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We design a state feedback controller that achieves
global asymptotic stabilization of a nonlinear
Ginzburg— Landau model of vortex shedding from bluff
bodies. Stabilization is obtained in two steps. First, the
upstream and downstream parts of the system are
shown to exhibit the ISS property with respect to
certain boundary input terms governed by the core flow
in the vicinity of the bluff body. Second, a finite
difference approximation of arbitrary order of the core
flow is stabilized using the backstepping method.
Consequently, all the states in the core flow are driven
to zero, including the boundary input terms of the
upstream and downstream subsystems. The control
design is valid for any Reynolds number. Numerical
simulations are provided in order to demonstrate the
performance of the controller, along with the potential
of using low order discretizations for the control design,
and thereby reducing the number of sensors needed for
implementation.
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1. Introduction

In flows past submerged obstacles, the phenomenon
of vortex shedding occurs. For flow past a
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two-dimensional (2D) circular cylinder, which is a
prototype model flow for studying vortex shedding,
vortices are alternatively shed from the upper and
lower sides of the cylinder, subjecting the cylinder to
periodic forcing. In practice the periodic forcing leads
to structural vibrations, which are associated with
penalties ranging from passenger discomfort to struc-
tural damage or failure from fatigue. Consequently,
suppression of vortex shedding is of great importance
in many engineering applications. For a thorough
review of the dynamics of the cylinder wake, see [14].
Naturally, the flow past a 2D circular cylinder has
also been a popular model flow for studying vortex
suppression by means of open-loop or feedback con-
trol. For Reynolds numbers slightly larger than the
critical value for onset of vortex shedding (which
is ~R.=47), several authors have successfully sup-
pressed vortex shedding in numerical simulations
using various simple feedback control configurations.
In [11], a pair of suction/blowing slots positioned on
the cylinder wall were used for actuation, and shed-
ding was suppressed for R=60, using proportional
feedback from a single velocity measurement taken
some distance downstream of the cylinder. For
R =180, vortex shedding was reduced, but not com-
pletely suppressed. In [7], the same actuation config-
uration was tried using feedback from a pair of
pressure sensors located on the cylinder wall for
R ==60. This attempt was unsuccessful, but by adding
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a third actuation slot, shedding was reduced con-
siderably, even at R = 80.

Although some success in controlling vortex shed-
ding has been achieved in numerical simulations, rig-
orous control designs are scarce due to the complexity
of designing controllers based on the Navier—Stokes
equation. A much simpler model, the Ginzburg-
Landau equation with appropriate coefficients, has
been found to model well the dynamics of vortex
shedding near the critical value of the Reynolds
number [8]. In [12], it was shown numerically that the
Ginzburg—Landau model for Reynolds numbers close
to R, can be stabilized using proportional feedback
from a single measurement downstream of the cylin-
der, to local forcing at the location of the cylinder.
In [10], using the model from [12], stabilization was
obtained in numerical simulations for R= 100, with
an LQG controller designed for the linearized
Ginzburg—Landau equation. The actuation can be
effected in a number of different ways, including wall
transpiration, as suggested in [7,11] and transverse
cylinder oscillations or loudspeakers, as suggested
in [12]. On a more general note, approaches for con-
trolling nonlinear parabolic PDEs include [2,3].

In this paper, we design a controller using back-
stepping, that is shown to globally stabilize the equi-
librium at zero of a finite difference discretization of
any order of the nonlinear Ginzburg—Landau model
presented in [12]. This method is similar to that used
for global stabilization of a thermal convection loop in
[3], stabilization of a solid propellant rocket instability
in [4], and boundary control for chemical tubular
reactors in [5]. The method is different from previous
control designs for the Ginzburg—Landau model in
that it provides a global stability result (valid for any
Initial state), as opposed to the local results achieved
by linearization in [10]. The control design is valid for
any Reynolds number, although the model is only
valid for Reynolds numbers close to the critical value
R.=47. Numerical simulations are provided in order
to demonstrate the performance of the controller, along
with the potential of using low order discretizations
for the control design, and thereby reducing the
number of sensors needed for implementation.

