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Abstract

We address the problem of enhancing mixing by means of boundary feedback control in 2D channel *ow. This is done by 6rst
designing feedback control strategies for the stabilization of the parabolic equilibrium *ow, then applying this feedback with the sign
of the input reversed. The result is enhanced instability of the parabolic equilibrium *ow, which leads rapidly to highly complex *ow
patterns. Simulations of the deformation of dye blobs positioned in the *ow indicate (qualitatively) that e:ective mixing is obtained for
small control e:ort as compared with the nominal (uncontrolled) *ow. A mixedness measure P� is constructed to quantify the mixing
observed, and is shown to be signi6cantly enhanced by the application of the destabilizing control feedback.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In many engineering applications, the mixing of two or
more *uids is essential to obtaining good performance in
some downstream process (a prime example is the mix-
ing of air and fuel in combustion engines (Annaswamy &
Ghoniem, 1995). As a consequence, mixing has been the
focus of much research, but without reaching a uni6ed the-
ory, either for the generation of *ows that mix well due
to external forcing, or for the quanti6cation of mixing in
such *ows. Approaches range from experimental design and
testing to modern applications of dynamical systems the-
ory. The latter was initiated by Aref (1984), who studied
chaotic advection in the setting of an incompressible, invis-
cid *uid contained in a (2D) circular domain, and agitated
by a point vortex (the blinking vortex *ow). Ottino and
coworkers studied a number of various *ows, examining
mixing properties based on dynamical systems techniques
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(Ottino, 1989). Later Rom-Kedar, Leonard, and Wig-
gins (1990) applied Melnikov’s method and KAM
(Kolmogorov–Arnold–Moser) theory to quantify transport
in a *ow governed by an oscillating vortex pair. An obvious
shortcoming of this theory is the requirement that the *ow
must be periodic, as such methods rely on the existence
of a Poincar/e map for which some periodic orbit of the
*ow induces a hyperbolic 6xed point. Another shortcom-
ing is that they can only handle small perturbations from
integrability, whereas e:ective mixing usually occurs for
large perturbations. A third shortcoming is that traditional
dynamical systems theory is concerned with asymptotic, or
long-time, behavior, rather than quantifying rate processes
which are of interest in mixing applications. In order to
overcome some of these shortcomings, recent advances in
dynamical systems theory have focused on 6nding coherent
structures and invariant manifolds in experimental datasets,
which are 6nite in time and generally aperiodic. This has
led to the notions of 6nite-time hyperbolic trajectories with
corresponding 6nite-time stable and unstable manifolds
(Haller & Poje, 1998). The results include estimates for
the transport of initial conditions across the boundaries of
coherent structures. Another method for identifying regions
in a *ow that have similar 6nite-time statistical proper-
ties based on ergodic theory was developed by Mezi/c and
Wiggins (1999). The relationship between the two meth-
ods mentioned, focusing on geometrical and statistical
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properties of particle motion, respectively, was examined
by Poje, Haller, and Mezi/c (1999). As these developments
have partly been motivated by applications in geophysical
*ows, they are diagnostic in nature and lend little help to
the problem of generating a *uid *ow that mixes well. The
problem of generating e:ective mixing in a *uid *ow is
usually approached by trial and error using various “brute
force” open-loop controls, such as mechanical stirring or
jet injection. However, D’Alessandro, Dahleh, and Mezi/c
(1999) used control systems theory to rigorously derive
the mixing protocol that maximizes entropy among all the
possible periodic sequences composed of two shear *ows
orthogonal to each other.
In this paper, we propose using active feedback control

