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Abstract

We examine the stability properties of a class of LTV di"erence equations on an in&nite-dimensional state space that
arise in backstepping designs for parabolic PDEs. The nominal system matrix of the di"erence equation has a special
structure: all of its powers have entries that are −1, 0, or 1, and all of the eigenvalues of the matrix are on the unit circle.
The di"erence equation is driven by initial conditions, additive forcing, and a system matrix perturbation, all of which
depend on problem data (for example, viscosity and reactivity in the case of a reaction–di"usion equation), and all of
which go to zero as the discretization step in the backstepping design goes to zero. All of these observations, combined
with the fact that the equation evolves only in a number of steps equal to the dimension of its state space, combined with
the discrete Gronwall inequality, establish that the di"erence equation has bounded solutions. This, in turn, guarantees the
existence of a state-feedback gain kernel in the backstepping control law. With this approach we greatly expand, relative
to our previous results, the class of parabolic PDEs to which backstepping is applicable.
c© 2003 Published by Elsevier B.V.
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1. Introduction

We consider parabolic PDEs of the form

ut(x; t) = �uxx(x; t) + b(x)ux(x; t) + �(x)u(x; t) + g(x)u(0; t) + d(x)u(
x; t) +
∫ x

0
f(x; �)u(�; t) d� (1.1)

for x∈ (0; 1), t ¿ 0, with initial condition

u(x; 0) = u0(x); x∈ [0; 1]; (1.2)
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with boundary conditions 1

ux(0; t) = qu(0; t); (1.3)

u(1; t) =
∫ 1

0
k1(�)u(�; t) d� (1.4)

and under the assumption

�¿ 0; 0¡
¡ 1; q∈R; b; �; d; g∈L∞(0; 1); f∈L∞([0; 1]× [0; 1]); (1.5)

where the feedback gain kernel k1 ∈L∞(0; 1) is sought to stabilize the equilibrium u ≡ 0. Throughout the
paper we will consider only real valued functions and the classical Lp(0; 1), p¿ 1 and C2;1([0; 1]× (0;∞))
spaces (see [11]). Relative to our previous work on the subject [1,2], which was under the assumptions
g(x)=d(x)=f(x; �)=q=0 for x; �∈ [0; 1], the results here are more general, and the proof technique we develop
is more elegant. Our approach is to use the backstepping method for the &nite di"erence semi-discretized
approximation of (1.1) to derive an in&nite-dimensional coordinate transformation that maps our system into
an exponentially stable system. The coordinate transformation results in a boundary feedback control law of
form (1.4). Our result is formulated in the following theorem.

Theorem 1.1. For any c¿ 0 there exists a function k1 ∈L∞(0; 1) such that for any u0 ∈L∞(0; 1) system
(1.1)–(1.4) with assumption (1.5) has a unique classical solution u∈C2;1([0; 1] × (0;∞)) and the trivial
solution utriv ≡ 0 is exponentially stable in the L2(0; 1) and maximum norms with decay rate c. More
precisely, there exists a positive constant M such that for all t ¿ 0

‖u(t; ·)‖L2(0;1)6M‖u0‖L2(0;1)e
−ct (1.6)

and

max
x∈[0;1]

|u(x; t)|6M sup
x∈[0;1]

|u0(x)|e−ct : (1.7)

The problem of boundary feedback stabilization of general parabolic equations is not new. Our papers [1,2]
contain a detailed discussion of prior work, and the reader is also referred to [8,12] for extensive surveys.
While these previous approaches give an existence answer to our stabilization problem, our approach o"ers
an implementable, numerically simple solution that avoids the tasks of estimating eigenfunctions or solving
operator Riccati equations, which are formidable in the case of nonconstant coeCcients.
The present paper, besides generalizing the class of systems in [1,2] (the expanded class now includes,

for example, the linearized model of the solid propellant rocket instability [3]), o"ers a very di"erent, and
remarkably more elegant proof technique. Boundedness of the coordinate transformation kernel, whose trace
on the boundary is the gain kernel function k1, is the key result. In [1,2] this result involved deriving
extremely complicated formulae for the exact form of the transformation. In this paper the boundedness of
the transformation is proved without solving for it. The boundedness proof is essentially stability analysis for
a complicated LTV di"erence equation on an in&nite-dimensional state space.
This paper is organized as follows. In Section 2 we lay out our strategy for the solution of the stabilization

problem. We design a coordinate transformation for a semi-discretization of our system which maps it into an
exponentially stable system and derive a recursive relationship for the kernel of transformation in Section 3.
The recursive relationship is written in the form of a system of second-order di"erence equations in Section 4.
Our main theorem on the stability of this system is proven in Section 5. The stability result shows the uniform
boundedness of the discretized coordinate transformations as the grid is re&ned. This implies the existence of

