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Passivity and Parametric Robustness of a New 
Class of Adaptive Systems*t 

MIROSLAV KRSTI(~,~t IOANNIS KANELLAKOPOULOS§ and PETAR V. KOKOTOVI(~t 

A recently proposed class o f  adaptive controllers is presented from a 
passivity perspective, its underlying linear nonadaptive controller is 

revealed, and a parametric robustness property proven. 
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Abstraet--A recently proposed recursive design of adaptive 
controllers for minimum phase linear systems with known 
but arbitrary relative degree is presented from a passivity 
perspective and stability is deduced from the well-known 
links between passivity and Lyapunov stability. With 
adaptation switched off, the feedback system is linear and has 
an additional parametric robustness property. 

1. INTRODUCTION 

Most AI~,rrvE designs (Astrt~m and Witten- 
mark, 1989; Goodwin and Sin, 1984; Narendra 
and Annaswamy, 1989; Sastry and Bodson, 1989) 
view multiplicative nonlinearities as 'adjustable 
parameters', in spite of the fact that these 
'parameters' participate in highly nonlinear 
transients. 

In a drastic departure from the existing 
adaptive outlook, we introduced a design of 
adaptive controllers as nonlinear feedback 
controllers (Krsti6 et al., 1994). In this paper we 
reveal further useful properties of the designed 
adaptive systems. The most important among 
those are a strict passivity property of the main 
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adaptation loop and a parametric robustness 
property of the underlying linear system when 
the adaptation is switched off. These properties 
belong to the list of desirable but unachieved 
goals of the traditional adaptive control. 

Our presentation begins with preliminary 
developments in Section 2, where we give a 
detailed form of the state estimation filters. Our 
recursive design for plants of relative degrees 
one and two is presented in Section 3. The 
relative-degree-two scheme of this section 
resembles the relative-degree-two direct MRAC 
scheme in Narendra and Annaswamy (1989). 
Both schemes incorporate ~ in the control law u, 
and use unnormalized gradient update laws 
derived from strictly passive error systems. The 
difference is in the new form of the underlying 
nonadaptive controller which avoids the re- 
parametrization required by the direct MRAC 
scheme and contains design coefficients which 
can be used to improve transients. The new 
scheme also avoids the need for regressor 
filtering. 

The effectivenss of the new approach is fully 
expressed in the general design for relative 
degree ---3 presented in Section 4. This section 
provides a new passivity perspective on the 
backstepping design (Kanellakopoulos et al., 
1991a, b; Marino and Tomei, 1991; KaneUako- 
poulos et al., 1992; Krsti6 et al., 1992). Similar to 
its earlier nonadaptive forms (Kokotovi6 and 
Sussmann, 1989; Saberi et al., 1990; Byrnes et al., 
1991; Ortega, 1991; Lozano et al., 1992), this 
form of adaptive backstepping avoids the 
relative degree obstacle and leads to the desired 
strict passivity property for any linear minimum 
phase plant. Another way to avoid the relative 
degree obstacle, is using the high order tuners 
(Morse, 1992). A stability proof based on the 



1704 M. KRSTI~ et al. 

links between passivity and Lyapunov stability, is 
outlined in Section 5. 

Although the new adaptive design is non- 
linear, the underlying system with the adaptation 
switched off is linear. This detuned  linear system, 
discussed in Section 6, has a remarkable 
robustness property. When a bound on plant 
parameter uncertainty is known, design para- 
meters can be chosen to guarantee stability 
without adaptation. For traditional model 
reference schemes, a similar parametric robust 
stability is achieved by introducing approximate 
derivatives in the control law (Sun et al., 1991). 
The parametric robustness of the detuned linear 
systems indicates a separation of tasks of the 
nonadaptive and adaptive parts of the design. If 
the parameter uncertainty is small and the 
required values of the design parameters do not 
lead to high-gain feedback, then the use of 
adaptation can be avoided. If this is not the case, 
the adaptation is included to reduce the effects 
of parameter uncertainty. The structure of the 
underlying nonadaptive linear controller is given 
in Section 7. In Section 8, we illustrate the 
properties of the new adaptive systems on a 
relative-degree-three example. 

2. PRELIMINARIES 

2.1. Prob lem statement  
The control objective is to asymptotically track 

a reference signal yr(t) with the output y of the 
plant 

B ( s )  . , 
y ( s l  : - ~  u(s  ) 

bins m + . . .  + b l s  + bo 

- - S  n + a n - i  s n - 1  + " " " + a l S  + ao 
u(s).  (1) 

Assumpt ion  1. The plant is minimum phase, i.e. 
the polynomial B ( s )  = b , , s "  + .  • • + b l s  + bo is 
Hurwitz, and the plant order n, relative degree 
p = n - m ,  and high-frequency gain bm are 
known. 

Assumpt ion  2. The reference signal y,(t) and its 
first p derivatives are known and bounded, and, 
in addition, y~P)(t) is piecewise continuous. In 
particular, y,(t) may be the output of a reference 
model of relative degree Pr > P with a piecewise 
continuous input r(t). 

To simplify our presentation, we will consider 
the case where the high-frequency gain b,, is 
known, b,,, = 1. In a companion paper, the 
results have been extended to the case where 
only the sign of b,, is known (Krsti6 et al., 1994). 

