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SUMMARY

This work introduces slope seeking, a new idea for non-model based adaptive control. It involves driving
the output of a plant to a value corresponding to a commanded slope of its reference-to-output map. To
achieve this objective, we introduce a slope reference input into a sinusoidal perturbation-based extremum
seeking scheme; derive a stability test for single parameter slope seeking, and then develop a systematic
design algorithm based on standard linear SISO control methods to satisfy the stability test. We then
extend the results to the multivariable case of gradient seeking. Finally, we illustrate near-optimal
compressor operation under slope seeking feedback through a simulation study upon the well-known
Moore–Greitzer model of compressor instability. Copyright # 2003 John Wiley & Sons, Ltd.

KEY WORDS: slope seeking; extremum seeking; compressor instability control

1. INTRODUCTION

We introduce in this work a new idea for non-model based adaptive control: slope seeking
involves driving the output of a plant to a value corresponding to a commanded slope of its
reference-to-output map. This is a generalization of the method of extremum seeking [1–6], that
involves driving the plant output to an extremum of the reference-to-output map, i.e., a point on
the reference-to-output map corresponding to a slope of zero. Motivations for the development
of slope seeking are: problems where operation at the extremum of the plant reference-to-output
map is susceptible to destabilization under finite disturbances, such as maximum pressure rise in
deep hysteresis aeroengine compressors [7], antiskid braking for aircraft [8], minimum power
demand formation flight [9], and problems in nuclear fusion where there is a need to stay away
from the extremum (such as a maximal energy release condition) [10]. In fact, work on aircraft
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antiskid control [8] used a slope set point in its extremum seeking loop. In all these problems,
there is significant uncertainty in the models, and the set-points are unknown.

We supply the following results for enabling attainment of slope seeking feedback using
sinusoidal perturbation:

(1) We formulate the problem for the case of the plant being a simple static map, the setting
for classical extremum seeking schemes. We next formulate single parameter slope
seeking for the general case where the map is embedded within dynamics with time-
varying parameters as in recent works on extremum seeking [1, 2].

(2) We develop a stability test for single parameter slope seeking and provide systematic
design guidelines using standard linear SISO control design methods to satisfy the
stability test.

(3) We extend the results above to the multivariable case of gradient seeking.

The results obtained herein constitute a generalization of perturbation-based extre-
mum seeking, which seeks a point of zero slope, to the problem of seeking a general slope.
With a small modification, the results on convergence in extremum seeking and the design
guidelines derived from [1] are extended to permit system operation at a point of arbitrary slope
on the reference-to-output map. The modification involves setting a reference slope in the
algorithm, which, in extremum seeking, is implicitly set to zero. The analysis is a simple
extension of that used in proving output extremization in Reference [1]. For ease of
understanding of the method, we present the result with slope seeking on a static map
accompanied by an illustrative simulation. Finally, we apply slope seeking feedback in
simulation to the well-known Moore–Greitzer model of compressor surge and stall and
demonstrate: near-optimal compressor operation with only pressure sensing; robustness of the
control to finite disturbances.

Section 2 presents slope seeking on a static map, Section 3 presents the analysis, and Section 4
the design algorithm for single parameter slope seeking for plants with dynamics; Section 5
supplies results on multiparameter gradient seeking. Section 6 presents a brief introduction to a
parametrization of the well-known Moore–Greitzer [11] model for compressor surge and stall,
and Section 7 illustrates near optimal compressor operation under slope seeking feedback.

2. SLOPE SEEKING ON A STATIC MAP

Figure 1 shows a basic slope seeking loop for a static map. We posit f ðyÞ of the form

f ðyÞ ¼ f n þ f 0
ref ðy� ynÞ þ

f 00

2
ðy� ynÞ2 ð1Þ

where f 0
ref is the commanded slope we want to operate at, and f 00 > 0: Any C2 function f ðyÞ

can be approximated locally by Equation (1). The assumption f 00 > 0 is made without
loss of generality. If f 0050; we just replace k ðk > 0Þ in Figure 1with �k: The purpose
of the algorithm is to make y� yn as small as possible, so that the output f ðyÞ is driven to its
optimum f n:

The perturbation signal a sin ot into the plant helps to give a measure of gradient information
of the map f ðyÞ: This is obtained by removing f n from the output using the washout filter
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s=ðsþ hÞ ðh > 0Þ; and then demodulating the signal with sinot: In a sense, this can also be
thought of as the online extraction of a Fourier coefficient. The input rðf 0

ref Þ serves as a slope set
point which is explicitly calculated below.

Output optimization: The following bare-bones result sums up the properties of the
rudimentary slope seeking loop in Figure 1:

Theorem 2.1 (Slope Seeking)
For the system in Figure 1 the output error y � f n achieves local exponential convergence to an
Oðaþ 1=oÞ neighbourhood of the origin provided the perturbation frequency o is sufficiently
large, 1=ð1þ LðsÞÞ is asymptotically stable, where

LðsÞ ¼
kaf 00

2s
ð2Þ

and provided

rðf 0
ref Þ ¼ �

af 0
ref

2
Re

jo
joþ h

� �
ð3Þ

We omit the proof as this result is subsumed in a more general result we prove in the following
section. The result in Theorem 2.1 has the following salient features:

1. Like the analogous result on extremum seeking in Reference [1], it provides a linear
stability test permitting design using linear SISO control tools.

2. Provided we know the sign of the second derivative f 00 in the neighbourhood, we can create
a feedback that drives the system to operate at a prespecified slope f 0

ref of the input–output
map; this is done exactly through setting the reference r ðf 0

ref Þ ¼ �ðaf 0
ref=2ÞRefjo=joþ hg:

3. Unlike the extremum seeking result, the convergence is only first order, i.e., Oðaþ 1=oÞ;
this is because we are seeking a point of non-zero slope.