2. Problem Formulation

The Ginzburg-Landau equation in the notation of
[12] is given by

04 04 0*A
5 = @ {(x) Ei as(x)A
+as| A" A + 6(x — xa)u, (1)
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where x€R, A:RxR, - C, a,a4 : R— C, and
ap,as € C. § denotes the Dirac distribution and
u: R, — C is the control input. Thus, contro! input
is in the form of local forcing at x,. The boundary
conditions are A(x — t oo, )=0, i.e., homogeneous
Dirichlet boundary conditions. The following holds
for the coefficients of (1).

Assumption 1. a; € (oo, 0) and R(as) € (—oc, 0].

We now rewrite the equation to obtain two coupled
partial differential equations in real variables and
coefficients by defining

_ 1 -
pLi(4+4), Léi(A—A), )
aRJ é%(a]-i_&J)’ ar = i(a]—dj)’ ]: 1’2’4’5’
(3)

Al - sl 7
ug BYu+a), wl =(u—-u)), 4)

where i denotes the imaginary unit and — denotes
complex conjugation. With these definitions we
obtain

o _1 (04 0i
ot 2

ar ' ar
1 . Gp .0
—_ —2— (— (aRl + 1011) (a%‘ 1—5;)
. Pp .04
- (aRz + 1012) (a—xz‘ + 1@)

— (ag, +1ia3,)(p + it) + (ars + iaz,)|A]*(p + i)
+ 8(x — x4)(ur + iur)

. op .0
— (aR, - 1(1]1)(& - 1&)

. &p .04
~an i) (G i)

— (ag, —iag)(p — i) + (ar, — iaz)|4)*(p — iv)
+ 6()6' et xa)(uR - 1u1)>

L 0%p 0%
= —ap, (x)—a—g—i- ay, (x)—a; - aR?EP + a;zw

— ap,(x)p + ar, (x)c + |4 arp — |4 ar
+ 8(x — x4)ur (5)
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and
o_1 (o4 _oi
or 21\ dr Or
1 . Gp .0
_Z<—(aRl+lall)<a+l'8—x“)
. Pp 04
~ lor, +ia) (W* '5%)

- (aR4 + iah)(ﬂ + lL) + (aRs + ials)lAlz(p + “’)

- 8(0 = x.) (g + ir) + (az, — ia,,)(% - %)

NG . .
+ (ar, —iap,) (W - 1_6?) + (ar, —iag,)(p —it)
— (ar, —ia1,)|A]* (p — i) — 6(x — xa)(ur — iur))
B o Op 0% %p
= —dp, (X)a =4 (x)é'; —ap, '8_x’2' —ar 5;2'
— ap,(X)e — ar (x)p + | A aro + |4 arp
+8(x = xg)u. (6)

Rearranging the terms, the equations become

2
o= (n (0 gt am s+ o) = an (5 + ) )
+ (aI (x)—?—+a1 —8—2—+a1 (x)—as (p2+L2))L
1 6x Zaxz 4 5
+ 8(x — x,)ug, (7

o 0 &
5= <all (x)a tapg o+ ar(x) - ar(p* + L2)> p

0 2
- (aR, (x) Ix +ar, Fr%) + ag,(x) — ag,(p* + Lz)) L
+ 6(x — x4)uy, (8)

with  boundary conditions p(oo,£)=0 and
(£00,0)=0. In view of Assumption 1 we have
ag, <0, ap, =0, and agr, <0. Equations (7) and
(8), with numerical values as given in [12, Appendix A]
(reproduced in Appendix A), have been found to
model well the dynamics of vortex shedding from a
circular cylinder at Reynolds numbers near the critical
Reynolds number, R.. Based on the numerical values
given in [12, Appendix A], we state the following
assumption, which is assumed to hold throughout the
analysis that follows.

Assumption 2. For |x|> 0,

I,
KR:a,] (x) + ag,(x) ~ x2. (9)
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Fig. 1. Vortex shedding from a cylinder visualized by
passive tracer particles [1]. The figure also shows the
proposed control system configuration for suppression of
vortex shedding.

We will design a control law that stabilizes the
zero-solution of a finite difference approximation of
(MH—(8)onabounded subdomain, and the zero-solution
of the PDE (7)—(8) in L,-norm outside the subdomain.
Figure 1 shows a sketch of the control system, along
with a visualization of vortex shedding. Existence,
uniqueness, and regularity of solutions of the closed
loop system for large initial data is far harder than the
problem of control design, and remains an open pro-
blem. We refer the reader to [13] for a treatment of these
issues in the case of the uncontrolled Ginzburg-
Landau equation with constant parameters.