1 The case of Dirichlet boundary condition at the zero end (q =∞) can be handled the same way.
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the stabilizing boundary control law (1.4), as it was shown in [1,2]. For completeness we included in Section
6 a theorem on the well posedness of the controlled system (1.1)–(1.4).

2. Backstepping transformation

We look for a coordinate transformation

w(x; t) = u(x; t)−
∫ x

0
k(x; �)u(�; t) d�; x∈ [0; 1]; t ¿ 0; (2.1)

that transforms system (1.1)–(1.4) into the exponentially stable system

wt(x; t) = �wxx(x; t) + b(x)wx(x; t)− cw(x; t); x∈ [0; 1]; t ¿ 0; (2.2)

where c¿q2 and the boundary conditions are

wx(0; t) = qw(0; t); ∀t ¿ 0; (2.3)

w(1; t) = 0; ∀t ¿ 0: (2.4)

Once transformation (2.1) is found, it is realized through the stabilizing boundary control (1.4) with k1(·) =
k(1; ·).
Substituting (2.1) into Eq. (2.2) and using Eq. (1.1) results in the following weak formulation of a hyper-

bolic partial di"erential equation for the function k:

0 =
∫ x

0
(�kxx(x; �)− �k��(x; �) + k�(x; �)b(�) + kx(x; �)b(x))u(�; t) d�

−
∫ x

0
k(x; �)(�(�) + c − b′(�))u(�; t) d� −

∫ x

0
k(x; �)(g(�)u(0; t) + d(�)u(
�; t)

+
∫ �

0
f(�; s)u(s; t) ds) d� + �2

(
d
dx

k(x; x)
)

u(x; t) + �(qk(x; 0)− k�(x; 0))u(0; t)

+ k(x; 0)b(0)u(0; t)+(�(x)+c)u(x; t)+g(x)u(0; t)+d(x)u(
x; t)+
∫ x

0
f(x; �)u(�; t)d� (2.5)

for all x∈ [0; 1].
In order to &nd (2.1) in a constructive way we &rst discretize (1.1)–(1.4), then we develop a stabilizing

coordinate transformation for the discretized system and &nally we show that the discretization converges to
an in&nite-dimensional transformation. We de&ne kn

ij = k((i−1)h; (j−1)h), un
i =u((i−1)h; t), bn

i =b((i−1)h)
for t ¿ 0, i; j = 1; : : : ; n, n = 1; 2; : : : where h = 1=n, and the &nite di"erence discretization of the rest of the
functions is de&ned the same way. The discretized version of coordinate transformation (2.1) now has the
form

wn = un − hKnun; n = 1; 2; : : : (2.6)

where

wn = [wn
1 ; w

n
2 ; : : : ; w

n
n]

T; (2.7)

un = [un
1; u

n
2; : : : ; u

n
n]

T (2.8)

and

Kn = [kn
ij]n×n (2.9)
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with the convention that

kn
ij = 0 for j ¿ i: (2.10)

A discretization of system (1.1)–(1.4) with respect to the spatial variable x using &nite di"erences is
un
1 − un

0

h
= qun

1; (2.11)

u̇n
i = �

un
i+1 − 2un

i + un
i−1

h2
+ bn

i
un
i − un

i−1

h
+ �n

i u
n
i + gn

i u
n
1 + dn

i u
n
[
i]+1 + h

i∑
j=1

fn
iju

n
j ; i = 1; : : : ; n;

(2.12)

un
n+1 = h

n∑
j=1

kn
nju

n
j : (2.13)

The exponentially stable transformed system (2.2)–(2.4) has the discretized form
wn
1 − wn

0

h
= qwn

1 ; (2.14)

ẇn
i = �

wn
i+1 − 2wn

i + wn
i−1

h2
+ bn

i
wn

i − wn
i−1

h
− cwn

i ; i = 1; : : : ; n; (2.15)

wn
n+1 = 0: (2.16)

As it was shown in [1,2], the convergence of the &nite-dimensional transformation (2.6) to the in&nite-
dimensional one (2.1) reduces to proving the uniform boundedness of ‖Kn‖m =maxi; j=1; :::; n |kn

ij| in n. Since n
plays an important role, we will keep the superscript n notation throughout the paper. Any other superscript
will refer to powers. We note here that ‖ · ‖m is di"erent from the regular matrix ∞-norm.