2.2. State estimation filters 
As in most traditional adaptive schemes, we 

first design state estimation filters. To this end, 
we represent the plant (1) as 

f ( l  = X2  - a n - l y ,  

X p - - I  ~-- Xp  - -  a m + l Y  , 

YCp = Xp+l - amy + u, (2) 

Yen = - a o y  + bou, 

y = x l .  

In our recursive procedure, called 
backstepping, intermediate variables are succes- 
sively treated as 'virtual controls'. If the 
parameters a~, b~ were known and the state 
variables xz . . . .  , x ,  were measured, backstep- 
ping would successively treat x2, x 3 , . . .  , x  0 as 
virtual controls. Since these variables are not 
measured, we must replace them by some 
estimates. To construct these estimates, we 
employ the filters 

~, = Ao~,  + ky, 

~i=Ao~i+en_iY, O < - i < - n - 1 ,  (3) 

iJi=Aov~ +e,_~u, O<-i<-m, 

commonly used in adaptive observers (Kreissel- 
meier, 1977), where e~ denotes the ith coordinate 
vector in •". The vector k = [kl . . . . .  k,] T is 
chosen so that the matrix 

Z 0 

is Hurwitz. If the parameters al, bi were known, 
then the vector ~, - E7 .-1 ai~ + v,. + ~,?=-o ~ b~v~ 
would be an exponentially convergent estimate 
of x, because 

e = x - - ai~i + v,, + bivi , (4) 
i =0  i = 0  

= Aoe. (5) 

From (3) it may appear that m + n + 2 filters are 
needed to generate the signals ~i and vi. 
Fortunately, this is not so. In view of 
A~en = e , - 1 ,  O<-i<-n - 1 and Age, = -k ,  
employing the algebraic expressions 

~:i = A~r/, 0 -< i -< n - 1, ~:, = -Ag17, 
(6) 

vi= A~oA, O<_i <_m, 

it is easy to prove that these signals can be 
obtained from only two filters, one at the output 
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and the other at the input of the plant (1): 

¢/=A0~/+ e,y ,  
(7) 

= AoA + e,,u. 

Let 0 be an estimate of the parameter vector 

0 r =  [ -a , -1  . . . .  , -ao, b m - 1 , . . . ,  bo], (8) 

and let 0 = 0 -  0 be the corresponding para- 
meter estimation error. We will need a compact 
form of x2. Introducing the signal row-vectors 

~(2) = [~n--1,2,...,~0,21, ~(2) = [Vm--I,2,...,V0,2], (9 )  

combining (4), (8) and (9) we obtain 

x~ = v..,~ + ~.,~ + [~(~), ~(~)10 

+ [f(2), 9(2)]0 + e2. (10) 

The first three terms in this compact expression 
are implementable. The last two terms incorpor- 
ate the estimation errors 0 and e2, which are 
unknown. However, from (5) it is known that e2 
is a bounded exponentially decaying signal. 

The key expression (10) is the starting point of 
our recursive procedure. 

2.3. Backstepping with passivity 
At each step i of the recursive procedure we 

construct an error system ~ and a tuning function 
r~ as its output. For each error system we design 
a stabilizing function a~ to guarantee that the 
operator from the parameter error input 0 to the 
tuning output r~ is strictly passive. At each 
consecutive step the order of the error system 
is increased by one. The design is completed at 
the pth step, where p is the relative degree of 
equation (1). A schematic representation of the 
recursive procedure is given in Fig. 1, where the 
last tuning function r, is used to close the 
adaptive feedback loop via the passive para- 
meter update law ~ = Fr  o with a positive definite 
gain matrix F. In the procedure we will also use 
the positive constants c~, d~, 1 < i - p. 

_c" 

i ; r l  ', 
i - I-';" ,r2 
I ,S1, ,t_.;. 

. . . . .  E . . .  

s ,  

FIG. 1. The schematic representation of the design 
procedure. 

3. DESIGN FOR RELATIVE DEGREE ONE AND 
TWO 

For a plant of relative degree p, the recursive 
design procedure is in p steps. The reason the 
design is completed at the pth step is that the 
control u appears for the first time in the pth 
equation of (2). Although in this section we deal 
with plants of relative degree one and two, so 
that u should appear in the first or the second 
equation of (2), we will present the first two 
steps of the procedure in a form convenient for 
higher relative degree design. At each step we 
indicate how to complete the design if this 
happens to be the final step. 

Step 1. We start with the equation for the 
tracking error zl --y -Yr, namely 

~1 =x2 - a , - l y  --3~r. (11) 

Before we replace x2 from the key expression 
(10), we define the regressor vector 

tot = [f(2) + e~y, v(2)], (12) 

where e~y is added to the vector [f(2), v(2)] to 
account for the term a , - l y  in (11). Now the 
substitution of (10) and (12) into (11) results in 

~1 = v,,,,2 + ~,,2 + toT0 -- )~r + toT0 + e2. (13) 

If the plant relative degree were p =1,  an 
additional term in (11) would be the actual 
control u for which we would design our 
stabilizing control law a l. To prepare for a 
higher relative degree design we choose v,,,,2 to 
be our first virtual control and design for it a 
stabilizing feedback law 

a l  ~-  - - C l Z l  - -  dlzl  - ~.2 + )~r - t o T 0 .  (14) 

If Vm,2 were our actual control, the substitution 
of Vm,2 = al into (13) would result in 

~1 = -clz~ - d~Zl + toT0 + e2, (15) 

which is an exponentially stable system per- 
turbed by the estimation error terms toT0 + e2. 