3. Main Results

The basic idea of the control design is to divide the
domain into three separate parts; the upstream sub-
system, defined on (~oo0,x,), the core, defined on
[xy, X4], and the downstream subsystem, defined on
(x4, 00), for which the following two facts are shown:

1. The upstream and downstream subsystems are
input-to-state stable (in L, norm) with respect to
certain boundary input terms.

2. A finite-difference approximation of any order of
the core can be stabilized by state feedback, driving
all the states to zero, including the boundary input
terms of the upstream and downstream subsystems.

These two facts are treated in detail in Sections 3.1 and
3.2, respectively.

3.1. Energy Analysis

Lemma 3. There exist real constants x, <0 and x4 >0
such that solutions of system (7)—(8) satisfy

L (1Mo

2
<- c”(P,L)”LZ(_oc,Xu) — | ag, (x) (p2 + L2)

g o
+ 20, (3§p+5§L))

X=Xy
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%(”(/),L)”iz(xdfoc))

< =l (0, M Zygxgyo0) (dm ()(* +¢)

do O
+ 2ag, <(9 5)?))

for some positive constant c.

(11)

X=Xq

Proof. The time derivative of ||(p, L)“iz(a’b) along
solutions of (7)—(8) is

L
(100w

b
:2/ (pp+1ci)dx

b 3, 8
=2 (om0 g an 5 an -
o & 7] o?
+<a1,( )(9 tanas 2) (azl(x)a—fc-l—aha—xg)L
7] 0*
- (a;el (x)8—;+ aRZB_x;—HZR‘ (x)e— |A|2aR5L) L] dx,

(12)

satisfying x, & (a, b).

IAIZaRSp)p

where a<b are constants
Integration by parts yields

b
—2/aaR] (x)%pdx
b
0
—[aR,(x)pz]:—l—/a —;xﬂpzdx (13)
b
—Z/aR1 (x)%de

——[aR,(x)Lz]ﬁJr/ Bgm 2dx (14)

a

b 2
op
_2/ aRzmpdx

= 2fon 2 ]+z/ w(Z ) (15)
= -2an 2] j+2 [an (&) a9
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Inserting (13)—(16) into (12), keeping in mind that
ar, = 0 and ag, < 0 (Assumption 1), yields

d
(1)
ap o\
< |-an )2+ 2) - 20m, (o 5 |
b 2 da
+2/ aR2<gL) -l—a1,(x)a ~(—8—R'+a ())p2

op\> 8 d
+ag, <6—i> —ay, (x)a—)ch— (—%+GR4(X)>L2} dx.

(17)

Now, consider the integrand in (17). We have that
8CIR]

aR2<gL>2+all( )g;p— (—T—i—a (x ))p2

ap\> 8, dag,
+ ag, (8—5) ~a1,(x)8—)ch— (——g:; +aR4(x)>L2

2

o 0
< an 22l +lan (2ol - (- Z2 4 an))
Op Op B _GaR, )
+an[2) +Iaz,(X)I5’ILI (-5 + ant).

1 2
+ glar (9o

1 2 6aR] 2

- (Za_&a"(x)_ e + ag,(x ))p
1 2
)

B (4; all( ) _%_'— aR4(x)) ’“2

(a0

where we have wused the fact that ag <0
(Assumption 1). Inserting (18) into (17) we obtain

(1)

< [—ak, (P + 2) -

- 2/b () - O 1 gy () ) (07 + 7).
a 4£ZR2 L ox ¢

OaR,

RLL e >)<p2+ﬂ>, (18)




Stabilization of a Ginzburg- Landau Model of Vortex Shedding

109

Core
Upstream / Downstream ny,
j=0 j=N j=2N
_______ i L Il i P il } -—————— ] 1 I |
¥ T T T L T T T T L)
x, 2xrx,
TPoint of actuation

Fig. 2. The system is discretized in the interval [x,, 2x4 — x,], using a uniform grid with cell size A.