in order to enhance existing instability mechanisms in a 2D
model of plane channel *ow. The *uid is considered incom-
pressible and Newtonian (constant viscosity). Our hypoth-
esis is that e:ective mixing may be obtained by enhancing
the instability of the parabolic pro6le of the Poiseuille *ow
using boundary control. Furthermore, it is expected that by
applying boundary control intelligently in a feedback loop,
mixing will be considerably enhanced with relatively small
control e:ort. We focus on decentralized control laws and
design two di:erent controllers based on Lyapunov stability
analysis. We proceed by comparing the performance of the
control laws in order to select a controller that has a signif-
icant stabilizing e:ect on the 2D *ow. Finally, we switch
the sign of the feedback gain to obtain a destabilizing con-
trol algorithm. It is recognized that channel *ow instability
mechanisms are inherently 3D. E:orts that study the sta-
bilization problem only in 2D are thus inconclusive about
physical *ows, for which 3D e:ects are quite signi6cant.
(However, the “ model problem” of 2D channel *ow stabi-
lization is a useful testbed for techniques that can eventually
be extended to 3D *ows.) When studying the problem of
destabilization, however, the situation is markedly di:erent.
In this case, studying the 2D problem, rather than being in-
conclusive about physical *ows, is indeed conservative: the
neglected 3D instability mechanisms may be expected to
substantially increase the rate of mixing beyond that seen
in the 2D model presented here. Thus, the study of 2D
*ow destabilization has important consequences for phys-
ical, 3D *ows. The controller developed by Balogh, Liu,
and Krsti/c (2001) form the motivation for the decentral-
ized control approach performed in the present paper.
As noted in Balogh et al. (2001) and Bewley (2001),
fully decentralized controllers have an implementational
advantage in that they can be embedded into MEMS
(Micro-Electro-Mechanical-Systems) hardware, minimiz-
ing the communication requirements of centralized compu-
tations and facilitating scaling to massive arrays of sensors
and actuators.
The paper carries two general messages, which are

beyond *ow control. First, unlike in many control prob-
lems, the plant being controlled is of very high dimension
and is nonlinear. In such a situation one would expect to

necessitate an extremely complex control algorithm (possi-
bly some form of a 6nite-horizon optimal control). Such a
controller would not be implementable as it would require
prohibitive computation and extensive wiring between the
sensors, the actuators, and the computer(s). It is therefore
remarkable that the control proposed, and demonstrated
numerically to be very e:ective, is a static output feedback
(i.e., proportional), decentralized, controller. Second, unlike
most control problems, the problem of mixing considered
here does not require stabilization but destabilization. We
design such a controller, which does not drive the states (or
the control inputs) unbounded but it does locally destabilize
the system, leading to bounded unsteadiness in the system,
and, indirectly, to enhanced mixing in the *uid.
The paper is organized as follows: in Section 2 we state

the Navier–Stokes equation for incompressible *ow, and
derive the equation for the perturbation; in Section 3, we
present the Lyapunov analysis for the design of boundary
control laws; in Section 4, we present results from numerical
simulations of the stabilizing and destabilizing cases; we
o:er some concluding remarks in Section 5.

2. Problem statement

The dimensionless Navier–Stokes equations for incom-
pressible *ow between two walls are given by

Wt − 1
R MW + (W · ∇)W +∇P = 0;

divW = 0
(1)

for 0¡x¡L, −1¡y¡ 1, and t ¿ 0, where W =
W(x; y; t)=(U (x; y; t); V (x; y; t))T is the velocity at location
(x; y) and time t, P = P(x; y; t) is the pressure at location
(x; y) and time t, and R is the Reynolds number. Eq. (1)
has a steady solution, or 6xed point ( OU; OV ), given as

OU (y) = 1− y2; (2)

OV = 0 (3)

with pressure OP = −2x=R. The geometry of the problem is
illustrated in Fig. 1, along with the parabolic equilibrium
pro6le. The stability characteristics of ( OU; OV ) vary with the
Reynolds number. For R¡ 5772, ( OU; OV ) is linearly stable
(see, for instance, Panton (1996)), that is, in6nitesimal per-
turbations from the parabolic pro6le will be damped out. For