This, together with (5), g = Aoe, is our first 
error system 5e~ in which we treat 0 as the input. 
For this input we now select our first tuning 
output zl so that the operator from 0 to r I is 
strictly passive. This output can be defined using 
the transpose to of the input vector toT namely. 

zl = tozl. (16) 

The strict passivity of the operator from 0 to z~ 
follows from the fact (see Appendix A) that 
there exist a storage function V~(z~, e), and a 
dissipation rate qh(z~, e), such that 

zTOd~r >- V,(t) - VI(0) + $,(cr)dcr. (17) 
J 
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In particular, (17) is satisfied for (15) with 

l(zz~ + 1 eTPe) V,(z,, 6") = ~ 

and 

@,(z, ,  6") = c,z~ + 1__ 6"~6". 
4dl 

To see this, note that from (5) and (15) we 
obtain 

V1 ~ -cIZ21 "t- ZltOTo -- d ,  Z, -- ~ 1  6"2 

1 
-- - -  6"T6" 

4dl 

1 
~-~ --CIZ2 -- ~ 1  6"T6" -t- ZltOT0. (18) 

For the integral of the input-output  product 
z~0 = Z~tOT0 to appear, we integrate (18) over 
[0, t] and verify that (17) is satisfied. 

In view of this strict passivity property, . the 
simplest update law for 0 would be 0 = -  0 = 
Fz~, which is passive because 

' ( _  ~)Tzado- = ½~(t)rF-lO(t) 

- ½0(0 )TF- 'O(0 ) .  (19)  

In the case where p = 1, this would complete 
our design. The true update law would be 

= Fzl, and the actual feedback control law 
would be u = -v,.,2 + oil, where or1 is as in (14). 

Step 2. In the case where p > l ,  we cannot 
implement oil as a control law, and we do not 
use ~ = Fzl as the update law for 0. Instead, we 
retain ~'1 as our first tuning function and a~ as 
our first stabilizing function. 

Since we cannot implement Vm,z=al, we 
introduce an error variable z2 = Vm,2 - a~, which, 
in view of (14), satisfies the equation 

Ool l 
7.2 = llm,3 -- k2vrn,1 -- d---; (~.,2 + Om,2 + toT0 + 6"2) 

dOll dOll "" t~Oll A 
dy Yr--o-~ y , - -d--~(  o~n + ky) 

- ~__o--~(Ao~ +e~_~y) 

__ dOll 

i=0 d 13i,2 

Oct: toTo _ Oct 1 doll 
= Om,3 + #2 -- d--y- ay 6"2---~- 0, (20) 

where #2 denotes all the known terms except for 

vm,3. Combining (13), (14) and (20), we obtain 

Z2 O m , 3 - J - ~ 2 - ' O y  to 0 Oy 6"2 -- 

+ 0. (21) 
__ 0oil toT 

dy 

In the case where p = 2, the actual control u 
would appear in the second equation of (21) and 
would be used to implement the feedback law 
a2. When p > 2, we treat v,,,3 as a virtual control 
and design for it a feedback law Vm,3 = a2 to 
achieve strict passivity of (21) from the input 0 
to a new tuning output T2. To define v2, we use 
the transposed input matrix as the output matrix 

[ o<,, 
r2 = t o ' -  ay tOd LZ2J = q ~ l - - - O y  tOz2. (22) 

If the relative degree were p y 2 ,  we would 
choose the passive update law 0 = Fz2 to close 
the loop around the error system (21). The 
desired strict passivity property of (21) with 
replaced by Fz2 is achieved using the stabilizing 
function 

ol2 = -Zl  - c2z2 - d2\ Oy I z2 - #z 

+ aollay toTO + 0_~0 Fz2. (23) 

Thus, our second error system 5e: consists of 
= Ao6" and 

+ d a l  E2 -~- d°ll  toT 0 

--~yd ay 

:[o, ]rzq 
ay JL~2J" 

(24) 

To prove that in this system the operator from 
to "E' 2 is strictly passive, we introduce 

and 

1 2 

1 T 
q'2 = q', + ¢2z~ + ~ 6" 6", 
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and consider 

190/1 
(f2 ~ - C l Z  2 - c2 z 2  '~ Zl tOT0 - Z2 toT0 dy 

1 2 . {00 /x  1 2 

+ 4d2)e  e 

"+" ([to, 00/1 to] [Zl ] )T0 (25) 
by LZ2J/ " 

Noting that the last term is z~O, we integrate this 
inequality over  [0,t], which proves that the 
operator  from 0 to zz is strictly passive because 

fo fo Z2rO do, -> V2(t) - V2(0) + t#2(o,) do,. (26) 

This would complete our procedure for a 
relative-degree-two plant, in which case we 
would design u = -v,~,3 + 0/2 and ~ = Fz2. In Fig. 
2 we show the adaptive feedback loop for the 
case p = 2. 

The novelty of this step is the presence in the 

control  law o/2 of the 'nonlinear damping' term 

, {00 /A  2 

and of the tuning function "L" 2. 