3. Finding the gain kernel

In this section we derive a recursive relationship for the kernel {kn
ij}i; j=1; :::; n. We have from (2.14)

wn
0 = (1− qh)un

1 (3.1)

and from (2.15)

�wn
i+1 = (2� + ch2 − bn

i h)w
n
i − (� − bn

i h)w
n
i−1 + h2ẇn

i ; i = 1; : : : ; n: (3.2)

With the help of Eqs. (2.6) and (2.12) we get

�

un
i+1 − h

i∑
j=1

kn
iju

n
j

= (2� + ch2 − bn
i h)

un
i − h

i−1∑
j=1

kn
i−1; ju

n
j



− (� − bn
i h)

un
i−1 − h

i−2∑
j=1

kn
i−2; ju

n
j

+ h2

u̇n
i − h

i−1∑
j=1

kn
i−1; j u̇

n
j


=
(
2� + h2c − hbn

i

)
un
i − (2� + h2c − hbn

i )h
i−1∑
j=1

kn
i−1; ju

n
j − (� − hbn

i )u
n
i−1
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+ (� − hbn
i )h

i−2∑
j=1

kn
i−2; ju

n
j + h2

(
�
un
i+1 − 2un

i + un
i−1

h2
+ bn

i
un
i − un

i−1

h

)

+ h2

�n
i u

n
i + gn

i u
n
1 + dn

i u
n
[
i]+1 + h

i−1∑
l=1

fn
ilu

n
l − h

i−1∑
j=1

kn
i−1; j u̇

n
j


= �un

i+1 + h2(c + �n
i )u

n
i − (2� + h2c − hbn

i )h ×
i−1∑
j=1

kn
i−1; ju

n
j + (� − hbn

i )h
i−2∑
j=1

kn
i−2; ju

n
j

+ h2gn
i u

n
1 + h2dn

i u
n
[
i]+1 + h3

i−1∑
l=1

fn
ilul − h3

i−1∑
j=1

kn
i−1; j

(
�
un
j+1 − 2un

j + un
j−1

h2
+ bn

j

un
j − un

j−1

h

+ �n
j u

n
j + gn

j u
n
1 + dn

j u
n
[
j]+1 + h

j−1∑
l=1

fn
jlu

n
l

)
(3.3)

for i = 1; : : : ; n. Rearranging (3.3) and using (2.11) we obtain

�
i∑

j=1

kn
iju

n
j = (2� + ch2 − bn

i h)
i−1∑
j=1

kn
i−1; ju

n
j

−(� − bn
i h)

i−2∑
j=1

kn
i−2; ju

n
j − h(c + �n

i )u
n
i − hgn

i u
n
1 − hdn

i u
n
[
i]+1

−h2
i−1∑
l=1

fn
ilu

n
l + kn

i−1;1(�u
n
2 − (�(1 + hq)− h2(gn

1 + �n
1 + dn

1 + bn
1q))u

n
1)

+
i−1∑
j=2

kn
i−1; j(�u

n
j+1 − (2� − hbn

j )u
n
j + (� − hbn

j )u
n
j−1 + h2gn

j u
n
1 + h2�n

j u
n
j + h2dn

j u
n
[
j]+1)

+h3
i−1∑
j=2

j−1∑
l=1

kn
i−1; jf

n
jlu

n
l : (3.4)

