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Observer-based schemes for adaptive nonlinear state-feedback
control

MIROSLAV KRSTICt and PETAR V. KOKOTOVIC#

We combine recently proposed adaptive nonlinear controllers with two types of
observer-based identifiers. The controllers guarantee an input-to-state stability

property with respect to 6 and 8, and the observer-based identifiers independ-
ently guarantee boundedness of €. A stability enhancement in the observer
is crucial in establishing stability properties.

1. Introduction

After an initial success of Lyapunov-based adaptive nonlinear schemes
(Kanellakopoulos et al. 1991, Jiang and Praly 1991, Krsti¢ et al. 1992), a new
class of adaptive controllers that guarantee input-to-state stability (ISS, as
defined by Sontag 1989) with respect to 6 and @ allowed us to design nonlinear
swapping schemes (Krsti¢ and Kokotovi¢ 1993). They employ parameter identi-
fiers with a wide variety of update laws—gradient and least-squares, normalized
and unnormalized. The demonstrated strength of these controllers motivated us
to re-examine observer-based identifiers (also known as equation error filtering)
(Campion and Bastin 1990, Praly et al. 1991, Teel er al. 1991). Except for Teel
(1992) and Ghanadan and Blankenship (1993), the state of the art of adaptive
nonlinear observer-based schemes is still well represented by the analysis and
systematization of Praly et al. (1991). In the absence of matching conditions, all
the schemes of Praly e al. (1991) involve some growth restrictions.

For parametric-strict-feedback nonlinear systems, an overparametrized adapt-
ive scheme without growth restrictions was designed by Kanellakopoulos et al.
(1991). The overparametrization was completely removed using the ‘tuning
function’ controller (Krsti¢ et al. 1992). The first observer-based scheme for this
class of systems was designed by Teel (1992), with the same overparametrization
as used by Kanellakopoulos et a/. (1991). Ghanadan and Blankenship (1993)
developed an observer-based scheme for a larger class of approximately lineariz-
able systems.

In this paper, we present two observer-based schemes for parametric-strict-
feedback non-linear systems. The first scheme employs an observer for the error
system which includes the controller, while the second scheme uses an observer
for the plant. The observer-based identifiers independently guarantee bounded-
ness of 8 but not of §. Therefore, the ISS property with respect to 8 and @
previously used by us (Krsti¢ and Kokotovi¢ 1993} is not sufficient to prove the
boundedness of all signals, and our proofs here differ from those in the previous
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work (Krstié and Kokotovié 1993). There is also a difference in stability
properties and proofs between the two schemes presented here.

An advantage of using observer-based identifiers over those based on tuning
functions (Krsti¢ er al. 1992) is a less involved derivation of the control law.
This, however, comes at the expense of an increase in the dynamic order with
an observer. On the other hand, an advantage of using observer-based identi-
fiers over those based on nonlinear swapping (Krsti¢ and Kokotovi¢ 1993) is a
significant reduction in the dynamic order.

The error-observer scheme presented in this paper is readily extendable to
the minimum phase nonlinear systems in the output-feedback canonical form, as
well as to linear systems.

The paper is organized as follows. We introduce the class of uncertain
nonlinear systems and state the control objective in §2. In § 3, we present our
controller design. The error-observer and plant-observer schemes are presented,
along with an analysis of their stability and performance properties, in §§3 and
4, respectively.

2. Problem statement
The problem is adaptively to control nonlinear systems transformable into
the parametric-strict-feedback form

%=X +0TQ(x, ..., x), 1<isn-—1
Xy = Polx)u + 67y (x) 2.1)
Yy =X

where l € R? is the vector of unknown constant parameters, f3;, and the
components of ¢;, 1=i=<n, are smooth nonlinear functions in R”,
@ (0) ="+ --=@,(0) =0, and By(x) # 0, for all x € R".

The control objective is to force the output y of the system (2.1) asymptotic-
ally to track the output y, of a known linear reference model of the form

0 0
. : I, :
X m 0 X, + 0 r 2.2)
-mg ... =M, Ko
Yr = Xma

where M(s)=s"+ m,_1s""' + -+ + ms + mq is Hurwitz, k,, >0, and r(¢) is
bounded and piecewise continuous. An alternative objective, as used by Kanel-
lakopoulos er al. (1991), is asymptotically to track a given reference signal y (¢)
with the assumption that its first n derivatives are known, bounded and
piecewise continuous.