4. DESIGN FOR HIGHER RELATIVE DEGREE 

The design for relative degree higher than two 
introduces a new tool for achieving skew- 
symmetry of the off-diagonal entries in the error  
system matrix, which is instrumental in the proof  
of strict passivity. 

Step 3. In the case where p > 2 ,  we cannot 
implement a2 as a control law and we do not  use 

= I"C 2 as the update law for 0. Instead, we 
retain z2 as our second tuning function and 0/2 as 
our second stabilizing function. 

We express the derivative of z3 = Vm,3 -- 0/2 as 

00/2 toT 0 00/2 00/2 
43 = Vm,4 + /33 -- 0--~- -- O---y-- e2 - - ~ -  0, (27) 

where /33 encompasses all the known terms for 
Vm,4. We now treat Vm,4 as a virtual control. 
Introducing the new error  variable z4 = Vm,4 - 0/3 
and using (21)-(23),  we write the new error  
system as 

I_ --ClZa -- dlZl + Z2 -~- e2 

~.2 = z~ - c 2 z 2 -  2,, oy / Z2 + Z3 ---~y e2 - . ~  (~ - F h )  

~3 
z4 + a3 + ~3 - Oy~2 ooTO Oa2 Oa2 

Oy - O--ye2--O-O 0 

toT " 

_ Oa~ toT 
+ Oy 

_ 00/2 toT 
ay _ 

0. (28) 

[::} o,T IT[ "r2 

FIG. 2. The feedback connection of the strictly passive error system ,7'2 with a passive update law. 

/ / 
/ / 
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The function o/3 will be chosen to achieve strict 
passivity of (28) from the input 0 to a new tuning 
output ~3. As in previous steps, we use the 
transpose of the input matrix as the output 
matrix, and obtain our third tuning output 

I zl] y J r 3 = to, -- 0--'~7 ~ to, Z2 

Z3 

00/2 
= r2 -- - ~ y  toZ3. (29) 

To make the operator from 8 to r3 strictly 
passive, we choose our third stabilizing function 

aS 

//00/2~ 2 

; 2  00/1 00/2 -b 00/2 toT8 + F'C3 
ay o8  Oy 

- - -  r t oz2 .  (30 )  

The last term in (30) is our new tool introduced 
to counteract the effects of the term 

00/1 ~ A 
00/1 F(ra - h )  = - -  Ftoz3 = o"23Ftoz3 (31) 
08 08 

in the ~2-equation. With this term we achieve the 
skew-symmetry of the off-diagonal entries in the 
error system o~3 consisting of g = A o e  and 

m 

-Cl - d l  

~.2 = 

~3 
0 

1 

--C2 -- d2k c3y ] 

- 1 - o-23rto 

+/ 

L oyj 

00/1 
h =  to, - Oy tO, 

- toT " 

-- 00/1 toT 
Oy 8, 

_ 00/2 toT 
. Oy . 

Oy to Z2 • 

LZ3 ..] 

0 

1 + o.23r'to 

- c 3 -  d3 \  O y / .  

[z,] 
Z2 

Z3 

(32) 

This error system corresponds to the case p = 3 
and is obtained from (28) by substituting z 4 -  0, 
6~ = Fr3, (29) and (30). 

Along with (32) we introduce 

1 v 
V3 = V2 + ] ( z2 &'d33 P c )  

and 

+1 
~3 = ~2 + c3z 2 4d  3 e Te, 

and consider 

3 3 
v3-<- E c~zl + rT8- E d~ 

k=l k=l 

{Oak-1  1 2 3 1 

(c.z:+ 1 ) k=l ~ eTe + g 0 ,  (33) 

where we define ao = - y  for notational con- 
venience. Integrating this inequality over [0, t], 

we prove that the operator from 8 to r3 is strictly 
passive because 

fo fo r l o  do" -> Va(t) - V3(O) + ~/3(o.) do'. (34) 

When p > 3, we have z4 ~ 0 and we do not use 
= Fr3 as the update law for 8. Instead, we 

retain r3 as our third tuning function and 0/3 as 
our third stabilizing function. 

Step  i(3 < i - p ) .  We express the derivative of 
zi = v,,,i - 0/i-1 as 

zi = v,,,,i+l + fli - 00/i------! to To -- - -  
0y 

00/i-1 00/i-1 
Oy e 2 -  0---~--0, 

(35) 
where fll encompasses all the known terms 
except for vm,~÷l. We now treat vm,i+l as a virtual 
control and introduce the new error variable 
Z~÷l = Vm,~+l - 0/~. Then, denoting 

00/k-1 0 % - 1  
O'kJ-~- 08 O y '  
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we write the ith error system as* 
i 

- -  C l Z l  - -  d l Z l  + Z2 + g2 

f O(Xl ~ 2 , ~ a l  ~ l  I 7 ~7. -z,-c2z2-d2t-ffy: z2. z3- -fly ~2- ~ (~ - r,~) 
Z2 

I • 

, . j-1 . {Ooti_l]2 
zj  - ~ o ' k f t O Z k  -- Zj-1 --  CjZj --  a . . ~ ,  Z + Zj+~ - 
i k=2 ' \  Oy ! 