By Assumption 2 there exist positive constants x, < 0,
and x4 >0, and ¢ > 0, such that

1 2 aaRl 1
(wz A F <">) >32%
for x € (=00, xy) U (x4, 00). (20)

Inserting (20) into (19), (10) and (11) now follow by
picking (a, b) =(—o00, xy) and (a, b) = (x4, 00), respec-
tively, and applying the boundary conditions at
x= toc.

3.2. Stabilization by State Feedback
3.2.1. Discretization

Having determined the two constants x, and x4,
which exist by Lemma 3, we discretize (7)—(8) using
finite difference approximations on the interval
[xu, 2x4 — x,] as shown schematically in Fig. 2. We
define the finite difference approximations

ap , . i+ 1)h) — p(jh 1 1

a(jh)zp((f )h) ACL)N Lo =105
(21)

o p((i+ Dh) = 200h) + o((J = Dh)

x2 h?

o, ((J+ Dh) = (jh 1 1

5(1}1) ~ ( )h) () 2 zbj+1 —ij,
(23)

o+ D) = 2u5h) + Ui = DA)

axz "~ 2

and to simplify notation we set

rij = ag,(x;), (25)
iy = an(x), (26)
ry = %’—:& 27)

ryj = hag,(x;), (28)
i3 = ha,(x;), (29)
rs = hag,, (30)
i4 = hals. (31)

Inserting (21)—-(31) into (7)—(8) we obtain the set of
ordinary differential equations:

hpj=—rapj +(V1J+272“F3J+"4(P,z+bjg))f)j
—(rj+r)pis+ (=i j+iz;— l'4(pjg+bjz))l,j
+i1jt+1 + bo jUr, (32)

hij =(ivy — i3, + ia(p} + 6))pj = i1 001 — Fatjo
+ (ry+2r — 3+ ralp] + )y
— (rj + r2)ys1 + dojur, (33)

for j=0,1,2,...,2N+2, where x; £ hj + x, and 6
denotes the Kronecker delta function. In (32)—(33) we
have set the point of actuation to x, = x,,, and used the
fact that a;, = 0. Inserting (21)—(31) into (10) and (11)
we obtain

%(“(p, L)||iz(—°0v‘u))

< —cll(os Oy sonyy = r10(05 + 13)
—2r2((p1 — po)po + (1 — to)to) (34)

and

d 2
5 (1001 )
< —Cl(p’ L)liz(x,,,oc) + rqu(p?V + L%V)
+2r2((pv+1 — pn)pn + (ever — en)en),  (35)

which are the semi-discrete versions of (10)—(11). The
reason why the discretization is carried out on
[%u, 2x4 — Xxy], rather than just the core [x,, x4}, will be
explained in a remark following the results presented
in the next section.
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3.2.2. Control Design

The following theorem summarizes our control
design.

Theorem 4. The control law defined recursively by the
scheme

ay =y =0, (36)

N 1{PN, PN+1,tN11)

1 3 .
:E[<§rl,N_73,N+CN)PN""1,NPN+I+ll,NLN+1],
(37)
Br-1(pN+1,tNs tN+1)
1 . 3
=—|—UNPN+1 T | SFIN— P3N+ CN JIN —FI NN+ |
r 2
(38)

OéNﬁk(pj,LjZ jE [N—k+ 1,N+k])
|
Ir—z[CN—(k-l)(PNA(kq) — QN (k-1))

+(riN=(k—1) +2r2 =13 N—(k-1)
+V4(P§v—(k-1) + L%V—(k—l)))pN—(k—l)
—(rN-(k=1) +2r2) pN—(k—2) + (=1 N (k—1) T B3 N—(k-1)

- i4(ﬂ§v—(k—|) +L%V—(k—l)))LN—(k-l) + i N—(k—1)N—(k-2)
Ntk—1

t Ay (-2~ Z

J=Nk+2 %p;

Oan_(k-1)

X (=rapj1+(rij+2r —r3J+r4(P,g +Lf))/’j

= (rijtr)pir + (=i +is;— i4(P,? +Lf))bj+iubj+1)

N+k—] aaN* o1

- %((lu—l3j+l4(Pf+bf))Pj—llJPj+1
J=N—k+2 Y

—rati1+ (r+ 2 —ra+ra(pl +42))y

—(ryj+r2)yn)l (39)

Bnk(pjstj: j€[N—k+1,N-+k])