Notation: For vectors we use |x|p 2 (x7 Px)'”2 to denotz the weighted euclidean
norm of x. For matrices, |X|, denotes the induced 2-norm of X. The ¥, and
¥, norms for signals are denoted by |||l and |- |l., respectively. The spaces of
all signals which are globally bounded, locally bounded and square-integrable on
[0, t5), 1> 0, are denoted by £,[0, 11}, Lx[0, 11) and £,[0, t;), respectively. O
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3. Controller and its error system
The adaptive nonlinear controller is recursively defined by

i =X T Xy T di
i—1 3
A N ;1 aa'_l
— T i i
ai(xXy, o Xy 0, %) = —zip — Gz — O w + E( X1 + Xon k41
k=1 axk xm’k
- j.i('xly ooy Xy 6; xm)zi
~ o ey .
wilXy, - - Xy 8, X)) = @ — @ i=1,...,n
k=1 axk
-1 5
u= ﬁ( )[an(x’ Bv xm) —MoXpy T T My X on + kmr]
o{ X

(3.1)

where ¢;>0, i =1, ..., n, and, for notational convenience z, 4 0, ap 80. The
remaining design freedom is in the choice of the nonlinear dampling functions
si{(x1, - .., X;, 0, x,,). The resulting system, called the error system, is

i= Az, 8, Dz + W(z, 8, 078 + D(z, 8, t)é, z e R” (3.2)

where z;, = x; — x,,1 = y — y, represents the tracking error, and

_ _
—C; — 5 1 0 P 0
-1 —C; — §5; 1 ‘ :
Az, B, 1) = 0 -1 0
L 0 0 -1 —c; = sp |
- o -
1%
wi -1
wT 36
Wz, 8,07 =| "7 | eR™, Dz, 8,1)= : e R™*P  (3.3)
WT |
" aan—l
08

Now we design the nonlinear damping functions s;(x, . . ., x;, 8, x,,) as

da: T|2
a _ 2 i—1
sixts o X, 8, X)) = KWl + gl—5 (34
96
where k;, g, i =1, ..., n are positive scalar constants. The ‘kappa-terms’ x;|w;|?

have been introduced recently (Kanellakopoulos 1992). We have proved (Krstié
and Kokotovi¢ 1993) that the controller with nonlinear damping functions s;
achieyes the following ISS property of the error system (3.2) with respect to 8
and 6:
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3 L\
2l = 2 LB + LIBE) + e@lew-an) @)
2(cp)'* \Kg 8o

4. Error-observer scheme
We implement an ‘observer’ for the error state z of (3.2) by dropping the
f-term, i.e.

3= Az, 8,02 + D(z, 8, 1)B 4.1)
With (4.1), the observer error
e=z-12 4.2)
is governed by the equation in which the §-term reappears:
&= A,z, 0, De + W(z, 8, )76 (4.3)

As the parameter update law we employ
§=TIWe, I'=1T>0 (4.4)

It is important to note that our closed-loop adaptive system with the controller
(3.1) has two equivalent state representations (2.1), (4.1), (4.4) - and - (3.2),
(4.3), (4.4).

Proposition 4.1 —Stability and tracking: The closed-loop adaptive system consist-
ing of the plant (2.1), controller (3.1), observer (4.1), and update law (4.4) has a
globally uniformly stable equilibrium at the origin z =0, e=0, 8=0, and
lim,_, 2(t) = lim,_, &(t) = 0. This means, in particular, that global asymptotic
tracking is achieved:

lim [y(6) ~ y(1)] = 0 (4.5)

Proof: Starting from the update law (4.4), we obtain the following inequalities:

n
z WiE;
i=1
We make use of the following constants: ¢y = minj<j<, i, Ky = MiNgj<y Ky

Ko i=1 K; 8o i=18i

and u > 0 to be chosen later. Along the solutions of (4.1), (4.3), (4.4), we have

T|2
)Az
<

, ) A 2 "
|82 < X(r|wel? = ATy < MIPn3|wile! (4.6)
i=]

da;-g

~

d{ w2, 112 1~2) "( 2
—| =2|° + =|e]* + =[6]F1) = —ud ¢ + Ki|wil* + g
dr(Zl | 2|| 2| |r 'u.'=1 | | 8

n aa,'_l A
i U Ei—,\e
,'=Z1 o8
darjy T

36

n
“Z(Ci + Ki|wi* + &

i=1

2 2
) 8"

+ TWTH - 8719
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aa T AZ A
ey Ll 4 2 6p
30

480

< —peol2|* - #Zg.

i=1

n
—Co|8|2 - 1‘n12|‘4’.‘|28.2

i=1

s—uco|f|2—co|e|2—(x JMDn )z| wilte?
4gy /i=1

8i

4.7
Choosing p < 4gok,,/nA(I? we get

&1z L + o) < ueolzl ~ cole “9)
dr\ 2 2

which proves that z=0, e=0, =0 is g.u.s. From LaSalle’s invariance
theorem, it further follows that z(¢), (1) > 0 as t — . ]
Note that the stability enhancing terms k;|w;[* in the matrix A, of the
observer error equation (4.3) are crucial for counteracting the destabilizing
effects of 6. ‘
Next, we give &£, and ¥, tracking performance bounds. Without loss of
generality, we assume that Z(0) = z(0) and I'= y/I.