In the next step we are going to use the identities
i−1∑
j=2

j−1∑
k=1

kn
i−1; jf

n
jku

n
k =

i−2∑
j=1

i−1∑
l=j+1

kn
i−1; lf

n
lju

n
j =

i−2∑
j=1

i−1∑
l=j

kn
i−1; lf

n
lju

n
j ; (3.5)

where that latter equality holds after setting flj = 0, j¿ l. Comparing coeCcients of uj’s in (3.4) results in
recursive relationships

kn
i1 =

1
�

[
(� − hbn

i − �hq + h2(c + �n
1 + bn

1q))k
n
i−1;1 + (� − hbn

2)k
n
i−1;2 − (� − hbn

i )k
n
i−2;1

+ h2
i−1∑
l=1

kn
i−1; l(g

n
l + dn

l ![
l];0 + hfn
l1)− hgn

i − hdn
i ![
i];0 − h(c + �n

1)!i1 − h2fn
i1

]
(3.6)
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and

kn
ij =

1
�

(h(bn
j − bn

i ) + h2(c + �n
j ))k

n
i−1; j + �kn

i−1; j−1 + (� − hbn
j+1)k

n
i−1; j+1 − (� − hbn

i )k
n
i−2; j

+ h2
i−1∑
l=j

kn
i−1; l(d

n
l ![
l]+1; j + hfn

lj)− h2fn
ij − h(c + �n

j )!ij − hdn
i ![
i]+1; j

 (3.7)

for j = 2; : : : ; i. Our next goal is to show that the solution kn
ij to these recursive relations remain uniformly

bounded as j = 1; 2; : : : ; i, i = 1; 2; : : : ; n and n → ∞.

4. Di�erence equation governing the kernel

Eqs. (3.6) and (3.7) can be written in the form of a system of second-order di"erence equations,

kn
i+1 = "̃ikn

i −
(
1− hbn

i+1

�

)
kn
i−1 + fn

i ; i = 1; : : : ; n − 1; (4.1)

where

kn
i = [kn

i1; k
n
i2; : : : ; k

n
in]

T; (4.2)

(fn
i )1 =−h

�
(gn

i+1 + (c + �n
1)!i+1;1 + dn

i+1![
(i+1)];0 + hfn
i+1;1); (4.3)

(fn
i )j =−h

�
((c + �n

j )!i+1; j + dn
i+1![
(i+1)]+1; j + hfn

i+1; j) for j ¿ 1 (4.4)

and "̃i = [(#n
i )lj]n×n with

(#n
i )lj =



0 if j ¡ l − 1;

1 if j = l − 1;

1 +
h
�
(−bn

i+1 − �q + h(c + �n
1 + bn

1q + gn
1 + dn

1)) if j = l = 1;

h
�
(bn

l − bn
i+1 + h(c + �n

l ) + hdn
l ![
l]+1; l) if j = l = 1;

1 +
h
�
(−bn

2 + h(gn
2 + dn

2![2
];0 + hfn
21)) if l = 1; j = 2;

1 +
h
�
(−bn

j + h(dn
j ![
j]+1; j−1 + hfn

jl)) if j = l + 1¿ 1;

h2

�
(gn

j + dn
j ![
j];0 + hfn

j1) if l = 1; j ¿ 2;

h2

�
(dn

j ![
j]+1; l + hfn
jl) if j ¿ l + 1; l = 1:

(4.5)
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As it is seen from (4.5), "̃i has the form

"̃i = " +O"iO(h); (4.6)

where

" =



1 1

1 0
. . . 0

. . .
. . .

. . .

0
. . .

. . . 1

1 0


(4.7)

and

O"i =



1 1

. . .
. . . O(h)

. . .
. . .

0
. . . 1

1


: (4.8)

Here and below O(h) denotes an expressions for which there exists a uniform constant M ¿ 0 such that
O(h)6Mh. De&nitions (4.3) and (4.4) imply that

(fn
i )j =

{
O(h) if j = 1; i + 1; [
(i + 1)] + 1;

O(h)2 otherwise
(4.9)

for i = 1; : : : ; n, and hence

sup
l¿1

‖fn
l ‖16 2

h
�

(
c + sup

l¿1
|�n

l |+ sup
l¿1

|dn
l |+ sup

l; j¿1
|fn

lj|+ sup
l¿1

|gn
l |
)

= O(h): (4.10)

Eq. (4.1) now produces its own initial conditions through convention (2.10), namely

kn
0 = 0 (4.11)

and

kn
1 =

[
−h

�
(gn

1 + dn
1 + c + �n

1); 0; : : : ; 0
]T

: (4.12)

Using notation

$n
i =

[
kn
i−1

kn
i

]
(4.13)
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we obtain from (4.1)

$n
i+1 = Ãn

i $
n
i +

[
0

fn
i

]
; (4.14)

where

Ãn
i =

[
0 In×n

−(1− bn
i+1h=�)In×n "̃i

]
(4.15)

and

Fi =

[
0

fn
i

]
: (4.16)