Fig. 1. Geometry of the *ow problem.
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R¿ 5772, ( OU; OV ) is unstable. Our main objective in this
paper is to enhance mixing in the channel *ow. Towards that
end, we 6rst design control laws that are analytically proved
to enhance stability for small Reynolds numbers, and show
by simulations that they stabilize ( OU; OV ) for large Reynolds
numbers. Then, we reverse the control gains to destabilize
the *ow and thereby enhance mixing.
De6ning the error w= (u; v) = (U − OU; V ), and de6ning

p=P− OP, we get the following set of equations for the error:

ut =
1
R
(uxx + uyy)− uux − OUux − vuy − v OU

′ − px;

vt =
1
R
(vxx + vyy)− uvx − OUvx − vvy − py;

ux + vy = 0

(4)

for 0¡x¡L, −1¡y¡ 1, and t ¿ 0, with initial condi-
tions u(x; y; 0) = u0(x; y); v(x; y; 0) = v0(x; y). We assume
periodic boundary conditions in the streamwise direction,
that is, we equate the quantities w and p at x=0 and x= L.
The question of boundary conditions on the walls, y =±1,
is our control design problem, and is the focus of the next
section.

3. Boundary control design

Boundary control laws for stabilization are sought such
that a suitable measure of the perturbation (u; v), which
we will call the perturbation energy of the system, de-
cays as a function of time. This is a standard Lyapunov-
based approach, in which the Lyapunov function is chosen
as

E(w) = ‖w‖2L2 =
∫ 1

−1

∫ L

0
(u2 + v2) dx dy: (5)

The time derivative of E(w) along the trajectories of (4) is

Ė(w) = 2
∫ 1

−1

∫ L

0
(uut + vvt) dx dy: (6)

Inserting (4) into (6), and integrating by parts, we obtain

Ė(w) =− 2
R

∫ 1

−1

∫ L

0
(u2x + u2y + v2x + v2y) dx dy

− 2
∫ 1

−1

∫ L

0
vu OU

′
dx dy

+
∫ 1

−1

∫ L

0
(u2 + v2 + 2p)(ux + vy) dx dy

+
∫ L

0

[
2
R
(uyu+ vyv)− 2pv− (u2 + v2)v

]1
y=−1

dx:

Incompressibility (ux + vy = 0) now gives

Ė(w) =− 2
R

∫ 1

−1

∫ L

0
(u2x + u2y + v2x + v2y) dx dy

− 2
∫ 1

−1

∫ L

0
uv OU

′
dx dy

+
∫ L

0

[
2
R
(uyu+ vyv)

− 2pv− (u2 + v2)v
]1
y=−1

dx: (7)

Following Balogh et al. (2001, Lemma 6.2), we set

u(x; y; t) = u(x;−1; t) +
∫ y

−1
uy(x; �; t) d�;

so that

u2(x; y; t)6 2u2(x;−1; t) + 2
(∫ y

−1
uy(x; �; t) d�

)2
:

By the Cauchy–Schwartz inequality,(∫ y

−1
1uy(x; �; t) d�

)2
6 (y + 1)

(∫ y

−1
u2y(x; �; t) d�

)
;

so we have that

u2(x; y; t)6 2u2(x;−1; t) + 2(y + 1)
∫ 1

−1
u2y(x; y; t) dy;

where we have set y = 1 in the integral. Therefore, we get∫ 1

−1

∫ L

0
u2 dx dy6 4

∫ L

0
u2(x;−1; t) dx

+4
∫ 1

−1

∫ L

0
u2y(x; y; t) dx dy:

An analogous derivation for vy now gives

−
∫ 1

−1

∫ L

0
(u2y + v2y) dx dy

6− E(w)
4

+
∫ L

0
(u2(x;−1; t) + v2(x;−1; t)) dx: (8)

Inserting (8) into (7) we get

Ė(w)6− 1
2R

E(w)