1
:g[cNf(lﬁl)(’*N—(k—l) — BN—(k-1))

+ (G V= (k=1) = BN—(k—1)

+ i (PN k1) + EN—(h—1))) PN (k1)
= I N (k- 1)PN—(k~2)

(P N—(k—1) T 2r2 =3 N (k1)
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+r4(p%\l—(k—l)+L3V—(k~1)))LN—(k~1)
— (P Nv—(k=1) F2r2) tN— (k-2) FT2BNn—(k—2)
N+k-1

—ij‘k+2%ﬁﬂ(—r2pj_l +(rij+2rn—r3

+ra(pi+§))pi= (rj+r2)pp + (=it i,

—ia(p +47))y+intjn) — Nil %
Jj=N—k+2 J

X (i j— 3+ 1P} +07)) pi—i1jpje1 —ragi

+ (rij+2r—r3ra(p] +6))y = (r+r2)g0))]

(40)

fork=2,3,4,...,N, and

ur(pj, i je[-1,2N+1])
= —[co(po — ) = r2p-1
+ (rio+2rm —ro+ r4(pé + ) po
— (r10 +2r2)p1 + (—io + i30 — ia(pg + ¢))to

2 B0
+ 100 + r2og — Za—(—rzpj—l
 Opy

+(rij+2r2—r3;+ ’4(/’,2 + Lf))ﬁj
— (rij+ r2)pj1 + (=i + i3y — ia(p] + )y
N
. Jap . !
+ire) — Yy (= i3+ 14(/J,2 + )b
=T abj
=l — ratj1 + (rij+2ra — 3y

+ra(p] + 1))y = (r1j +r2)ys)] (41)

ur(pjei: je[-1,2N+1])
=~ [co(to — Bo) + (i10— ix0 +ia(pg + 13)) po — i1 01
—ra1+(ripo+2r—rig +"4(P% 'Hé))bo

2N 8,80
~(rio+2r2)u +r2f — 25—(—V2Pj—1

+ (r1,j+2r; —V3J+r4(,0]2+bf))/’j
—(rig+r)pia + (=i +is,- 1'4(,0,2 +L]2))Lj+iubj+l)

2N 3,80 . i . ) ) )
— ZE((HW— l3,j+l4(Pj +Lj))pj—1upj+l —rat
Jj=1 77

+ (rj+2r—r3+ra(pl + )y — (r+r2)ye),
(42)
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tically stable. Moreover, solutions of system (7)—(8)
satisfy

”(,0, L)“iz(—voc,x,,) - 0’ (43)

1oy 117 1 x00) = 05 (44)

as t — 00,

Proof. Consider the Lyapunov function candidate

V= g‘; [(Pj — )+ (y - ﬂj)z]
£ 210000 e ey (45)

The time derivative of (45) along solutions of the
system is

N-1

V=">"[(ps— ) (hp; — hdy) + (4= B) (i — hBy))]

=0
. . 1d 2
+ (onhpn + evhin) + 33 [” (p,0) “Lz(xd,oo)] )

(46)

where we have used the fact that ay=08x=0.
Inserting (37)—(38) into (46), yields

N-1
V<> (o = e)(hy — héy) + (4 — B;) (hij — hB)))
=0
— rpn(pn—1 — an—1) — ran(en—1 — r2fn-1)
— (en = r2) (P} + &) + raloky + &)
c
] ] .
N—1 .
<> oy — @) (hiy = hey) + (4 — B))(hiy — hB)]
=0

- VzPN(pN—l - aN—l) - rsz(LNq - 5N—1)

(4
— (ex =)+ ) = SN0 sy (47)

where we have used the fact that ry < 0 (Assumption 1)
in the last step. Next, we insert (32)—(33) into (47),
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and obtain

V<(po—co)[—rap1+ (rio+2r —r3p
+ra(pf+18))po— (rio+r2)pn
+ (=i + 130 — (0 +15))t0
+ i) oty + ug — hoy)
+ (o = Bo)[(in0 — i3,0 + ia(p§ + 15)) 0
—i10p1 — F2t—1
+ (r10+2r2 — 30+ ra(o5 + 1§))to

— (r10 4 r2)t1 +ur — hfo)

