(x) ≡ 1.

following plant:

ut (x, t) = �0uxx(x, t) + �(x, t)u(x, t), (46)

ux(0, t) = qu(0, t), (47)

where� is now the continuous function of time.
The PDEs of type (46) and (47) can arise for example

in the trajectory tracking problems for nonlinear distributed
parameter systems. Following our approach we search for
the transformation

w(x, t) = u(x, t) −
∫ x

0
k(x, y, t)u(y, t)dy (48)

that maps (46) and (47) into the exponentially stable target
system (6)–(8) with�(x) = �0. The difference with time-
invariant case is that the transformation kernel now depends
on the third variable — time. After substitution of (48) into
(46) and (47), (6)–(8) we get the following kernel PDE for
k = k(x, y, t):

kt = �0(kxx − kyy) − (�(y, t) + c)k (49)

for 0< y < x <1 with boundary conditions

ky(x,0, t) = qk(x,0, t), (50)

k(x, x, t) = − 1

2�0

∫ x

0
(�(�, t) + c)d�. (51)

The stabilization problem is now converted to the problem of
solvability of (49)–(51). PDEs of this type have been studied
by Colton (1977)who proved that they are well-posed on a
finite time interval. For the general�(x, t) PDE (49)–(51)
needs to be solved numerically.

5. Closed-form controllers for � = �(t)

We present here explicit controllers that can stabilize the
following plant with smooth�(t):

ut (x, t) = �0uxx(x, t) + �(t)u(x, t), (52)

u(0, t) = 0. (53)

For this system the PDE (49)–(51) takes the form

kt (x, y, t) = kxx(x, y, t) − kyy(x, y, t)

− �(t)k(x, y, t), (54)

k(x,0, t) = 0, (55)

k(x, x, t) = −x

2
�(t). (56)

Without loss of generality, we have set�0 = 1, c = 0 here.
Let us make the following change of variables:

k(x, y, t) = −y

2
e−

∫ t
0 �(�) d�f (z, t), z =

√
x2 − y2. (57)

We get the following PDE in one spatial variable for the
functionf (z, t):

ft (z, t) = fzz(z, t) + 3z−1fz(z, t) (58)

with boundary conditions

fz(0, t) = 0, f (0, t) = �(t)e
∫ t
0 �(�) d� : =F(t). (59)

TheC
2,1
z,t solution to this problem is (Polianin, 2002)

f (z, t) =
∞∑

n=0

1

n!(n + 1)!
( z

2

)2n
F (n)(t). (60)

This solution is rather explicit. Sincez�1 and squared fac-
torial increases very fast withn, one can obtain very accu-
rate approximations tof (z, t) using just several terms of the
sum.
It can be shown that operator (48) fromu to w, as

functions ofx, is bounded invertible in bothL2(0,1) and
H1(0,1), uniformly in time.

Theorem 5. The controller

u(1, t) = −
∫ 1

0
y

u(y, t)

2e
∫ t
0 �(�) d�

×
∞∑

n=0

(1− y2)nF (n)(t)

4nn!(n + 1)! dy (61)

exponentially stabilizes the system(52) and (53).
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Fig. 3. �(t) from (63) for �0 = 10, �0 = 5, andt0 = 1.

Remark 2. If the boundary condition (53) is changed to
ux(0, t)=0, the only difference in the controller (61) would
be the leading factor(1/2) instead of(y/2).

There are two cases when it is easy to compute the series
(60) in closed form: whenF(t) is a combination of expo-
nentials (since it is easy to compute thenth derivative of
F(t) in this case) or a polynomial (since the series is finite).
Let us consider two examples.