+
2
R

∫ L

0
(u2(x;−1; t) + v2(x;−1; t)) dx

− 2
R

∫ 1

−1

∫ L

0
(u2x + v2x) dx dy

− 2
∫ 1

−1

∫ L

0
uv OU

′
dx dy

+
∫ L

0

[
2
R
(uyu+ vyv)−2pv−(u2 + v2)v

]1
y=−1

dx:
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Since

−2
∫ 1

−1

∫ L

0
uv OU

′
dx dy6 2

∫ 1

−1

∫ L

0
(u2 + v2) dx dy

= 2E(w);

we 6nally get

Ė(w)6−1
2

(
1
R
− 4

)
E(w)

+
2
R

∫ L

0
(u2(x;−1; t) + v2(x;−1; t)) dx

+
∫ L

0

[
2
R
(uyu+ vyv)

−2pv− (u2 + v2)v
]1
y=−1

dx: (9)

Notice that for R¡ 1
4 , E(w) decays exponentially with time

even in the uncontrolled case (u(x;±1; t)= v(x;±1; t) ≡ 0).
In other words, the 6xed point ( OU; OV ) is globally exponen-
tially stable (in L2) in this case, and the goal of applying
boundary control is to enhance stability.
Wall-tangential control: The following boundary control

was suggested in by Balogh et al. (2001):

u(x;−1; t) = kuuy(x;−1; t); (10)

u(x; 1; t) =−kuuy(x; 1; t); (11)

v(x;±1; t) = 0: (12)

Inserting (10)–(12) into (9) gives

Ė(w)6−1
2

(
1
R
− 4

)
E(w)

− 2
R

(
1
ku

− 1
)∫ L

0
u2(x;−1; t) dx: (13)

Thus, for R¡ 1
4 and ku ∈ [0; 1], E(w) decays exponentially

with time.
Wall-normal control: Actuation normal to the wall is an-

other strategy of active interest. Inequality (9) also sug-
gests a control law structure for wall-normal control. Setting
u(x;−1; t)=u(x; 1; t)=0 , vy is zero at the wall, so we have

Ė(w)6−1
2

(
1
R
− 4

)
E(w) +

2
R

∫ L

0
v2(x;−1; t) dx

− 2
∫ L

0
[2pv]1y=−1 dx −

∫ L

0
[v3]1y=−1 dx: (14)

Now, by imposing v(x;−1; t) = v(x; 1; t), the last term in
(14) vanishes. Thus, we propose the following control law:

u(x;±1; t) = 0; (15)

v(x;±1; t) = kv(p(x; 1; t)− p(x;−1; t)): (16)

Inserting (15)–(16) into (14) gives

Ė(w)6−1
2

(
1
R
− 4

)
E(w)

− 2
(
1
kv

− 1
R

)∫ L

0
v2(x;−1; t) dx: (17)

Thus, for R¡ 1
4 and kv ∈ [0; R], E(w) decays exponentially

with time. Furthermore, note that (16) ensures that the net
mass *ux through the walls be zero.
Implementation: In order to implement the above con-

trollers we have to express them in terms of the actual *ow
variables, U; V and P. For the wall-tangential case, we get:

U (x;−1; t) = ku(Uy(x;−1; t)− OU
′
(−1)); (18)

U (x; 1; t) =−ku(Uy(x; 1; t)− OU
′
(1)); (19)

V (x;±1; t) = 0 (20)

and for the wall-normal case we get

U (x;±1; t) = 0; (21)

V (x;±1; t) = kv(P(x; 1; t)− P(x;−1; t)): (22)

It is interesting to notice that the wall-normal control law is
independent of the physical parameters of the *ow. This is
an important property, since the physical parameters of any
real *ow are subject to inaccuracy. In contrast, OU

′
(x;±1; t)

must be known for wall-tangential control. It is also worth
noting that all the above control laws are of the Jurdjevic–
Quinn (Jurdjevic & Quinn, 1978) type (with respect to the
Lyapunov function E(w)). This endows these control laws
with inverse optimality with respect to a meaningful cost
functional (which is in these cases complicated to write).