The matrix Ãn
i can be written as

Ãn
i = A +OAi; (4.17)

where

A =

[
0 In×n

−In×n "

]
(4.18)

and

OAi =

[
0 0

In×n ORi

]
O(h): (4.19)

Notice that ‖OAi‖1 = O(h). The initial condition of system (4.14) is

$n
1 =

[
kn
0

kn
1

]
(4.20)

which, according to (4.11) and (4.12), has 1-norm that is O(h) as well. Eq. (4.14) can also be written in the
following form:

$i+1 = A$i +OAi$i + Fi = Ai$1 +
i∑

j=1

Ai−j(OAj$j + Fj)

= Ai$1 +
i∑

j=1

Ai−jFj +
i∑

j=1

Ai−jOAj$j: (4.21)

5. Proof of the main result

With the help of the matrix di"erence equation (4.21) we are going to prove our main theorem on the sta-
bility of Eqs. (4.1)–(4.5). For this purpose we need to use two lemmas. The &rst lemma is on the boundedness
and structure of powers of matrix A.

Lemma 5.1. Assume that a matrix A is of the form

A =

[
0 In×n

−In×n "

]
; (5.1)
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where

" =



1 1

1 0
. . . 0

. . .
. . .

. . .

0
. . .

. . . 1

1 0


: (5.2)

Then powers of matrix A have the form

Ai =

[−Pi−1 Pi

−Pi Pi+1

]
for i = 1; 2; : : : ; n; (5.3)

where

(Pi)kl =


1 if k + l6 i + 1 or

if k − l = i − 1; i − 3; : : : ;−i + 3;−i + 1 and k + l6 2n − i + 1;

0 otherwise:

(5.4)

Proof. From (4.18) and (4.7) we obtain structure (5.3) of matrices Ai where the matrices Pi have to satisfy
the di"erence equation

Pi+1 = "Pi − Pi−1; i = 1; 2; : : : (5.5)

with initial conditions

P0 = 0 and P1 = I: (5.6)

In order to better understand the structure of Pi de&ned in (5.4) we provide here P6 for n=10 as an example.

P6 =



1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 1 0 0 0

1 1 1 1 0 1 0 1 0 0

1 1 1 0 1 0 1 0 1 0

1 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0



: (5.7)
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Substituting (Pi+1)kl, (Pi)kl and (Pi−1)kl for k; l=1; 2; : : : ; n from (5.4) into (5.5) and using de&nition (4.7) of
" we see the unique solution of (5.5) is given by (5.4). With this we obtain the statement of the lemma.

Remark 1. Although it does not help in establishing the stability properties of our unperturbed system, it is
interesting to note the special eigenvalue structure of matrix A. All the eigenvalues of A are distributed evenly
along the unit circle, i.e., the eigenvalues of A are �=eIl-=(2n+1), l=1; 2; : : : ; 2n, where I denotes the imaginary
unit.

Proof. We &rst transform the characteristic equation of A to a characteristic equation that corresponds to a
real symmetric matrix.

det(A − �I) = det

([ −� In×n

−In×n " − �

])

= det

([
0 −In×n

In×n 0

][
0 In×n

−In×n 0

][ −� In×n

−In×n " − �

])

= det

([
0 −In×n

In×n 0

])
det

([−In×n " − �

� −In×n

])

= det

([−In×n " − �

� −In×n

])

= det(−In×n − (" − �)(−In×n)−1�)det(−In×n)

= (−1)ndet(−�2 − In×n + �"): (5.8)

In the &fth step above we used the identity

det

(
A B

D C

)
= det(A − BC−1D) det(C): (5.9)

Note that �=0 is not a root of (5.8), hence we can factor out � and obtain that the roots of (5.8) are identical
to the roots of

det(" − 0In×n) = 0; (5.10)

where

0 =
�2 + 1

�
: (5.11)

We now determine the eigenvalues 0 of matrix ". Along the line of [10, Appendix II] we obtain recursive
relations

1l(0) = 01l−1(0)− 1l−2(0); l = 1; : : : ; n: (5.12)

Introducing a new variable ! through the relation

0 = ! +
1
!