Simulation example: We present an example to illustrate the method proposed above.
Simulation results are plotted with f nðtÞ; ynðtÞ in dotted lines and y; y in solid lines. We use the
static map f ðyÞ ¼ f n þ 0:5ðy� ynÞ þ ðy� ynÞ2; where f nðtÞ ¼ 5:0; and yn ¼ 0:5:

To satisfy the conditions in Theorem 2.1, we set o ¼ 5 rad=s; a ¼ 0:05; washout filter s=ðsþ
hÞ with h ¼ 5:0; integrator gain k ¼ 10; and slope setting r ðf 0

ref Þ ¼ �ðaf 0
ref=2ÞRefj5=j5þ 5g ¼

Figure 1. Basic slope seeking scheme.
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�0:00625 for operating at the slope f 0
ref ¼ 0:5: Substituting all parameters in Equation (2)

we get

LðsÞ ¼
1

4s
ð4Þ

and attain stable slope seeking (Figure 2) through stability of 1=ð1þ LðsÞÞ: An extremum seeking
design for the same plant with r ðf 0

ref Þ ¼ 0; and other design parameters the same as for slope
seeking, is shown in Figure 3 for comparison. Extremum seeking tracks a slope set point of zero,
the minimum at y ¼ 0:25 of the map f ðyÞ ðf ð0:25Þ ¼ 4:93755f ð0:5Þ ¼ 5Þ:

Figure 2. Slope seeking, r ðf 0
ref Þ ¼ �0:00625:

Figure 3. Extremum seeking, r ðf 0
ref Þ ¼ 0:
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3. GENERALIZED SINGLE PARAMETER SLOPE SEEKING

The generalized scheme differs from the rudimentary scheme of Figure 1 in the following ways:
the map has time varying parameters and is embedded amidst linear dynamics; the slope seeking
loop incorporates parameter dynamics for tracking parameter variations. Figure 4 shows the
time-varying non-linear map embedded amidst linear dynamics along with the slope seeking
loop. We posit f ðyÞ with time-varying parameters of the form

f ðyÞ ¼ f nðtÞ þ f 0
ref ðy� ynðtÞÞ þ

f 00

2
ðy� ynðtÞÞ2 ð5Þ

where f 00 > 0; and f 0
ref is the commanded slope. Any C2 function f ðyÞ can be approximated

locally by Equation (5). The assumption f 00 > 0 is made without loss of generality. If f 0050; we
just replace CiðsÞ in Figure 4 with �CiðsÞ: The purpose of the algorithm is to make y� yn as
small as possible, so that the output FoðsÞ½f ðyÞ� is driven to its optimum FoðsÞ½f nðtÞ�: n denotes
measurement noise. Before proceeding to the analysis, we make the following assumptions:

Assumption 3.1

FiðsÞ and FoðsÞ are asymptotically stable and proper.

Assumption 3.2

Lff nðtÞg ¼ lfGf ðsÞ and LfynðtÞg ¼ lyGyðsÞ are strictly proper rational functions and poles of
GyðsÞ that are not asymptotically stable are not zeros of FiðsÞ:

This assumption forbids delta function variations in the map parameters and also the
situation where tracking of the extremum is not possible.

Assumption 3.3

CoðsÞ=Gf ðsÞ and CiðsÞGyðsÞ are proper.

Figure 4. Generalized slope seeking.
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This assumption ensures that the filters CoðsÞ=Gf ðsÞ and CiðsÞGyðsÞ in Figure 4 can be
implemented. Since CiðsÞ and CoðsÞ are at our disposal to design, we can always satisfy this
assumption.

We introduce the following notation for use in analysis:

HoðsÞ ¼ k
CoðsÞ
Gf ðsÞ

FoðsÞ ¼
4 HospðsÞHobpðsÞ ¼

4 HospðsÞ ð1þ H sp
obpðsÞÞ ð6Þ

where HospðsÞ denotes the strictly proper part of HoðsÞ and HobpðsÞ its biproper part, k is chosen
to set

lim
s!0

HospðsÞ ¼ 1 ð7Þ

We use two further assumptions from [1]:

Assumption 3.4

Let the smallest in absolute value among the real parts of all of the poles of HospðsÞ be denoted
by a: Let the largest among the moduli of all of the poles of FiðsÞ and HobpðsÞ be denoted by b:
The ratio M ¼ a=b is sufficiently large.

The purpose of this assumption is to use a singular perturbation reduction of the output
dynamics and provide the LTI SISO stability test of the theorem stated below. If the assumption
were made upon the output dynamics FoðsÞ alone, the design would be restricted to plants with
fast output dynamics FoðsÞ: Hence, for generality in the design procedure, the assumption of fast
poles is made upon the strictly proper factor HospðsÞ of HoðsÞ: Its purpose is to deal with the
strictly proper part of FoðsÞ: If we have slow poles in a strictly proper FoðsÞ; we can introduce a
biproper CoðsÞ=Gf ðsÞ with an equal number of fast poles to permit analysis based design. For
example, if

FiðsÞ ¼
1

sþ 1
and FoðsÞ ¼

1

ðsþ 1Þð2sþ 3Þ

with constant f n and yn (giving GyðsÞ ¼ Gf ðsÞ ¼ 1=sÞ we may set

CoðsÞ ¼
ðsþ 4Þ

ðsþ 5Þðsþ 6Þ

and k ¼ 60 to give

HoðsÞ ¼
CoðsÞ
Gf ðsÞ

FoðsÞ ¼
60s ðsþ 4Þ

ðsþ 1Þð2sþ 3Þðsþ 5Þðsþ 6Þ

We can factor the fast dynamics as

HospðsÞ ¼
30

ðsþ 5Þðsþ 6Þ

and the slow biproper dynamics as

HobpðsÞ ¼ 1þ H sp
obpðsÞ ¼ 1þ

1:5ðs� 1Þ
ðsþ 1Þðsþ 1:5Þ
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This gives, in the terms of Assumption 3.4, the smallest pole in absolute value in HospðsÞ; a ¼ 5;
the largest of the moduli of poles in FiðsÞ and HobpðsÞ as b ¼ 1:5; giving their ratio M ¼ a=b ¼
3:33: The singular perturbation reduction reduces the fast dynamics HospðsÞ ¼ 30=ðsþ 5Þðsþ 6Þ
to its unity gain, and we deal with stability of the reduced order model via the method of
averaging to deduce stability conditions for the overall system in the theorem below.