4. Numerical demonstration

The main results of this section are that (1) the stabiliz-
ing control law stabilizes the 2D unsteady *ow model for
high values of Reynolds number, (2) the destabilizing con-
trol law achieves excellent mixing in the 2D *ow model us-
ing small amounts of control e:ort. The reader is reminded
of the comments made in the introduction about the con-
servative nature of the present 2D mixing results in light of
the destabilizing 3D e:ects present in real channel *ows at
high values of the Reynolds number.

4.1. The computational scheme

The simulations are performed using a hybrid Fourier
pseudospectral-6nite di:erence discretization and the frac-
tional step technique based on a hybrid Runge–Kutta/Crank–
Nicolson time discretization using the numerical method
of Bewley and Moin (1999). This method is particularly
well suited even for the cases with wall-normal actuation
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Fig. 2. Energy E(w) (left), control e:ort C(w) (middle), and drag D(w) (right), as functions of time for wall-tangential actuation (upper row) and
wall-normal actuation (lower row).

because of its implicit treatment of the wall-normal con-
vective terms. The wall-parallel direction is discretized
using 128 Fourier-modes, while the wall-normal direc-
tion is discretized using energy-conserving central 6nite
di:erences on a stretched staggered grid with 100 grid-
points. The gridpoints have hyperbolic tangent distribution
in the wall-normal direction in order to adequately resolve
the high-shear regions near the walls. A 6xed *ow-rate
formulation is used, rather than 6xed average pressure
gradient, since observations suggest that the approach to
equilibrium is faster in this case (Jim/enez, 1990). The dif-
ference between the two formulations is discussed brie*y
by Rozhdestvensky and Simakin (1984). The time step is
in the range 0.05–0.07 for all simulations.

4.2. Stabilization

The theoretical results of Section 3 are only valid for
Reynolds numbers less than 1

4 , for which the parabolic equi-
librium pro6le is globally exponentially stable in the uncon-
trolled case. Thus, the analysis only tells us that the pro-
posed control laws maintain stability, and not neccessarily
enhance it. In fact, for wall-normal control, simulations at
R=0:1 show that for kv=0:1, E(w) converges more slowly
to 0 than in the uncontrolled case, whereas for kv = −0:1,
stability is enhanced. Although this result was unexpected,
it does not contradict the theoretical results. Being valid for
small Reynolds numbers only, the theoretical results are of
limited practical value. However, they do suggest controller

structures worth testing on *ows having higher Reynolds
numbers. Balogh et al. (2001) presented results from nu-
merical simulations with wall-tangential control that show
stabilization of channel *ow at R = 15 000. Here, we do a
comparison of the performance of the two control laws for
*ows at R= 7500 and L= 4�.
In addition to reporting the time evolution of the energy,

E(w), we also consider the (instantaneous) control e:ort and
drag force as measures of performance. The control e:ort is
de6ned as

C(w) =

√∫ L

0
(|w(x;−1; t)|2 + |w(x; 1; t)|2) dx (23)

and the drag force as

D(w) =
1
L

∫ L

0

(
@U
@y

(x;−1; t)− @U
@y

(x; 1; t)
)
dx: (24)

Notice that (24) is really the mean wall shear, which is
related to the drag force by the factor 1=�L. For selected time
instants, vorticity maps are also provided. The vorticity, !,
is de6ned using the actual *ow variables (rather than the
perturbation variables) as

!(x; y; t) =
@V
@x

(x; y; t)− @U
@y

(x; y; t): (25)

A total of six simulations are performed: wall-tangential
control with ku ∈ [0:05; 0:1; 0:2], and; wall-normal control
with kv ∈ [ − 0:125;−0:08;−0:05]. As already mentioned,
the parabolic equilibrium pro6le is unstable for R = 7500,



1602 O.M. Aamo et al. / Automatica 39 (2003) 1597–1606

Fig. 3. Vorticity map for the fully established 2D channel *ow (uncon-
trolled).