(5.13)
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we obtain by induction the general expression

1n(!) =
n∑

i=−n

!i (5.14)

that, in turn, can be written as

1n(!) = !−n !
2n+1 − 1
! − 1

: (5.15)

The roots of (5.15) can be easily found to be

!l = eIl2-=(2n+1); l = 1; 2; : : : ; 2n: (5.16)

Using (5.16) with (5.13) we obtain that the eigenvalues of " are

0l =−2 cos
l2-

2n + 1
; l = 1; 2; : : : ; n: (5.17)

Eq. (5.11) results in the quadratic equations

�2 − 0l� + 1 = 0; l = 1; 2; : : : ; n: (5.18)

Using (5.17) it is easy to see that Eq. (5.18) has solutions �=eIl-=(2n+1), l=1; 2; : : : ; 2n. With this we obtain
the statement of the remark.

In the proof of our main theorem we will also use the discrete time Gronwall lemma. Its proof for a more
general case can be found, for example, in [5, Appendix E].

Lemma 5.2. Assume that

mk 6 c +
k−1∑
l=0

mlgl; (5.19)

where m and g are positive sequences. Then

mk 6 c exp

{
k−1∑
l=0

gl

}
: (5.20)

We now state and prove our main theorem.

Theorem 5.1. Solutions of the system of second-order di8erence equations (4.1)–(4.5) with initial conditions
(4.11)–(4.12) are bounded uniformly in n. More precisely, there exists a constant C ¿ 0, whose size depends
on the size of constants and supremum norm of functions in assumption (1.5), such that

sup
n¿1

max
i=1;:::; n

‖kn
i |∞6C: (5.21)

Proof. As a result of Lemma 5.1 the powers of matrix A up to power n have entries that are equal to −1,
0 or 1. We are going to use the non-submultiplicative matrix norm

‖A‖1;∞ = sup
x �=0

‖Ax‖∞
‖x‖1 = max

i; j
|(A)ij|

which in the case of our A matrix gives

‖Aix‖∞6 ‖Ai‖1;∞‖x‖1
= ‖x‖1; for i = 1; 2; : : : ; n: (5.22)
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Since ‖$1‖1 = ‖Fj‖1 = ‖OAj‖1 = O(h) for all j = 1; 2; : : : ; n, hence multiplication by powers of A results in
O(h) in&nity norms. We then obtain from (4.21) for i = 1; 2; : : : ; n − 1 that

‖$i+1‖∞ =

∣∣∣∣∣∣
∣∣∣∣∣∣Ai$1 +

i∑
j=1

Ai−jFj +
i∑

j=1

Ai−jOAj$j

∣∣∣∣∣∣
∣∣∣∣∣∣
∞

6 ‖Ai$1‖∞ +
i∑

j=1

‖Ai−jFj‖∞ +
i∑

j=1

‖Ai−jOAj‖∞‖$j‖∞

6 ‖$1‖1 +
i∑

j=1

‖Fj‖1 +
i∑

j=1

‖OAj‖1‖$j‖∞: (5.23)

Using the discrete Gronwall lemma we obtain

‖$n‖∞6
‖$1‖1 +

n−1∑
j=1

‖Fj‖1
 e

∑n
j=1 ‖OAj‖1 : (5.24)

Since ‖$1‖1, ‖Fj‖1 and ‖OAj‖1 are all of order O(h), for j = 1; 2; : : : ; n,

‖$n‖∞6O(1)exp{O(1)}=O(1): (5.25)

This proves the theorem.

Remark 2. For the very simple case of our previous paper where b=q=d=b=f=0, estimate (5.24) gives
us the bound (c + �)=� for the approximating kernel gain.

With this we can prove (as it was done in [1,3]) Theorem 1.1, the existence of an in&nite dimensional
coordinate transformation (2.1) and stabilizing boundary control (1.4).