Zi 

Z i + l + Ol i .it- [3i -- O Ol i ------'~l tO T O -- O Ol i --1 

-r, ,)  

Oy Oy 

~Oli-1 
e2 -- 0--'-~'- 

-- tOt " 

OqO~l tOT 

Oy 

Oy 

O O l i - - 1  t O T  

Oy 

3 < - j < - i - 1 .  (36) 

0, 

As in the previous steps, we use the transpose of 
the input matrix as the output matrix to obtain 
the ith tuning output 

Ootl 
r i=  tO' ay 

Ot~i- 1 
= "¢ i -1  . . . .  toZi. 

Oy 

[i] Ooti-1 to]  Z2 

o y  

i 

(37) 

Next, we make the operator from 0 to zi strictly 
passive with the ith stabilizing function 

[00¢i_1 ~2 
Oli = - -Z i - l  -- Cizi -- d i ~ - - ~  ) ~ i  - -  ~ i  

0~-1 toTO + OaL-1 Fz~ 
+ Oy oo 

i - - 1  

- ~ O'kiFtoZk, (38) 
k=2 

where the last term counteracts the effects of the 
terms 

0 0 / k -  1 t9 Cldi- 1 
dak-~ F(Zi - z~_~) = FtOzi 

O0 00 Oy 

= okirtozi (39) 

in the ~k-e(tuations, where 2<-k<-i - 1. If 
Z i + l  ~" 0 and 0 = Fzi, (37) and (38) would result 
in the error system ~ consisting of ~ = Aoe and 

n m 

! Z3 

I Z4 = 

Zi B m 

" - - e l  -- d l  1 

- 1  - c 2 -  d2\ 0y / 

0 - 1 - tr2aFto 

0 

" 1 

Oot l 

- Oy + 

OOli- 1 

. O y .  

. . . . .  - 

0-2 iF t  0 

R tO T - 

_ 00ll  tOT 

e2 + Oy 

_ OOti-1 tOT 

. O y  . 

to 
Oy 

L Z i l  

A 
* For notational convenience we define Zp+~ = O. 

0 

1 + or23Fto 

0 

- 1  - ori_l,iFto 

0 

tr 2i F to 

1 + o'~_LiFto 

_ d.( Oa,-l ~ -c i  ' \  Oy / 

. g 

Zl 

Z2 

Z3 

Zi 
B m 

(40) 
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Along with (40) we introduce 

1 /  e 1 T \ 
V/w~ V/-1 + 2 Iz,+ eee) 

and 

~ = O/~_, + c~z2~ +4~. e're' 

and consider 

i i 

k=l  k=l  

{OOlk- 1 1 2 

k=l ~ k  ETE 

) ~-1 ~ e-re + ~,~0. (41) 

Integrating this inequality over [0, t], we prove 
that the operator  from ~ to T~ is strictly passive 

because 

/0 ri-r0 do" -> V/(t) - Vi(0) + O~(o") do-. (42) 

Our  procedure terminates at i = p, when the 
actual control u appears in lieu of zi+l + m in 
(36)• We complete our design with 

u = ap, (43) 

6 = rrp. (44) 

5, S T A B I L I T Y  F R O M  P A S S I V I T Y  

The following global stability theorem for the 
closed-loop adaptive system was proven in Krsti6 
et al. (1994)• 

Theorem 1. All the states of the closed-loop 
adaptive system consisting of the plant (1), filters 
(7), update law (44) and control law (44) are 
globally uniformly bounded and global asympto- 
tic tracking is achieved: lim [y(t) - yr(t)] = 0. 

Here,  we interpret it in the light of the 
established passivity properties. 

Let us for brevity introduce the notation 

A~(z, t, r )  = 

" - -Cl  --  d l  1 0 

• [ a a ~ ' ~  2 

--1 - - c 2 - a 2 t - ~ y  ) 1 +o'23F~0 

0 - 1 - o-23Fto  • . 

. . . .  

0 -~%oFto • • • 

m 
° ° • 0 

• . .  o- zoF to 

• , 

• •. 1 + o-o_l,oFto 

- 1 - o - p _ l p F t o  - c  a P\ Oy / 

(45) 

bz(x, t, F) = 

" 1 

dot1 

ay 

_ OOtp-x 

_ #Y 

( 4 6 )  

which is slightly abusive because the dependence 
on the states other than z is represented by t. 
The system 

= A o e, 

5Co: ~. =Az ( z ,  t, F)z + be(z, t, F)(to-r0 + e2), (47) 

*:p = tob Wz(z, t, F)Z, 

possesses a strict passivity property from # to zp 

with a storage function 

V(z, e )= 1, -rz ~tz + (1/do)e-rPe) 

and a dissipation rate 

~O(z, e) = 2~=1 cizZi + (1~4do)e-re, 

where 
do __a (Y~=x ( l id,))  -1. 

On the other hand, 

- 0 = r r .  ( 4 8 )  

is passive with a storage function 

Vo(O) = ½OTI"-a /~ .  

By Proposition A.1, the equilibrium e = 0, 
z = 0, 0 = 0 of the dynamic system (47) and (48) 
is globally uniformly stable• This, together with 
the boundedness of yr,...,y~ p) implies that e, z, ~, 
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are bounded. The proof of boundedness of A, 
x, u is as in Krsti6 et al. (1994). Proposition A.1 
also gives e(t), z(t)---~O as t--*0. 