Fig. 4. Vorticity maps for wall-normal actuation at t = 30 (top 6gure),
t = 60, and t = 120 (bottom 6gure). The feedback gain is kv =−0:125.

so in6nitesimal disturbances will grow, but the *ow eventu-
ally reaches a statistically steady state, which we call fully
established 5ow. For all simulations, the fully established
*ow, for which E(w) ≈ 1:3, is chosen as the initial data.
Fig. 3 shows a vorticity map for the fully established (un-
controlled) *ow. It is similar to vorticity maps presented in
(Jim/enez, 1990), and clearly shows the ejection of vorticity
from the walls into the core of the channel as described in
(Jim/enez, 1990).
Fig. 2 compares wall-tangential and wall-normal control.

It is clear that stabilization is obtained for both controllers
in terms of the energy E(w). Fig. 2 shows that E(w) de-
cays faster for wall-normal control, and at much less control
e:ort (notice the di:erent scales for C(w) for the two cases
in Fig. 2). The ratio of the peak kinetic energy of the
control *ow (wall normal), versus the perturbation kinetic
energy in the uncontrolled case (drained out by the control),
C(w)2=E(w), is less than 0.25%. Also, reduction of drag is
more eVcient in the wall-normal control case.1

Fig. 4 shows vorticity maps at three di:erent time in-
stances for wall-normal control with kv = −0:125. The re-
moval of vortical structures is evident already at t=30 (top
graph), and at t = 120 (bottom graph) the *ow is nearly
uniform. Fig. 5 shows the pressure 6eld immediately after
onset of wall-normal control (kv=−0:125). Regions of low
pressure coincide with regions of circulation cells, as the

1 It is interesting to note (see Fig. 2) that, when the control is applied
to the 2D *ow, a transient ensues in which the drag dips below the
laminar level and then asymptotes towards the laminar state. This transient,
however, is dependent on the initial *ow state being that of the fully
established 2D *ow, which has a drag which is signi6cantly higher than
laminar. Thus, this transient result does not disprove the conjecture stated
by Bewley (2001).

Fig. 5. Pressure (perturbation only, i.e. p) immediately after onset of
wall-normal actuation. Zoom shows velocity vectors in a region with low
pressure.

velocity vectors in the intermediate zoom show. In the most
detailed zoom, we see that the controller applies suction in
this region.

4.3. Mixing

Mixing is commonly induced by means of open-loop
methods such as mechanical stirring or jet injection. These
methods may use excessive amounts of energy, which in
certain cases is undesirable. Thus, we propose using active
feedback control in order to exploit the natural tendency in
the *ow to mix. To the authors’ knowledge, this is the 6rst
attempt to induce mixing by means of feedback, as the mix-
ing protocols thus far have been open loop controls. It was
observed by Hammond, Bewley, andMoin (1998) that some
heuristic control strategies enhance turbulence, although this
observation was not made in the context of mixing but in
the context of drag mitigation.
The results of the previous section show that the control

law (15)–(16) has a signi6cant stabilizing in*uence on the
2D channel *ow. In this section, we explore the behaviour of
the *ow when kv is chosen such that this feedback destabi-
lizes the *ow rather than stabilizes it. The conjecture is that
the *ow will develop a complicated pattern in which mix-
ing will occur. 2D simulations are performed at R = 6000,
for which the parabolic equilibrium pro6le is unstable. The
vorticity map for the fully established *ow (uncontrolled)
at this Reynolds number is shown in the topmost graph in
Fig. 6. This is the initial data for the simulations. Some mix-
ing might be expected in this *ow, as it periodically ejects
vorticity into the core of the channel. Our objective, how-
ever, is to enhance the mixing process by boundary control,
which we impose by setting kv = 0:1 in (16). The vorticity
maps in Fig. 6 suggest that the *ow pattern becomes con-
siderably more complicated as a result of the control. The
left graph in Fig. 7 show the perturbation energy, E(w), as a
function of time, which increases by a factor of 5. It is inter-
esting to notice that the control leading to such an agitated
*ow is small (see middle graph in Fig. 7). The maximum
value of the control *ow kinetic energy is less than 0.7% of
the perturbation kinetic energy of the uncontrolled *ow, and
only about 0.1% of the fully developed, mixed (controlled)