Assumption 3.5

HiðsÞ is strictly proper.

This assumption is very easy to satisfy. Either FiðsÞ is strictly proper or, if it is biproper, one
would choose CiðsÞGyðsÞ strictly proper. For example, if FiðsÞ is biproper and GyðsÞ ¼ 1=s;
CiðsÞ ¼ 1 satisfies this assumption. The assumption is made only for the purpose of keeping the
proof of the following theorem brief. The formation of a state space representation of the
reduced order system for averaging becomes more intricate when HiðsÞ is biproper, because of
the need to account for a factor of o when time varying terms are differentiated, and this
distracts from the main theme of the proof.

Output optimization. We first provide background for the result on slope seeking below. The
following equations describe the single parameter slope seeking scheme in Figure 4:

y ¼ FoðsÞ f nðtÞ þ f 0
ref ðy� ynðtÞÞ þ

f 00

2
ðy� ynðtÞÞ2

� �
ð8Þ

y ¼ FiðsÞ½a sinðotÞ � CiðsÞGyðsÞ½xþ rðf 0
ref Þ�� ð9Þ

x ¼ sinðot � fÞ k
CoðsÞ
Gf ðsÞ

½y þ n� ð10Þ

For the purpose of analysis, we define the tracking error *yy and output error *yy:

*yy ¼ ynðtÞ � yþ y0 ð11Þ

y0 ¼ FiðsÞ½a sinðotÞ� ð12Þ

*yy ¼ y � FoðsÞ½f nðtÞ� ð13Þ

In terms of these definitions, we can restate the goal of slope seeking as driving output error
*yy to a small value by tracking ynðtÞ with y: With the present method, we cannot drive *yy
to zero because of the sinusoidal perturbation y0 . We are now ready for our single parameter
result:

Theorem 3.1 (Slope Seeking)
For the system in Figure 4, under Assumptions 3.1–3.5, the output error *yy achieves local
exponential convergence to an Oðaþ dÞ neighbourhood of the origin, where d ¼ 1=oþ 1=M ;
provided n ¼ 0 and:

(1) Perturbation frequency o is sufficiently large, and �jo is not a zero of FiðsÞ:
(2) Zeros of Gf ðsÞ that are not asymptotically stable are also zeros of CoðsÞ:
(3) Poles of GyðsÞ that are not asymptotically stable are not zeros of CiðsÞ:
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(4) CoðsÞ and 1=ð1þ LðsÞÞ are asymptotically stable, where

LðsÞ ¼
af 00

4
RefejfFiðjoÞgHiðsÞ ð14Þ

HiðsÞ ¼ CiðsÞGyðsÞFiðsÞ ð15Þ

(5) rðf 0
ref Þ ¼ �af 0

ref=2 Refe�jfHoðjoÞFiðjoÞg:

Proof

Using n ¼ 0 and substituting Equations (9) and (12) in Equation (11) yields

*yy ¼ yn þ HiðsÞ½xþ rðf 0
ref Þ� ð16Þ

Further, substitution for x from Equation (10) and for y from Equation (8) yields

*yy ¼ yn þ HiðsÞ sinðot � fÞHoðsÞ f n þ f 0
ref ðy� ynÞ þ

f 00

2
ðy� ynÞ2

� �
þ r ðf 0

ref Þ
� �

ð17Þ

Using y� yn ¼ y0 � *yy from Equation (11), we get

*yy ¼ yn þ HiðsÞ sinðot � fÞHoðsÞ f n þ f 0
ref ðy0 � *yyÞ þ

f 00

2
ðy0 � *yyÞ2

� �
þ r ðf 0

ref Þ
� �

¼ yn þ HiðsÞ sinðot � fÞHoðsÞ f n þ f 0
refy0 � f 0

ref
*yyþ

f 00

2
ðy20 � 2y0 *yyþ *yy2Þ

� �
þ r ðf 0

ref Þ
� �

ð18Þ

We drop the higher order term} *yy2 and simplify the expression in Equation (18) using Lemmas
A1, A2, Assumptions 3.1–3.3 and asymptotic stability of CoðsÞ=Gf ðsÞ and CoðsÞ:

sinðot � fÞHoðsÞ½f nðtÞ� ¼ lf sinðot � fÞL�1ðHoðsÞGf ðsÞÞ

¼ sinðot � fÞðe�tÞ ¼ e�t ð19Þ

sinðot � fÞHoðsÞ½y
2
0� ¼ C1a2 sinðot þ m1Þ þ C2a2 sinð3ot þ m2Þ þ e�t ð20Þ

sinðot � fÞHoðsÞ½f 0
refy0� ¼

af 0
ref

2
ðRefe�jfHoðjoÞFiðjoÞg

�Refejð2ot�fÞHoðjoÞFiðjoÞgÞ þ e�t ð21Þ

where C1; C2; m1; m2 are constants (these can be determined from the frequency response of
HoðsÞ), and e�t denotes exponentially decaying terms. Hence, after substituting Equations (19)–
(21) in Equation (18) we can write the linearization of Equation (18) as