+NX:l[(Pf—aj)(~’2Pj—l+(fu+2’2—’3J+f4(Pf+Lf))P/
J=1

—(rij+r)pn

+ (=i + i3y — a0} + 1))y

+ iy jti1 — hdyj)

+ (4= B)((iry — i3+ ia(p] +))pj

— {,iPj+1 — 2t

+(rij+2r—r+ r4(pj2 + L}))Lj

— (r1j+ )1 = hG)]

—rpn(pn-1 — an-1) —ran(en-1 — Bn-1)

—(en =)+ &) =5 Mo Esrye (48)

At this point, we observe that the two summations in
(39) in fact equal the time derivative of the previous o
multiplied by A, that is Ady_(c—yy. Similarly, the two
summations in (40) equal the time derivative of the
previous § multiplied by 4, that is h8y_(k-1). There-
fore, from (39)—(40) we have

ho; = Cj(pj - aj) — oy +(r1J~ + 2r2—r3J+r4(p]2+L}))pj

~(r1y+2r2)pjsr + (—ivy+ iz — iap] + L,Z))Lj

+ it + 20, (49)
hBy=cj(yy = B) — raBi1 + (b — b+ ia(p] +143))p;

— i1 jpjs1 + (r1j+2r2 —r;,--i-rx;(p]2 +L12))Lj

= (r1j+2r) 1 + b, (50)

for j=1,...,N—1. Furthermore, the two summa-
tions in (41) equal hdo, and the two summations
in (42) equal hB;. Keeping this in mind, and
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inserting (49)—(50) and (41)—(42) into (48), we get

V <(po — a)(—colpo — ) + r2p1 — r2cy)
+ (10 — Bo)(—coleo — Bo) + raey — rafr)

+ 2[(% — aj)(=r2pj-1 = ¢i(p — o)

+ 041 + rapjp1 — royq)
+ (4 = B))(—=ratio1 — ¢y — B)) + r2Bi1
+ ratier — r2Bis1)] — F2on{oN-1 — an-1)

— raen(ev—1 — Bn=y)

(CN - rz)(pN + LN) ”(p’ l’)“Lz(xd, 9N

(51)
After rearranging the terms, we get

N-1

VS—ZC/'((P;*

j=0

o)+ (Lj“ﬁj)z)

+ra(po—ao)(p1 — o) +ra{eo — fo)(e1 — Bi)

N-1

+ Z[(Pj —ay)(=r2pi-1+ 12041 +r2pp
J=1

—raa) + (4= B)(=rayo1 +raBio1 +rayp

—r2B8i1)] = rapn{pn—1 — on—1) — raen(in—1

— Bn-1)—(en—r2)(p§ + )
(52)

By splitting up the summation and changing sum-
mation indices, we obtain

N-1

V<— ZQ’((PJ —a)’ +(y— 5;’)2)

=0

+ ra(po — ao)(p1 — a1) + ra2(o — Bo) (11 — Br)
N-2

—ra(pr —n)(po — ) =12 Y _(pjr1 — @jur)
=1

X (pj —ag) + ra{pn—1 — an—1)(py — an)

+rzz

—r2(t1 — B1) (w0 — o)

— o) (pj+1 — 1)

¢ 2
_5“()05 l’)“Lz(x,i,oo)'
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-n Z(Lj-H Bis1) (4 — B))

+72(LN 1 — Bn=1)(en — BN)

+r22

- VZPN(PN~I —an-1) — raen(en-1 — Brv-1)

- B4+ — Bix1)

— (CN — r2)(p12v + L?\/) - "26: “(P, L)“iz(.\'(/,oc)’
(53

and after cancellation of terms, we have

N-1

V< - ZCJ((PJ — o)+ (y—

Jj=0
= (ew =)oy + &)
=510, )10 (54)

51)2)

In the last step we used the fact that ay=08y=0. It
now follows from standard results [9], that the equi-
librium point (g, to, 21> L1, - - - » PN» L) =0 15 globally
asymptotically stable, and that

“(p’ L)“iz(xd,oo) —0 as’— oo (55)

Having established that po, to, p1,¢1 — 0 as t — o0, it
follows from (10) in Lemma 3, and its semi-discrete
version (34), that

”(P, l’)”iz(—-oo,xu) —0 ast—oo. (56)

Remark 5. The backstepping procedure used for the
control design starts at node N, which corresponds to
X = xq, and steps in the direction of x = x,. For every
step of backstepping, a new measurement upstream is
clearly needed. However, the need for measurements
also propagates one step downstream for each step of
backstepping. Therefore, the discretization used for
control design has to span an interval twice the size of
the core, or more precisely, the interval [x,, 2xq — xy].