O.M. Aamo et al. / Automatica 39 (2003) 1597–1606 1603

*ow! Fig. 8 shows the pressure 6eld at t = 150, as well as
velocity vectors in a region close to the wall. As for the sta-
bilizing case, regions of low pressure coincide with regions
of circulation cells, as the velocity vectors in the interme-
diate zoom show. In the most detailed zoom, we see that
the controller applies blowing in this region. Next, we will
quantify the mixing in a more rigorous way, and compare
the controlled and uncontrolled cases.
A number of inherently di:erent processes constitute what

is called mixing. Ottino (1989) distinguishes between three
sub-problems of mixing: (i) mixing of a single *uid (or sim-
ilar *uids) governed by the stretching and folding of mate-
rial elements; (ii) mixing governed by di:usion or chemi-
cal reactions; and (iii) mixing of di:erent *uids governed
by the breakup and coalescence of material elements. Of
course, all processes may be present simultaneously. In the
6rst sub-problem, the interfaces between the *uids are pas-
sive (Aref & Tryggvason, 1984), and the mixing may be
determined by studying the movement of a passive tracer,
or dye, in a homogeneous *uid *ow. This is the problem we
are interested in here.
The location of the dye as a function of time completely

describes the mixing, but in a *ow that mixes well, the length
of the interface between the dye and the *uid increases ex-
ponentially with time. Thus, calculating the location of the
dye for large times is not feasible within the restrictions of

Fig. 6. Vorticity map for the fully established, uncontrolled, channel *ow
at Re = 6000 (top), and for the controlled case at t = 50 (middle) and
t = 80 (bottom).
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Fig. 7. Energy E(w) (left), control e:ort C(w) (middle), and dye surface length (right), as functions of time.

modest computer resources (Franjione & Ottino, 1987). We
do, nevertheless, attempt this for small times, and supple-
ment the results with less accurate, but computationally fea-
sible, calculations for larger times. A particle-line method
is used to track the dye interface. In short, this method rep-
resents the interface as a number of particles connected by
straight lines. The positions of the particles are governed by
the equation dX=dt = (U (X; t); V (X; t)), where X is a vec-
tor of particle positions. At the beginning of each time step,
new particles are added such that at the end of the time
step, a prescribed resolution, given in terms of the maxi-
mum length between neighboring particles, is maintained.
The fact that we are working with a single *uid representing
multiple miscible *uids, ensures that dye surfaces remain
connected (Ottino, 1989). At t = 50, when the perturba-
tion energy is about tripled in the controlled case (Fig. 7),
18 blobs are distributed along the centerline of the channel
as shown in Fig. 9. They cover 25% of the total domain.
Fig. 10 shows the con6guration of dye in the controlled
case for 5 time instances. The di:erence in complexity bet-
ween the uncontrolled and controlled cases is clear (compare
the lower graphs of Figs. 9 and 10), however, large regions
are poorly mixed even at t = 85. The right graph in Fig. 7
shows the total length of the surface of the dye. The length
appears to grow linearly with time in the uncontrolled case,
whereas for the controlled case, it grows much faster, reach-
ing values an order of magnitude larger than in the un-
controlled case. In order to approximate the dye distribu-
tion for large time, a 6xed number of particles are uni-
formly distributed throughout the domain, distinguishing be-
tween particles placed on the inside (black particles) and
on the outside (white particles) of regions occupied by dye.
Fig. 11 shows the distribution of black particles at t=85 (for
comparison with Fig. 10), 100, 125 and 150. The particle
distribution becomes increasingly uniform.
In order to quantify the mixing further, we ask the follow-

ing question: given a box of size �, what is the probability,
P, of the *uid inside being well mixed? An appropriate
choice of �, and what is considered well mixed, are applica-
tion speci6c parameters, and are usually given by require-
ments of some downstream process. In our case, the blobs
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Fig. 8. Pressure (perturbation only, i.e. p) at t=150. Zoom shows velocity
vectors in a region with low pressure.