*yy ¼ yn þ HiðsÞ½sinðot � fÞHoðsÞ½�f 0
ref

*yy� f 00y0 *yy� þ oðtÞ þ e�t� ð22Þ

}This is justified by Lyapunov’s first method, as we have already written the system in terms of error variable *yy thus
transforming the problem to stability of the origin. As in the proof of Theorem 2.1 in Reference [1], this is responsible
for the result in the theorem being local.
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oðtÞ ¼ a2
f 00

2
½C1 sinðot þ m1Þ þ C2 sinð3ot þ m2Þ�

þ
af 0

ref

2
Refejð2ot�fÞHoðjoÞFiðjoÞg ð23Þ

where we have used

r ðf 0
ref Þ ¼ �

af 0
ref

2
Refe�jfHoðjoÞFiðjoÞg

Applying the reduction of HoðsÞ from Assumption 3.4 and Lemmas A1, A2 in succession to the
terms containing 2y0 *yy and f 0

ref
*yy in Equation (22), we getk

HiðsÞ½sinðot � fÞHoðsÞ½�f 00y0 *yy� f 0
ref

*yy��

¼ HiðsÞ½sinðot � fÞð1þ H sp
obpðsÞÞ½�f 00y0 *yyþ f 0

ref
*yy�� ð24Þ

¼ T½*yy� � LðsÞ½*yy� �S½*yy� þ HiðsÞ½sinðot � fÞv0ðtÞ� ð25Þ

where

LðsÞ½*yy� ¼
af 00

2
HiðsÞ½RefejfFiðjoÞ½*yy�g� ð26Þ

T½*yy� ¼
af 00

2
HiðsÞ½Refejð2ot�fÞFiðjoÞ½*yy�g� ð27Þ

S½*yy� ¼ f 0
refHiðsÞ½sinðot � fÞ*yy� ð28Þ

v0ðtÞ ¼ H sp
obpðsÞ½�f 00 ImfaFiðjoÞejotg*yyþ f 0

ref
*yy� ð29Þ

Finally, substituting Equation (25) in Equation (22), and moving the terms linear in *yy to the left-
hand side, we get

ð1þ LðsÞ �TþSÞ½*yy� � HiðsÞ½sinðot � fÞv0ðtÞ�

¼ yn þ HiðsÞ½oðtÞ þ e�t� ð30Þ

We now divide both sides of Equation (30) with 1þ LðsÞ and rewrite it as

*yy� YiðsÞ½af 00=2Refejð2ot�fÞ*yyg þ af 0
ref sinðot � fÞ*yyþ sinðot � fÞv0ðtÞ�

¼
1

1þ LðsÞ
½yn� þ YiðsÞ½wðtÞ þ e�t� ð31Þ

kNote that Equation (25) contains an additional term of the form HiðsÞ½sinðot � fÞHoðsÞ½e�t *yy�� which comes from e�t in
y0ðtÞ ¼ a ImfFiðjoÞejotg þ e�t : We drop this term from subsequent analysis because it does not affect closed-loop
stability or asymptotic performance. It can be accounted for in three ways. One is to perform averaging over an infinite
time interval in which all exponentially decaying terms disappear. The second way is to treat e�t *yy as a vanishing
perturbation via Corollary 5.4 in Reference [12], observing that e�t is integrable. The third way is to express e�t in state
space format and let e�ty be dominated by other terms in a local Lyapunov analysis.
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where YiðsÞ ¼ HiðsÞ=ð1þ LðsÞÞ ¼ numfYiðsÞg=numf1þ LðsÞg is asymptotically stable because the
poles of HiðsÞ are cancelled by zeros of 1=ð1þ LðsÞÞ; and 1=ð1þ LðsÞÞ is asymptotically stable. By
noting also that zeros in 1=ð1þ LðsÞÞ cancel poles in ynðsÞ ¼ lyGyðsÞ; and using asymptotic
stability of 1=ð1þ LðsÞÞ; we get

*yy� YiðsÞ½af 00=2Refejð2ot�fÞ *yyg þ af 0
ref sinðot � fÞ*yyþ sinðot � fÞv0ðtÞ�

¼ e�t þ YiðsÞ½wðtÞ� ð32Þ

Now, YiðsÞ is strictly proper, and can therefore be written as YiðsÞ ¼ 1=ðsþ p0ÞY 0
i ðsÞ; where Y

0
i ðsÞ

is proper. In terms of their partial fraction expansions, we can write Y 0
i ðsÞ ¼ A0 þ

Pn
k¼1 Ak=ðsþ

pkÞ; and H sp
obpðsÞ ¼

Pm
j¼1 Bj=ðsþ pjÞ: Multiplying both sides of Equation (32) with sþ p0 and

using the partial fraction expansions, we get

*yyþ p0
*yy� A0ðu0ðtÞ þ sinðot � fÞv0ðtÞ � wðtÞÞ

�
Xn
k¼1

ðukðtÞ þ vkðtÞ � wkðtÞÞ ¼ e�t ð33Þ

u0ðtÞ ¼ af 00=2Refejð2ot�fÞ *yyg þ af 0
ref sinðot � fÞ*yy

ukðtÞ ¼
Ak

sþ pk
½u0ðtÞ�; vkðtÞ ¼

Ak

sþ pk
½sinðot � fÞv0ðtÞ�

wkðtÞ ¼
Ak

sþ pk
½wðtÞ�

v0ðtÞ ¼
Xm
j¼1

v1jðtÞ; v1jðtÞ ¼
Bj

sþ pj
½�f 00 ImfaFiðjoÞejotg*yyþ f 0

ref
*yy� ð34Þ

We can write the system of linear time varying differential equations above in the state-space
form:

’xx ¼ AðtÞxþ A12xe þ BwðtÞ; *yy ¼ x1 ð35Þ

’xxe ¼ Aexe ð36Þ

Equation (36) is a representation for the e�t: We get Equations (35) and (36) into the standard
form for averaging by using the transformation t ¼ ot; and then averaging the right-hand side
of the equations w.r.t. time from 0 to T ¼ 2p=o; i.e., 1=T

R T
0 ð�Þ dt treating states x; xe as

constant to get:

dxav

dt
¼

1

o
ðAavxav þ A12xeavÞ; *yyav ¼ x1av ð37Þ

dxeav

dt
¼

1

o
Aexeav ð38Þ
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which is a state-space representation of the system in the t ¼ ot time-scale, and Aav ¼
1=T

R T
0 ðAðtÞÞ dt: This gives

’*yy*yyav þ p0
*yyav �

Xn
k¼1

ðuk;av þ vk;av � wk;avÞ ¼ e�t ð39Þ

’uuk;av þ pkuk;av ¼ 0; ’vvk;av þ pkvk;av ¼ 0; ’wwk;av þ pkwk;av ¼ 0

v0;av ¼
Xm
j¼1

v1j;av; ’vv1j;av þ pjv1j;av ¼ Bjf 0
ref

*yyav ð40Þ

in the original time-scale. As all of the poles pk for all k and pj for all j are asymptotically stable
(from asymptotic stability of HoðsÞ and 1=ð1þ LðsÞÞ), all of the terms on the right-hand side of
Equation (39) for *yyav are exponentially decaying, i.e., we have

’*yy*yyav þ p0
*yyav ¼ e�t ð41Þ

which decays to zero because p0; a pole of 1=ð1þ LðsÞÞ is asymptotically stable. Hence, by a
standard averaging theorem such as Theorem 8.3 in Reference [12], we see that if o; a;f;CiðsÞ
and CoðsÞ are such that 1=ð1þ LðsÞÞ is asymptotically stable, and o is sufficiently large relative to
other parameters of the state-space representation, solutions starting from small initial
conditions converge exponentially to a periodic solution in an Oð1=oÞ neighbourhood of zero.
Hence, *yyðtÞ goes to a periodic solution *yyperðtÞ ¼ Oð1=oÞ: We now proceed to put the system in
the standard form for singular perturbation analysis through making the transformation d*yy ¼
*yyðtÞ � *yyperðtÞ in the unreduced linearized system in Equation (22) and get:

d*yyþ *yyperðtÞ ¼ yn þ HiðsÞ½sinðot � fÞ½y0
osp� þ wðtÞ þ e�t� ð42Þ

y0
osp ¼ ð1þ H sp

obpðsÞÞ½yosp�

yosp ¼ HospðsÞ½ðf 00y0 � f 0
ref Þðd*yyþ *yyperÞ� ð43Þ

By linearity of the system described by Equations (42), (36), we have that the reduced order
model in the new co-ordinates (replacing HospðsÞ with its unity static gain) is given by

d*yy ¼ HiðsÞ½sinðot � fÞ½y0
osp��

y0
osp ¼ �ð1þ H sp

obpðsÞÞ½ðf
00y0 þ f 0

ref Þd*yy� ð44Þ

which has the state-space representation

’xx ¼ AðtÞx; d*yy ¼ x1 ð45Þ

where AðtÞ is the same as in Equation (35). Hence d*yy converges exponentially to the origin. This
shows that the reduced order model is exponentially stable. From exponential stability of
HospðsÞ; we have exponential stability of the boundary layer model

dy

dt
¼ Aospy ð46Þ

where ðAosp;Bosp;CospÞ is a state-space representation of HospðsÞ; with CospA
�1
ospBosp ¼ 1 from

Equation (6). Hence, by the Singular Perturbation Lemma A3, we have that in the overall
unreduced system in Equations (42) and (43), the solution converges to an Oð1=MÞ
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neighbourhood of the origin. Hence, d*yyðtÞ converges to a Oð1=MÞ neighbourhood of the origin.
Therefore, *yy converges exponentially to a Oð1=oÞ þ Oð1=MÞ ¼ OðdÞ neighbourhood of the
origin. Further, the output error *yy decays to Oðaþ dÞ:

*yy ¼ FoðsÞ f 0
ref ðy� ynÞ þ

f 00

2
ðy� ynÞ2

� �

¼ FoðsÞ f 0
ref ð*yy� y0Þ þ

f 00

2
ð*yy� y0Þ

2

� �
¼ Oðaþ dÞ ð47Þ

dropping second-order terms, which completes the proof.

The output error *yy converges to an Oðaþ 1=oÞ neighbourhood of the origin. Thus, the
deviation of the output from the desired output will be larger than that achievable in extremum
seeking, where we track a point on the map with zero first derivative. We next provide rigorous
design guidelines that satisfy the conditions of Theorem 3.1. We now note that for r ðf 0

ref Þ ¼ 0;
the slope seeking scheme reduces to the extremum seeking scheme in Reference [1].

4. COMPENSATOR DESIGN

In the design guidelines that follow, we set f ¼ 0 which can be used separately for fine-tuning.
Algorithm 4.1 (Single Parameter Slope Seeking)

(1) Select the perturbation frequency o sufficiently large. Also, o should not equal any
frequency in noise.

(2) Set perturbation amplitude a so as to obtain small steady-state output error *yy:
(3) Design CoðsÞ asymptotically stable, with zeros of Gf ðsÞ that are not asymptotically stable as

its zeros, and such that CoðsÞ=Gf ðsÞ is proper. In the case where dynamics in FoðsÞ are slow
and strictly proper, use as many fast poles in CoðsÞ as the relative degree of FoðsÞ; and as
many zeros as needed to have zero relative degree of the slow part HobpðsÞ to satisfy
Assumption 3.4.