Remark 6. Although Theorem 4 provides a stabilizing
controller for the discretized system of arbitrary order,
it does not guarantee that the feedback gain stays
bounded as & — 0. Thus, the result does not hold in the
limit of infinitely fine discretizations. In [3], a target
system with known stability properties is chosen, and
the control law designed such that the dynamics of the
closed loop system becomes that of the target system.
The target system is chosen such that the parabolic
character of the system is maintained, in order to
guarantee that the controller has finite gain. If the
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domain were finite, an appropriate target system in
the present case would be

Op g o
E = — (aRl(X)a'F aR2W+bR(x)>p
0
+ <a1, (x)a —}—ah(9 5+ an(x )q, (57)
B o
E__ al](x)a +a126 2+a]4 Y4

- (aRl(x)%+ ar, 86)62 + bR( ))q’ (58)

where the function bg (x) satisfies

1 5 6‘1R1 1
Z(;R—zah (x) — e + br(x) > 76 for all x,
(59)
br(x) = ag,(x), for x¢ x4, x4], (60)

with ¢>0. In view of Assumption 2, x, < x4 and ¢
exist such that this is possible. A proof analogous to
that of Lemma 3, provides asymptotic stability of the
zero-solution of (57)—(58) in the L, norm. However, in
the present case, the infinite domain in combination
with the nonlinearity prevents an easy choice of target

45
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—~ 35}
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+
&l 25T
el
SIS,
|
E 15
F
g
3
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or e
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-5 0 5 10 15
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Fig. 3. Graphical determination of the constants x, and x4
for R =50 using the numerical coefficients in [12].

j=0 Jj=N
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system. The price we pay is a controller without a
guarantee that the gain won’t grow unbounded as N
tends to infinity. However, when a backstepping design
is pursued with a low number of steps, motivated by a
low number of unstable eigenvalues, the difference
between the two approaches is small and the issue of
convergence as N tends to infinity does not arise.

4. Simulation Study

In order to demonstrate the performance of our
backstepping controller, we present a simulation
example. We set the Reynolds number to R =50, and
discretize (7)—(8) on the domain x €[ — 5, 15] using
400 nodes. Homogeneous Dirichlet boundary condi-
tions are enforced at x = — 5 and x = 15. Next, we plot
the expression (20), that is

1 2 8(112,
mazl(x)— B + ag,(x), (61)

on our chosen domain. The result is shown in Fig. 3.
By inspection of the graph, we pick x,= —1.32 and
xq=3.85. The nodes of the discretization, along with
xy and x4, are plotted in Fig. 4. As the figure shows,
applying Theorem 4 at this point requires in the order
of 100 backstepping steps. Instead, we use a dis-
cretization that is coarser for the control design,
keeping only about every 40th node. The remaining
nodes, which are sensors, are shown in Fig. 4 as cir-
cles. Now, only three steps of backstepping are
required. The controller is generated using the sym-
bolic toolbox in MATLAB, and is too complicated to
write here. The first row of graphs in Fig. 5 shows the
values of (p,:) as a function of time and space for
the uncontrolled case. The figure indicates spatial
unsteadiness reminiscent of vortex shedding. The
second row of graphs in Fig. 5 shows the controlled
case. Clearly, the states in the entire domain are
effectively driven to zero by the control. Figure 6
shows the performance of the controller in terms of
the output (p, ¢) from one of the sensors (identified in
Fig. 4). As the figure shows, the system is in the state
of natural shedding for a couple of cycles, and then, at
t =50, the control is turned on driving the state to

HRXKXXHEDXK XTI HKIIK K XIIOCOKXNICKXHKXINHXXIHBX XX XK MBI XXX XXX XXX KIDHXHKK XXX KX X KX XXX

A
Sensor reported

Fig. 4. Locations of every fifth grid point (x), sensors (o), and [xy, xg] (+). Only about every fortieth node is used for

feedback, requiring three steps of backstepping in this case.
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a) p - Uncontrolled

E % Time

¢) p - Controlled

- 250
150 200
Time

50 100

Fig. 6. Time evolution of (p, ¢) at sensor location number 4.
Feedback is turned on at ¢=150.

zero. Figure 7 shows the corresponding control
effort.