6. ROBUSTNESS WITHOUT ADAPTATION 

We will now demonstrate a robustness 

property of the detuned system when the 
adaptation is switched off, that is when F = 0 in 
(45). The detuned error system is 

~. = A t z  + bz(OTto + e2), (49) 

where A~ = At(z ,  t, 0) and bt = bt(z,  t, 0), that is 

A t 

- c l -  dl 1 0 • • • 0 

_ - 1  -c2 d2\ oy / 1 . . .  0 

0 - 1  . .  . .  

• • ° .  ° ° .  1 

o o . . . .  
\ Oy / 

(50) 

" 1 " 
dot1 

Oy (51) bz = : • 

_ Ovte-t 
Oy. 

Examining the expression (14) for ai,  then (23) 
for a2, and successively through (38) for ai, it 
can be established that when F = 0 ,  all the 
derivatives OadOy are known constants depend- 
ing on ci, di and 0. Hence, the matrix A z and the 
vector b, are constant. Because e2( t )~  0 
exponentially, and the system is linear, we 
continue with e2(t) ---- 0. For the same reason, we 
let all the initial conditions be zero. Since At is 
Hurwitz (as the sum of a skew-symmetric matrix 
and a negative diagonal matrix), the transfer 
function from OTto to Zl 

fit(s) = eT(sl - Az)-~bt, :(52) 
 z(S) 

is stable, its relative degree is one, and both 
/3~(s) and at(s)  are monic polynomials. 

The error system (49) is one of the two parts 
of the detuned linear feedback system. To close 

Y' + . ~  W(s) I 8Toj 
i. 

Flo. 3. The detuned linear feedback system. 

the feedback loop with the second part, we 
represent the signal OTto as the output of the 
system W(s),  which is driven by y, as shown in 
Fig. 3. The transfer function W(s)  is calculated 
as follows: 

O T t o  = [ - - a n - 1  . . . .  , - a o ,  g i n - l ,  • • • , g o ]  

r :S,+e y 1 XL J 
s + k l  

s n + k l s  n-1 +" • • +kn 

i_s,:ll 

I-s71 ) 
a__s+kl 

K(s)  ( - f i , (s )y  + B(s)u)  

_ ( - A ( s ) )  s + kl  -71(s)y + B ( s ) ~ y  
K(s) 

= (s + k l ) ( - A ( s ) B ( s )  + A(s )B(s ) )  
K(s)B(s)  Y 

W(s)y. (53) 

Since deg,4 = n - 1 and deg/~ = m - 1, it is 
clear from the final expression in (53) that W(s) 
is stable and proper. By the small gain theorem, 
the stability of the feedback connection of W(s)  
with the stable strictly proper transfer function 
gt(s)[a~(s) is guaranteed if the loop operator 
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gain is less than one. We will now show that the 
operator gain of Bz(S)/Otz(s ) can be made 
arbitrarily small by a choice of the design 
parameters c;, d~, 1 --- i -< p. 

Differentiating ~ Iz [2__a ½zTz along the solutions 
of (49) we get 

d ( 1  2) _ 2/Oa,-~' 2 
-- = - a,zkk--~--y ) 

k=l  k=l  

P 0 a k - 1  
- ~ Zk ~rto 

k=~ Oy 
P P 

k=l  k= l  

[Oak-1 1 ]2 
X [---07-y zk + ½-~ 0xto 

-Co Izl ~ + 1  (0~to)~, (54) 
~ao 

where 

and 

Co = rain Ck 
l~k<--p 

121 
do k=l dk 

Upon multiplication by e 2c~, the last inequality 
becomes 

d 2 2cet 1 
~(Izl  e )-----2--~00(0Tto)2e 2¢~'. (55) 

Integrating (55) over [0, t], we obtain 

]Z (/)12~ ~ d  0 foot e-2C°(t-°(O Tto('I'))2 d't" 

---2do e-2~°('-° d'r,~to.sup~) IlOXoJ(t)lt 2 

1 
= 4c--~o (1 - e-2~) II~xtoll 2 

< ...1 ]]/}Ttoll2" (56) 
- 4cod ° 

Finally, using the triangle inequality and noting 
that IIz~ll~ -< IIz II~, we arrive at 

1 
IIz~ll~ - 2 CV~od ~ II 0"rto I1~. (57) 

On the other hand, since W(s), as defined in 
(53), is a stable proper transfer function, then 

II 0Ta, I1~ - II w I1~ II Y II~, (58) 

where Ilwll~=f~-®lw(t)ldt, and w(t) is the 
impulse response of W(s). 

To apply the small gain theorem, we note that 
1/2X/codo in (57) can be made arbitrarily small 
by a choice of Co and do. Since IJ w IJ1 is finite and 
independent of co and do, the loop gain 
1/2X/codo IIw[ll can be made less than one. Thus, 
the ~-stabil i ty of the feedback system in Fig. 3 
is guaranteed. 

Next, we show that the ~-stabil i ty also 
guarantees the internal asymptotic stability of 
this system. Substituting (53) into 

fl~(s) 0T0) (59) 
y - y~ = az(s---- ~ 

and solving for y, we obtain 

ctzKB 
Y %KB + (s + k~)Oz(~A - 7tB) Yr. (60) 

Since az(s), K(s) and B(s) are all Hurwitz, if 
there are cancellations in the transfer function in 
(60), they are all in the open left half-plane, so 
that the denominator in (60) is also Hurwitz. We 
have thus shown that for sufficiently large 
c~ . . . .  , cp and dl . . . . .  dp the linear system (60) is 
asymptotically stable. 