Example 1(A rapid transition between two levels). LetF(t)

be

F(t) = e�0t {�0 cosh�0(t − t0) + sinh�0(t − t0)}, (62)

where�0, �0 and t0 are arbitrary constants. ThisF(t) cor-
responds to the following�(t):

�(t) = �0 + �0 tanh(�0(t − t0)). (63)

This�(t) approximates a rapid change from a constant level
�0−�0 to a constant level�0+�0 at a timet = t0 (Fig. 3).
Substituting (62) into (60) and computing the sum we get
the following control gain:

k(x, y, t)

= − y

2
√

x2 − y2 cosh(�0(t − t0))

×
{√

�0 + �0 I1

(√
(�0 + �0)(x2 − y2)

)
e−�0(t−t0)

+
√

�0 − �0 I1

(√
(�0 − �0)(x2 − y2)

)

× e�0(t−t0)
}
. (64)

Example 2 (One-peak). Let F(t) be

F(t) = e�0t (�0((t + a)2 + b2) + 2(t + a)), (65)

λ 
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t
0 0.5 1 1.5 2

0
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4
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8

10

12

Fig. 4. �(t) from (66) for �0 = 5, a = 0.03, andb = 0.25.

where�0, a and b �= 0 are arbitrary constants. ThisF(t)

corresponds to the following�(t):

�(t) = �0 + 2(t + a)

(t + a)2 + b2
. (66)

This �(t) can approximate some “one-peak” functions (Fig.
4). Substituting (65) into (60) and computing the sum we
get the following control gain:

k(x, y, t) = − �0y
I1
(√

�0z
)

√
�0z

− y
t + a

(t + a)2 + b2
I0

(√
�0z

)

− y

4
√

�0

zI1
(√

�0z
)

(t + a)2 + b2
,

z =
√

x2 − y2, (67)

whereI0 andI1 are modified Bessel functions.

We should mention that there is a simpler solution to
the problem of stabilization of (52) and (53) which is ob-
tained by converting it by a change of variablesu(x, t) =
v(x, t)exp

∫ t

0 �(�)d� into a PDE with constant coefficients
vt = �0vxx , v(0, t) = 0. This problem can be then stabilized
using the results ofSmyshlyaev and Krstic (2004)with the
controller

u(1, t) = −
∫ 1

0

c

�0
y

I1

(√
(c/�0)(1− y2)

)
√

(c/�0)(1− y2)
u(y, t)dy. (68)

The decay rate of the closed-loopv-system is equal to the de-
cay rate of the target system, i.e., e−(c+�0�2)t . So the closed-
loop stability of u-system is guaranteed by satisfying the
condition (Khalil, 1996, p. 226)

c > lim sup
t→∞

�(t) − �0�2, (69)

or c > − �0�2 if � ∈ L1(0, ∞) ∪ L2(0, ∞).
Although controller (68) stabilizes (52) and (53) for any

�(t), it is most suitable for the cases when minimum and
maximum values of�(t) are close, for example when it is a
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Fig. 5. The simulation results for (1) and (2) with controller (9). From left to right:�(x); the gain kernel; theL2-norm of open loop (dashed) and closed
loop (solid) response.
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Fig. 6. The simulation results for (46) and (47) with controllers (61) (solid) and (68) (dashed). From left to right:�(t); L2-norm of the gain kernel;
L2-norm of the state; the control effort.

constant plus sinusoid with small amplitude. When�(t) has
significant drops and rises, this method will use unnecessar-
ily large initial control effort (Example 1) or result in poor
initial performance (Example 2) (see next section). For such
cases design (61) is advantageous.

6. Simulations

We presented several closed-form boundary controllers
for stabilization of parabolic PDEs with time- and spatial-
dependent parameters.When the plant coefficients cannot be
accurately approximated by families of functions for which
explicit solutions can be found, the kernel PDE (15)–(19)
or (49)–(51) should be solved numerically. As shown by
Smyshlyaev and Krstic (2004), it is an order of magnitude
easier computational problem than the problem of solving
a Riccati equation. For the case of non-constant diffusivity
�(x)=1+0.4 sin(6�x) the results of simulation are presented
in Fig. 5. The controller was implemented on a coarse grid
with only 6 points. For the time-dependent case of�(t) =
6+ 5 sin(�t) the results are shown inFig. 6. We can see
the advantage of controller (61) over (68) for this type of
�(t)—lower control effort in the initial transient.
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