Fig. 9. Initial distribution of dye blobs (at t = 50), and dye distribution
at t = 85 for uncontrolled *ow.

initially cover 25% of the domain, so we will de6ne well
mixed to mean that the dye covers between 20% and 30%
of the area of the box. The size � of the boxes will be given
in terms of pixels along one side of the box, so that the box
covers �2 pixels out of a total of 2415 × 419 pixels for the
entire domain. On this canvas, the box may be placed in
(419 − (� − 1)) × 2415 di:erent locations. The fraction of
area covered by dye inside box i of size �, is for small times
calculated according to

ci� =
np
�2
; (26)

where np is the number of pixels covered by dye, and for
large times according to

ci� =
nb

nw + nb
; (27)

where nb and nw denote the number of black and white par-
ticles, respectively, contained in the box. P, which depends
on �, is calculated as follows:

P� =
1
n

n∑
i=1

eval(0:2¡ci� ¡ 0:3); (28)

where n is the total number of boxes. The expression in
the summation evaluates to 1 when 0:2¡ci� ¡ 0:3 and 0
otherwise. For small times n = (419 − (� − 1)) × 2415,
whereas for large times n may be smaller as we choose to
ignore boxes containing less than 25 particles. Figs. 12 and
13 show P� as a function of time for �∈ [15; 30; 45; 60].

Fig. 10. Dye distribution for controlled *ow at t =55, 60, 65, 75 and 85
(from top towards bottom).

Fig. 11. Particle distribution for controlled *ow at t = 85, 100, 125 and
150 (from top towards bottom).
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Fig. 12. Probability of well mixedness for the uncontrolled case (o) and
controlled case (*).
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Fig. 13. Probability of well mixedness for the controlled case based on
uniform particle distribution.

5. Conclusions

We have addressed the problem of imposing mixing by
means of boundary feedback control in 2D channel *ow.
This is done by 6rst designing control laws for the stabiliza-
tion of the parabolic equilibrium pro6le, and then reversing
the sign of the feedback gain in order to obtain destabi-
lization. The result is a highly complex *ow pattern, which
leads to e:ective mixing.
Although the control design for the stabilization problem

applies to small Reynolds numbers only, simulations show
that the structure of the control laws predicted by the theory
can be used to stabilize the 2D parabolic equilibrium pro6le
for Reynolds number several orders of magnitude higher.
We can not tell from the simulations whether the controllers
render the equilibrium pro6le globally stable; however, it is
clear that the fully established 2D *ow, which is the most
likely initial condition, is contained in the region of attrac-
tion. Another key point of the feedback laws presented, is
the fact that they are completely decentralized. That is, con-
trol actuation at a location on the wall is simply a function
of measurements at that same location, a fact that allows
for decentralized computations and simple instrumentation.
Simulations of the stabilization problem show that the per-
formance obtained using wall-normal control is consider-
ably better than that obtained using wall-tangential control.
Also, the wall-normal control law has the important prop-
erty that it is independent of the physical parameters of the
*ow. In contrast, the wall shear stress of the parabolic equi-
librium pro6le must be known in order to implement the
wall-tangential control.
Simulations using the wall-normal control law with the

sign of the input reversed show that the *ow pattern be-
comes considerably more complex than in the case of fully
established uncontrolled *ow. This suggests improved mix-
ing, which is con6rmed by studies of the behavior of dye

blobs positioned in the *ow. The length of the interface be-
tween dye and *uid appears to grow linearly with time in the
uncontrolled case, but grows highly nonlinearly and reaches
values approximately an order of magnitude larger in the
controlled case. An alternative measure of performance, the
probability of well mixedness, also indicates considerable
improved mixing in the controlled case. The mixing is ob-
tained by a small control e:ort, compared to the reference
velocity of the *ow. This is the main advantage of applying
control intelligently in a feedback loop.
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