Theorem 2. Let the norm of W(s), with the fixed 
parameter errors a,., /~i in (53), be Ilw[l~ ~ ~. 
Then, the linear detuned feedback system (49) 
and (53) is robust in the sense that the choice of 
design coefficients 

2 1 Ci>l~2 k=l  ~ k '  l <-i<-P' (61) 

guarantees its asymptotic stability. 

7. THE UNDERLYING LINEAR NONADAPTIVE 
CONTROLLER 

The block diagram in Fig. 3 does not reveal 
the structure of the linear controller that results 
in the established robustness property. We now 
derive the equation of this controller and include 
it in a more detailed block diagram. 

We start with the equations representing the 
two blocks in Fig. 3: 

_ t3~(s) ~T 
Y - Yr - ~ t7 to, (62) o,~(s) 

s+k~ 
Oxto = ~ ( -A(s )y  + B(s)u). (63) 

Substituting (63) into (62) we get 

f lZ($)  (S + k l ) , ,  7,, ,~ 
Y - Yr=a-~)  -K-~ t- 'ats)Y + B(s)u) 

_ 13~(s) (s  + k O ,  ~ . ,  
-ctz(s) K(s~ t ,a t s )y  - ~(s)u). (64) 
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Collecting the terms in (64), we obtain the 
control law 

(s + k,)~Sz(s)t~(s) u = Otz(S)yr 
K(s) 

a~(s)K(s) - (s + k,)~,(s)A(s)  
K(s) y. (65) 

Figure 4 shows the block diagram of the 
underlying linear system. The transfer function 
((s + k~)[3~t~- K) /K is strictly proper because 
[3~(s), K(s) and/~(s) are monic. The properness 
of (azK - (s + k l )~ ,~  )/K a= Cy(s) is proven in 
Appendix B. 

From the block diagram in Fig. 4 we obtain 
(60). The matching condition for y(s) = yr(S) is 

A(s)= A(s), B(s)= B(s), (66) 

under the assumption that A(s) and B(s) are 
coprime. Under this condition, the characteristic 
polynomial of (60) is a~(s)K(s)B(s), so that the 
closed-loop poles consist of: 
(1) the roots of az(s ), i.e. the eigenvalues of the 
error system matrix Az; 
(2) the roots of K(s), i.e. the eigenvalues of the 

filter matrix Az; and 
(3) the roots of B(s), i.e. the zeros of the plant. 

It is of interest to compare these closed-loop 
poles with those of the traditional MRAC whose 
characteristic polynomial is Am(s)K(s)B(s). Our 
design replaces the reference model de- 
nominator polynomial Am(s) by the error system 
denominator polynomial a~(s). In this way, our 
controller allows the closed-loop poles to be 
placed independently of the reference model 
poles. 

8. EXAMPLE 

In this section, we illustrate the passivity and 
parametric robustness properties of the new 
design procedure on an unstable relative-degree- 
three plant 

1 
Y($) ~--- S2(S - -  a---------) u(s), a > 0  unknown, (67) 

considered in Krsti6 et al. (1994). The control 
objective is to asymptotically track the output of 
the reference model yr(S) = 1/(s + 1)3r(s). The 
resulting adaptation loop described by 

- - - - C  1 - -  d I 1 

-1  
~ . =  

0 

- -C2-  d2k Oy / 

- 1 - o ' 7 ~ o  

0 a l  Oa21 
O y ' "~y " j to Z 

o l r l l  
Oot 

1 + trToj z + / - - - ~ - y  I(to~ 

d (o qq / - c , -  

+ e2), (68) 

possesses the strict passivity property from ~ to 
_d/y. 

To illustrate the parametric robustness 
(Theorem 2), we switch off the adaptation 

(3' = 0) at a constant estimate a = 1, when the 
parameter error ~ = 2  is significant. With 
cl = c2 = c3 = 3, dx = d2 = d3 = 0.1, the resulting 
detuned linear system is unstable. With an 

a,K - (a + kl)13,A L 

FIG. 4. The structure of the underlying closed-loop linear system. 

V. 
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T r a c k i n g  e r r o r  11 - ltr 

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 

Control u 

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 

Pa ramete r  es t imate  fi 

o 1; o lo 20 40 o lo ; ; 

7 = 0  ~f = 0.3 7 = 1  

FI6. 5. Adaptation improves the tracking error transients without an increase in control effort. The plant is 
driven by r ( t )  = sin t, and the plant parameter is a = 3. 

increase to cl : C2 : C3 = 5 ,  the system is 
stabilized. However, without adaptation, the 
tracking error, shown in Fig. 5, is about 12% of 
the reference input, which is not acceptable in 
most applications. The effectiveness of the new 
adaptive controller is demonstrated by the fact 
that even with slow adaptation (y =0.3), the 
tracking error is reduced to zero after a few 
periods of the reference input, as shown in Fig. 
5. It is remarkable that even during the 
adaptation transients, the tracking error is 
smaller than in the nonadaptive system, while 
the control effort is about the same. When the 
adaptation gain is increased to y = l ,  the 
tracking performance is further improved with 
about the same control effort. 