(4) Design CiðsÞ by any linear SISO design technique such that it does not include poles of GyðsÞ
that are not asymptotically stable as its zeros, CiðsÞGyðsÞ is proper, and 1=ð1þ LðsÞÞ is
asymptotically stable.

(5) Set r ðf 0
ref Þ ¼ �af 0

ref=2 Refe�jfHoðjoÞFiðjoÞg:

Steps 1; . . . ; 4 are discussed fully in Reference [1]. A point that we note here is that
simplification of the design for CiðsÞ is achieved by setting f ¼ �/ðFiðjoÞÞ; and obtaining

LðsÞ ¼
af 00jFiðjoÞj

4
HiðsÞ

The setting of r ðf 0
ref Þ requires knowledge of the frequency response of FiðsÞ and FoðsÞ at o: We

note here that seeking large slopes is difficult because *yy will be correspondingly large from
Equation (47).

Convergence of the scheme requires asymptotic stability of 1=ð1þ LðsÞÞ; and this requires
knowledge of the second derivative f 00 of the map at yn; or robustness to a range of values of f 00:
This is dealt with in Reference [1].
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5. MULTIPARAMETER GRADIENT SEEKING

The results on multiparameter extremum seeking presented in Reference [1] can be extended to
gradient seeking through setting reference inputs in each of the parameter tracking loops.
Figure 5 shows the multiparameter gradient seeking scheme with reference inputs rp (rp ¼ 0 in
each loop corresponds to the multiparameter extremum seeking scheme in Reference [1]).
Analogous to the single parameter case in Section 3, we let f ðyÞ be a function of the form

f ðyÞ ¼ f nðtÞ þ JTðy� ynðtÞÞ þ ðy� ynðtÞÞTPðy� ynðtÞÞ ð48Þ

where Pl�l ¼ PT; y ¼ ½y1 . . . yl�T; ynðtÞ ¼ ½yn1ðtÞ . . . y
n

l ðtÞ�
T; LfynðtÞg ¼ GyðsÞ ¼ ½l1Gy1ðsÞ; . . . ;

llGylðsÞ�T; Lff nðtÞg ¼ lfGf ðsÞ; and J ¼ ½J1; J2; . . . ; Jl� is the commanded gradient. Any twice
differentiable vector function f ðyÞ can be approximated by Equation (48). As in multiparameter
extremum seeking, the broad principle of using m frequencies for identification/tracking of 2m
parameters applies; but for simplicity of presentation, we only present the case where a separate
forcing frequency is used in each parameter tracking loop, i.e., we use forcing frequencies
o15o35 � � �5ol: We make assumptions identical to those made to prove Theorem 3.1 in
Reference [1]:

Assumption 5.1

FiðsÞ ¼ ½Fi1ðsÞ . . . FilðsÞ�T and FoðsÞ are asymptotically stable and proper.

Assumption 5.2

GyðsÞ and Gf ðsÞ are strictly proper.

Assumption 5.3

CipðsÞGypðsÞ and CopðsÞ=Gf ðsÞ are proper for all p ¼ 1; 2; . . . ; l:

Assumption 5.4 (Rotea [4])
op þ oq=or for any p; q; r ¼ 1; 2; . . . ; l:

Figure 5. Multiparameter gradient seeking with p ¼ 1; 2; . . . ; l:
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As with multiparameter extremum seeking in Reference [1], we introduce the following
notation for the next assumption:

HopðsÞ ¼ kp
CopðsÞ
Gf ðsÞ

FoðsÞ ¼
4 Hosp;pðsÞHobp;pðsÞ

¼4 Hosp;pðsÞð1þ H sp
obp;pðsÞÞ ð49Þ

lim
s!0

Hosp;pðsÞ ¼ 1

where Hosp;pðsÞ denotes the strictly proper part of HopðsÞ and Hobp;pðsÞ its biproper part, kp;p ¼
1; . . . ; l is chosen to normalize the static gain of Hosp;pðsÞ to unity.

Assumption 5.5

Let the smallest in absolute value among the real parts of all of the poles of Hosp;pðsÞ for all p be
denoted by a: Let the largest among the moduli of all of the poles of FipðsÞ and Hobp;pðsÞ for all p;
be denoted by b: The ratio M ¼ a=b is sufficiently large.

Theorem 5.1 (Multiparameter Gradient Seeking)
For the system in Figure 5, under Assumptions 5.1–5.5, the output y achieves local exponential
convergence to an Oð

Pl
p¼1 ap þ DÞ neighbourhood of FoðsÞ½f nðtÞ� provided n ¼ 0 and:

(1) Perturbation frequencies o15o25 � � �5ol are rational, sufficiently large, and �jop is
not a zero of FipðsÞ:

(2) Zeros of Gf ðsÞ that are not asymptotically stable are also zeros of CopðsÞ for all p ¼
1; . . . ; l:

(3) Poles of GypðsÞ that are not asymptotically stable are not zeros of CipðsÞ; for any p ¼
1; . . . ; l:

(4) CopðsÞ are asymptotically stable for all p ¼ 1; . . . ; l and 1=detðIl þ XðsÞÞ is asymptotically
stable, where XpqðsÞ denote the elements of XðsÞ and

XpqðsÞ ¼ PpqapLpðsÞ; q ¼ 1; . . . ; l ð50Þ

LpðsÞ ¼ 1
4
HipðsÞRefejfpFipðjopÞg ð51Þ

where HipðsÞ ¼ CipðsÞGypðsÞFipðsÞ and D ¼ 1=oþ 1=M :
(5) The reference is chosen as

rpðJpÞ ¼ �
apJp
2

Refe�jfpHopðjopÞFipðjopÞg; p ¼ 1; . . . ; 1

The proof is a simple extension of the proof of Theorem 3.1 in Reference [1]. Additional terms
produced by the gradient term in Equation (48) are handled without any difficulty by the
method of averaging. The key point to note in this result is that the greater the number of
parameters, the poorer the convergence. Furthermore, the design guidelines in Reference [1]
apply to gradient seeking with the added specification of the components of the gradient,
r1ðJ1Þ; r2ðJ2Þ; . . . ; rlðJlÞ by Theorem 5.1.
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6. COMPRESSOR STALL AND SURGE: THE MOORE–GREITZER MODEL