6. Existence and uniqueness of closed-loop solutions

For completeness we establish the local in time existence and uniqueness of classical solutions to system
(1.1)–(1.4) for the case of b∈C1(0; 1) and continuous initial data u0 ∈C(0; 1) using a contraction mapping
argument [9]. For less smooth initial data, namely for u0 ∈L∞(0; 1), the existence of classical solution for
t ¿ 0 follows from the well-known smoothing properties of the heat equation (see, e.g., [4]). Once the local
in time existence obtained, the global existence follows from the stability properties.
We de&ne

S� = sup
x∈[0;1]

|�(x)− b′(x)|; Sd = sup
x∈[0;1]

|d(x)|; Sg = sup
x∈[0;1]

|g(x)|; (6.1)

Sf = sup
(x;�)∈[0;1]×[0;1]

|f(x; �)|; Sk = sup
x∈[0;1]

|k1(x)|; Sb = sup
x∈[0;1]

|b(x)|: (6.2)

Let

G(x; �; t; 4) = 2
∞∑
n=1

cos(�nx) cos(�n�)e−��2n(t−4) (6.3)
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denote Green’s function corresponding to the heat operator

Lu = ut − �uxx; x∈ (0; 1); t ¿ 0 (6.4)

with boundary conditions

ux(0; t) = 0; (6.5)

u(1; t) = 0; (6.6)

where

�n = (2n − 1)
-
2
; n = 1; 2; : : : : (6.7)

The solutions to our system (1.1)–(1.4) are the &xed points of the operator

Fu(x; t) =
∫ 1

0
G(x; �; t; 4)u0(�)d� −

∫ t

0

∫ 1

0
G�(x; �; t; 4)b(�)u(�; 4) d� d4

+
∫ t

0

∫ 1

0
G(x; �; t; 4)(g(�)u(0; 4) + (�(�)− b′(�))u(�; 4)) d� d4

+
∫ t

0

∫ 1

0
G(x; �; t; 4)

(
d(�)u(
�; 4) +

∫ �

0
f(�; y)u(y; 4) dy

)
d� d4

+
∫ t

0
G(x; 1; t; 4)(1 + b(1))

∫ 1

0
k1(�)u(�; 4) d� d4

−
∫ t

0
G(x; 0; t; 4)(b(0) + q)u(0; 4) d4; x∈ [0; 1]; t ¿ 0: (6.8)

The local in time solvability result follows from contraction mapping argument applied to the iteration um+1=
Fum with some starting function u1, where QT = [0; 1]× [0; T ] and

max
(x; t)∈QT

|u1(x; t)|6M0 ≡ 2 sup
x∈[0;L]

|u0(x)|: (6.9)

According to the properties of the heat equation kernel function G (see, e.g., [7]) we obtain that the function

#(T ) = max

{
max

(x; t)∈QT

∫ t

0

∫ 1

0
|G�(x; �; t; 4)| d� d4; max

(x; t)∈QT

∫ t

0
|G(x; 0; t; 4)| d4; max

(x; t)∈QT

∫ t

0
|G(x; 1; t; 4)| d4

}
(6.10)

converges to zero monotonically as T → 0. We now choose T ¿ 0 suCciently small such that

#(T )(1 + Sg + S� + Sd + Sf + (1 + Sb) Sk + ( Sb + q))¡ 1
2 : (6.11)

We obtain by induction that

max
(x; t)∈QT

|um+1(x; t)|6 sup
x∈[0;1]

|u0(x)|+ max
(x; t)∈QT

∫ t

0

∫ L

0
|G�(x; �; t; 4)|d� d4 max

(x; t)∈QT

|um(x; t)|

+ max
(x; t)∈QT

∫ t

0

∫ L

0
|G�(x; �; t; 4)| d� d4

[
max

(x; t)∈QT

(
g(x)um(0; t) + (�(x)− b′(x))um(x; t)

+d(x)um(
x; t) +
∫ x

0
f(x; y)um(y; t) dy

)]
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+(1 + Sb) Sk max
(x; t)∈QT

∫ t

0
|G(x; L; t; 4)| d4 max

(x; t)∈QT

|um(x; t)|

+( Sb + q) max
(x; t)∈QT

∫ t

0
|G(x; 0; t; 4)| d4 max

06t6T
|um(0; t)|

6 1
2M0 + #(T )M0(1 + Sg + S� + Sd + Sf + (1 + Sb) Sk + ( Sb + q))

6M0 (6.12)

for all m = 1; 2; : : : : In a similar way we obtain

max
(x; t)∈QT

|um+1(x; t)− um(x; t)|6 1
2 max
(x; t)∈QT

|um(x; t)− um−1(x; t)|:

As a result, the sequence {um}m¿1 converges uniformly to a unique continuous function u on QT for suCciently
small T ¿ 0. Once the continuity of the solution is obtained, the general theory of parabolic equations (see,
e.g. [6]) implies that u is a classical solution.
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