Remark 7. The quadratic form of (61) ensures the
existence of a minimal interval (x;, x;) (or possibly

O.M. Aamo and M. Krstic

b) ¢ - Uncontrolled
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Fig. 7. Real (solid) and imaginary (dashed) parts of the
control input.

empty), in which (61) is negative. For the stability
results to hold, x, and x4 must be chosen such that
(x1, X2) C [xu, X4]. So, there are infinitely many valid
choices for x, and x4, but a case can be made for
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choosing the interval [x,,x4] as small as possible.
First, for a given spatial resolution for the control
design, fewer backstepping steps will be needed,
resulting in a simpler control law. Second, by pushing
the point of actuation (x,) far upstream, its effect on
the region of instability, which is given by the minimal
interval (xi, x,), will diminish due to the increasingly
stronger local dissipativity of the system when moving
away from the core.

5. Conclusions

We have shown that global asymptotic stabilization
of a nonlinear Ginzburg—Landau model of vortex
shedding from bluff bodies can be achieved using
backstepping. Stabilization was achieved for finite
difference discretizations of arbitrary order of the core
flow. The infinite domain in combination with the
nonlinearity prevents an easy choice of target system
in the sense of [3]. The consequence is a controller for
which finite gain is not guaranteed, and stabilization
in the limit of inifinitely fine discretization does
therefore not follow from the results. The question of
convergence under infinitely fine discretizations is
very important and very difficult. For nonlinear PDEs
under backstepping type feedback laws no results exist
proving convergence for arbitrarily large initial data.
Recent results in [6] prove convergence in the linear
case. However, when a backstepping design is pursued
with a low number of steps, motivated by a low
number of unstable eigenvalues, the difference
between the two approaches is small and the issue of
convergence in the limit of infinitely fine discretization
does not arise. The potential of using low order dis-
cretizations for the control design was demonstrated
in simulations. This feature is also important from
a controller complexity point of view, since the
nonlinearity of the system causes the complexity of the
controller to increase very rapidly with increasing
number of backstepping steps. Future research direc-
tions include dealing with the convergence issue, and
the output feedback problem.
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Appendix A. Coefficients for the Ginzburg—
Landau Equation

The numerical coefficients below are taken from
[12, Appendix A]:

R, = 47, (62)
x' = 1.183 — 0.031i, (63)
wh = 0.690 + 0.080i
+ (—0.00159 + 0.00447i)(R — R.), (64)
ki = 1.452 — 0.844i
+ (0.00341 + 0.011i)(R — R.), (65)
whye = —0.292i, (66)
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W' =0.108 — 0.057i,

k' = 0.164 — 0.006i,
wo(x) = wh + Ll (x — x")?,
ko(x) = k{ + ki(x — x'),
an(x) = —uhyko()

a; = —liw,’(k,

a3 = —0.638 +0.1911

+(0.0132 — 0.00399i)(R — R.),

ag(x) = (wo + Lwikd ()i,
as = —0.0225 + 0.0671..

Based on these parameters, we obtain

ag, (x) = 0.24289 — 0.003212(R — R.)
+1.752 x 1073x,

ar, (x) = 0.36739 + 0.00099572(R — Rc)
+4.7888 x 107 %x,

ar, = —0.146,

ap, =0,

(76)

()
(78)
(79)
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ag, = —0.638 + 0.0132(R — R.), (80)
ar, = 0.191 = 0.00399(R — R.), (81)

ag,(x) = 9.3917 x 1072 — 5.4541
x 107*(R - R;)
—1.5968 x 1075(R — R.)’
—1.1985 x 1072,
+1.8257 x 107*(R — R)x
+3.2422 x 1072x%, (82)

ar, (x) = 0.45783 + 1.6230

x 1073(R = R.)1.0953 x 1073(R — R.)*
— 0.16804x + 5.2079
x 1074(R = R.)x + 5.3713 x 1072x7,

(83)
ag, = —0.0255, (84)
as, = 0.0671. (85)