Most experimentally validated control designs for compressors (see Reference [7]) have been
based upon the well-known three state non-linear model of Moore and Greitzer [11]. It is a
Galerkin approximation of a higher order PDE model and the simplest model that adequately
describes the basic dynamics of rotating stall and surge:

’RR ¼ sRFðR;FÞ ð52Þ

’FF ¼ �Cþ GðR;FÞ ð53Þ

’CC ¼
1

b2
ðF� FTÞ ð54Þ

where the functions FðR;FÞ and GðR;FÞ are given by

FðR;FÞ ¼
1

3p
ffiffiffi
R

p Z 2p

0

CCðFþ 2
ffiffiffi
R

p
sin yÞ sin y dy ð55Þ

GðR;FÞ ¼
1

2p

Z 2p

0

CCðFþ 2
ffiffiffi
R

p
sin yÞ dy ð56Þ

The quantities appearing in this model are listed in Table I, with R ¼ ðA=2Þ2: The function
CCðFÞ is the steady-state annulus-averaged compressor characteristic. The throttle flow FT is
related to the pressure rise C through the throttle characteristic

C ¼
1

g2
ð1þ FC0 þ FTÞ

2 ð57Þ

where g is the throttle opening. We optimize performance by controlling g in the next section.

Table I. Notation in the Moore–Greitzer model.

F ¼ #FF=W � 1� FC0
#FF}annulus-averaged flow coefficient
W}compressor characteristic semi-width

C ¼ #CC=H #CC}plenum pressure rise
H}compressor characteristic semi-height

A ¼ #AA=W #AA}rotating stall amplitude

FT Mass flow through the throttle/W � 1

y Angular (circumferential) position

b ¼
2H
W

B B}Greitzer stability parameter

s ¼
3lc

mþ m
lc}Effective length of inlet duct normalized by compressor radius
m}Moore expansion parameter
m}Compressor inertia within blade passage

t ¼
H
Wlc

#tt #tt=(actual time)� (rotor angular velocity)
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The e-MG3 model parametrization: The following parametrization of compressor character-
istic CCðFÞ proposed in Reference [7] permits capturing the qualitative properties of a large
variety of compressors:

CCðFÞ ¼ CC0 þ 1þ ð1� eÞ
3

2
F�

1

2
F3

� �
þ e

2F

1þ F2
ð58Þ

where e 2 ½0; 1�: Evaluation of the integrals in Equations (52)–(54) with the characteristic in
Equation (58) leads to the following differential equations [7]:

’RR ¼ s

(
ð1� eÞRð1� f2 � RÞ þ

2e
3

"
1�

1ffiffiffi
2

p
½ðf2 � 4R� 1Þ2 þ 4F2�1=2

� ððððF2 � 1ÞðF2 � 4R� 1Þ þ 4F2Þ2 þ 64F2R2Þ1=2

þ ðF2 � 1ÞðF2 � 4R� 1Þ þ 4F2Þ1=2
#)

ð59Þ

’FF ¼ �CþCC0 þ 1þ ð1� eÞ
3

2
F�

1

2
F3 � 3FR

� �

þ e

ffiffiffi
2

p
sgnðFÞ

½ðF2 � 4R� 1Þ2 þ 4F2�1=2
f½ðF2 � 4R� 1Þ2 þ 4F2�1=2

þ ðF2 � 4R� 1Þg1=2 ð60Þ

’CC ¼
1

b2
ðF� FTÞ ð61Þ

We refer to this model as the e-MG3 model. Note that, even though (53) contains sgnðFÞ; this
equation is not discontinuous because the term multiplied by sgnðFÞ vanishes at F ¼ 0 for all
values of R: There are two sets of equilibria of the model in Equations (59)–(61). The no-stall
equilibria are:

R

F

C

2
664

3
775
e

¼

0

F0

CCðF0Þ

2
664

3
775; F0 2 R ð62Þ

The stall equilibra are:

R

F

C

2
664

3
775
e

¼

R0

FR�ðR0Þ

CR�ðR0Þ

2
664

3
775; R0 2 ½0; %RR� ð63Þ

The functions FRþðRÞ and FR�ðRÞ are obtained as solutions of (59) with ’RR ¼ sRFðR;FÞ ¼ 0 and
R=0: Note that since FðR;FÞ in (59) is a function of F2; we get two solutions
FR�ðRÞ ¼ �FRþðRÞ: The functions CRþðRÞ and CR�ðRÞ are obtained as solutions of (61) with
’FF ¼ �Cþ GðR;FÞ ¼ 0; that is, by substituting F ¼ FR�ðRÞ into C ¼ GðR;FÞ:
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7. NEAR OPTIMAL COMPRESSOR OPERATION WITH SLOPE
SEEKING FEEDBACK

For the purpose of our study, we consider a three-stage compressor considered in Reference [7]
with parameters CC0 ¼ 0:72; FC0 ¼ 0 and s ¼ 4: Furthermore we choose the low speed case of
b ¼ 0:71 from [7]. Figures 6 and 7 show the bifurcation diagrams for the compressor for e ¼ 0
and 0.9, respectively; the solid lines showing stable equilibria and the dotted lines showing
unstable equilibria.