9. CONCLUSIONS 

In this paper, we have continued the 
development of the theory of the new class of 
adaptive controllers proposed in our recent 
paper (Krsti~ et  al., 1994). We have shown that 
our recursive design achieves a strict passivity 
property of the main adaptation loop. Since the 
early days of adaptive control this property has 
been a desired feature of adaptive systems, 

seemingly unachievable for systems of relative 
degree higher than 2. 

When we initially approached the adaptive 
control of linear systems as a nonlinear feedback 
problem it was not obvious whether with the 
adaptation switched off the resulting adaptive 
system would reduce to a linear system. We have 
now confirmed that this indeed is the case by 
revealing the structure of the underlying linear 
controller. 

This linear controller has an important 
parametric robustness property. Its gains can be 
chosen sufficiently high to guarantee stability for 
any given bound on plant parameter uncertainty. 
However, this robustness property does not 
eliminate the need for adaptation when the plant 
parameter uncertainty is significant and results in 
an unacceptably large tracking error. The 
adaptive controller achieves better transients and 
guarantees that the tracking error converges to 
zero without an increase in control effort. 
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APPENDIX A. PASSIVITY DEFINITIONS 

We use the passivity definitions of (Willems, 1972; Hill and 
Moylan, 1980; Byrnes et al., 1991) extended to time-varying 
nonlinear systems. Consider systems of the form 

Yc = f(t ,  x) + g(t, x)u, 
(A.I) 

y = h(t, x), 

with x • I~', y • R m, u E C°(R'),  and f, g, h piecewise 
continuous in t and smooth in x. Suppose f(t, 0)= 0 and 
h(t,O)=O for all t>-0. 

Definition A.1 The system (A.1) is said to be passive if there 
exists a continuous nonnegative ('storage') function V:R+ x 
I~' ~ R+, which satisfies V(t, 0) = 0, Vt > 0, such that for all 
u • CO(R"), x(0) ~ R", t---0 

o yT(o,)u(o,) do, --> V(t, x(t)) - V(O, x(0)). (A.2) 

Definition A.2 The system (A.1) is said to be strictly passive 
if there exist a continuous nonnegative (storage) function 
V:R,  xI~---*R+, which satisfies V(t, 0 ) = 0  Vt->0, and a 
positive definite function (dissipation rate) 0:R"---~ R+, such 
that for all u e CO(Rm), x(0) E R", t > 0  

CYT(O,)U(o,) V(t,x(t))  V(O,x(O)) do, 

+ 0(x(o,)) do,. (A.3) 

Note that if V is positive definite, radially unbounded and 
decrescent (in x, uniformly in t), then, for u =0, the 
equilibrium x = 0 of the (strictly) passive system (A.1) is 
globally uniformly (asymptotically) stable. 

Proposition A.1 The negative feedback connection of a 
strictly passive system and a passive system with positive 
definite radially unbounded decrescent storage functions, has 
a globally uniformly stable equilibrium at the origin. 
Furthermore, the state of the strictly passive system 
converges to zero as t--, 0o. 

The proof of the first part of Proposition A.1 is 
straightforward. The proof of the second part follows the 
standard invariance arguments for nonautonomous systems 
based on Barbalat's lemma. 

APPENDIX B. PROPERNESS OF Cy(s) 

To prove that 

Cy(s) = azK - (s + k,)[Jz,4 
K 

is proper, we examine the expression (43) for u which 
depends on y, y, and the following variables: 

si(s j-I + kls  j-2 + . . .  + kl- t)  
K(s) u, l < j < ; n - i  

V i . ~  . + .  
" ] -s'  ' -"- ' (kjs"-J + " " + k , )  

[ K(s) u, n - i + l < j < - n  

O<-i<m, (B.1) 

f si(s j-I  + kls  j-2 + . . .  + kt-t) y ' 
= J  K(s) l < y < n  - i  

~'a I si+j-.-,(kisn-j + 
I, K(s) " + k a ) y ,  n _ i + l < _ j ~  n 

0 < i -< n, (B.2) 
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where (B.1) and (B.2) follow from (3). Using the definitions 
of zi, 1 <- i <- p, we can write (43) as 

p 

u = ~Pi, /vi . /+ ~ qi,/~i,/+ FlY + ~ riy~ i) 
i , j  i , j  i = 0 

_ p,,-l(s) u + q . - i ( s )  
K(s) - - ~  Y + Fly + rp(s)yr, (B.3) 

which shows that (65) has the following form: 

K(s)  - p . _ t ( S )  u = qn(S) y + 
ro(s)Yr, K(s) K(s) 

(B.4) 

where 
q.(s)  = q._~(s) + FlK(s) 

= - ,~(s)lC(s)  + (s + k,)~z(s)A(s).  (13.5) 
From 

q"-l(s)  (B.6) 
~'qi'/l~iJ= K(s) y 
i , j  

and (13.2) it follows that degqn_ t ( s )<-n -1 .  Therefore 
deg qn(s)= deg [qn-l(s)+ FlK(s)]---n. Hence, from (13.5) we 
obtain deg [az(s)K(s) - (s + kOlSz(s)A(s)] = n. This means 
that all the terms of order higher than n are cancelled in 
ct~(s)K(s) - (s + kO~8~(s)A(s), which is, of course, achieved 
by the construction of the error system. Thus, the transfer 
function ( a z K - ( s  +kOf l zA ) ]K  is proper and the block 
diagram in Fig. 4 is implementable. 