The performance objective for compressors is to maximize the pressure rise C with respect to
the mass flow F without entering stall or surge instabilities. But as seen from the C versus g
diagrams in Figures 6 and 7, the point of maximum pressure rise is directly above a stable stall
equilibrium, and the stable high pressure branch ends at the maximum. The stall branch comes
very deep under the high pressure branch in the case when e ¼ 0:9; showing a deep hysteresis
characteristic of some high performance compressors.

Thus, running the compressor at maximum performance risks entering a stall cycle under any
small disturbance. Several feedback designs to stabilize surge and stall through varying throttle
opening g have appeared in the literature beginning with [13]. The result in Reference [14]
reduced the sensing requirement for global asymptotic stabilization (GAS) from three to two (C
and F) measurements; in Reference [15], an output feedback controller achieves semi-global
stabilization using only pressure sensing, and most recently, the result in Reference [16] achieves
GAS using only pressure ðCÞ measurement. In Reference [17], extremum seeking feedback was
used in an experiment to optimize performance of a compressor stabilized by air-injection; this
led to less demanding sensing and actuation requirements than stabilization of stalled equilibria.
The result in Reference [18] derives geometric sufficient conditions for stabilization of the
bifurcations for use in low spatial actuation authority schemes.

Figure 6. Bifurcation diagrams for the open-loop system with e ¼ 0 and b ¼ 0:71: The throttle opening g
is the bifurcation parameter.
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Here, we illustrate achievement of near-optimal performance of the compressor under slope-
seeking feedback that uses only the pressure measurement C; and actuates throttle opening g:
Through slope seeking, we can operate at a point on the compressor characteristic that is just
short of the maximum. This is done by using a slope setting r ðf 0

ref Þ with commanded slope f 0
ref

small and negative in the slope seeking scheme (Figure 1).
Slope seeking design: We design two slope seeking loops; one for the case of low hysteresis,

e ¼ 0; and for the case of deep hysteresis, e ¼ 0:9: In both designs, we choose forcing frequency
o ¼ 0:5; forcing amplitude a ¼ 0:025; gain k ¼ �0:6; and pole of washout filter h ¼ 0:5: We set
commanded slopes f 0

ref ¼ �0:9 and �0:5 for the e ¼ 0 and 0.9 cases, respectively, obtaining
values of r ðf 0

ref Þ ¼ �af 0
ref=2 Ref jo=ð joþ hÞg ¼ 0:0056; 0.0031 for the slope settings neglecting

plant dynamics.
Simulation results: We perform simulationsnn with low performance initial conditions of

Rð0Þ ¼ 1; Fð0Þ ¼ 1:8565; Cð0Þ ¼ 1:3055; gð0Þ ¼ 1:5 for the e ¼ 0 case, and initial conditions of
Rð0Þ ¼ 1; Fð0Þ ¼ 1:4877;Cð0Þ ¼ 1:9463; gð0Þ ¼ 1:5 for the e ¼ 0:9 case. Figures 8 and 9 show the
results for slope seeking (solid lines) along with results for extremum seeking, r ¼ 0 (in dotted
lines) for the initial conditions above. The results reveal the following features:

1. Both slope seeking and extremum seeking converge to their desired set points: extremum
seeking to the maximum pressure, and slope seeking to a point slightly below the
maximum.

Figure 7. Bifurcation diagrams for the open-loop system with e ¼ 0:9 and b ¼ 0:71: The throttle opening g
is the bifurcation parameter.

nnAll simulations were performed in MATLAB and SIMULINK.
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2. Under a small disturbance at t ¼ 600; the system with extremum seeking is destabilized and
the system goes into the stall regime, while slope seeking feedback recovers its
performance.

APPENDIX A: LEMMAS

Lemma A1

If the transfer function H ðsÞ has all of its poles with negative real parts, then for any real c;

H ðsÞ½sinðot � cÞ� ¼ ImfH ð joÞe jðot�cÞg þ e�t ðA1Þ

where e�t denotes exponentially decaying terms.

This is simply the frequency response of an asymptotically stable LTI system.

Figure 8. Low hysteresis compressor: e ¼ 0:
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Lemma A2

For any two rational functions Að�Þ and Bð� ; �Þ; the following is true:

Imfe jðoat�cÞAð joaÞg Imfe jðobt�fÞBðs; jobÞ½zðtÞ�g

¼ 1
2
Refe jððob�oaÞtþc�fÞAð�joaÞBðs; jobÞ½zðtÞ�g

� 1
2
Refe jððobþoaÞt�c�fÞAð joaÞBðs; jobÞ½zðtÞ�g

Proof

Follows by substituting the representations for the real and imaginary parts of a complex
number z; Refzg ¼ ðzþ %zzÞ=2; and Imfzg ¼ ðz� %zzÞ=2:

Figure 9. Deep hysteresis compressor: e ¼ 0:9:
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Lemma A3 (Singular perturbation)
Consider the singularly perturbed system given by the equations:

’xx ¼ A1ðtÞxþ B1ðtÞu; xðt0Þ ¼ xðeÞ

v ¼ C1ðtÞx ðA2Þ

e’zz ¼ A2zþ B2v; zðt0Þ ¼ ZðeÞ

u ¼ C2z ðA3Þ

where xðeÞ and ZðeÞ are smooth functions of e: If A2 is Hurwitz and the origin of the reduced
LTV model

’%xx%xx ¼ ðA1ðtÞ þ B1ðtÞC2A
�1
2 B2C1ðtÞÞ %xx ðA4Þ

is exponentially stable, then there exists en > 0 such that for all 05e5en; the system in Equations
(A2) and (A3) has a unique solution xðt; eÞ; zðt; eÞ defined for all t5t050 and xðt; eÞ � %xxðtÞ ¼
OðeÞ:

Proof

A direct consequence of Theorem 9.4 in Reference [12].
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