Proposition 4.2 —Performance: In the adaptive system (2.1), (3.1), (4.1), (4.4),
the following inequalities hold:

. 8(0)| ny* \\?
@ lel< L2OLL o (22 )Py Lo )
T el \2goks (2¢ 1/2
ot 2\1/2
(i) 20 < 18OL [, , (2”” ) ] + 2(0)|exp(=cot)  (4.10)
2(cokp) 2 | 80Km
Proof:
(i) Along the solutions of (4.3)-(4.4), we have
d 2, L 2) 2
€ 8-} < —c¢gle 4.11
A d1ep + 5519 < el @.11)
Since £(0) = z(0) — Z(0) = 0, this implies that ||6|.. = |8(0)| and
liell < | (0)] (4.12)
Co}’
Now from (4.8), for u < 4gok,./ny*, we get
2(M|2 2 N
il + 1eff < L{HZOE2 IO o Ligop)
Co 2 2y
and, since Z(0) = z(0), then
I2ll, = ————16(0)| + 12(0)| (4.14)
T e cm'.u)"2 r

Letting u = 2gok,,/ny* and adding (4.12) and (4.14) in izl < [lelk + (12]l2, we
arrive at (4.9).
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(ii) In a fashion similar to (4.7), we compute

d z 2 4+ |gl? " "
a(M) < —colulzl? + [ef)) — uS kwil? = 3 wilwie?
i=1 i=1

n n N
+ uZz,-W.-Té + Sew 0 + £ |5p
i i=1 480

i=1

o 1~
< —colulz? + |ef?) + L I8P + —|8P
4Ky 2Ky
K n
- (2 - k) S et (4.15)
2 4g0 i=1

Choosing i = gok,,/ny?, we get
wz(DF + [e(DF < (ulz)) + [e(0)?) exp (—2¢qot)

+ u2+ Zfoexp(—zco[, —)|EPdr  (4.16)

Ko

which implies
1 2\, 5
w0l i+ (2) )8l + klexp - @17
2(coko) 2 2

The last inequality proves (4.10) and also establishes an ISS property from 6 to
z. It is easy to see that [e(r)[ < 1/2(¢okp) |8l describes the 1SS property from
6 toe. a

Remark 4.1:  Although the initial states z,(0), ..., z,(0) may depend on ¢, k;,
gi, this dependence can be removed by setting z(0) =0 with the following
initialization of the reference model:

% i(0) = x{0) = ;-1 (x1(0), - -, Xi-1(0), B(0), X 1(0), - - -, Xmi-1(0))  (4.18)

[t can also be proven that in this initialization x,,(0) does not depend on ¢;, k;
gi- Therefore the bounds (4.9), (4.10) can be made as small as desired by a
choice of ¢g. 0

5. Plant-observer scheme
For the plant (2.1) rewritten in the form

X = Ex + eu + ¢p(x)70 (5.1)

0 ] 'J
E=|: -l and @' =| :
0 ... 0 T

we implement an ‘observer’
2= (A - Ap(x)TP(x)P)E — x) + Ex + equ + ¢(x)78 (5.2)

where
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where A satisfies PA + ATP=—ql, P=PT >0, and A, g >0. The observer
error
go=x — £ (5.3)
is governed by
& = (A ~ Ap(x)Tp(x)P) £, + ¢(x)"6 (5.4)

The stability enhancing matrix :/lqb(x)T(b(x)I-’ plays a crucial role in counter-
acting the destabilizing effect of 8. The update law is

6 =r¢Pe, '=r">0 (5.5)

LemmaS5.1: If x € £.e[0,1), then the update law (5.5) guarantees that
0 € £,[0, t) and €, € £,[0, t;) N E,[0, £;).

Proof: Standard, using
d ~
d—‘(|5x|2;" + 1817 = —gle. ] O

Proposition 5.1 —Boundedness and tracking: A/l the signals in the closed-loop
adaptive system consisting of the plant (2.1), controller (3.1), observer (5.2), and
the update law (5.5), are globally uniformly bounded, and lim,_, z(t) =
lim,_.. £,(t) =0. This means, in particular, that global asymprotic tracking is
achieved.:

lim [y(1) = y,(0] = 0 (5.6)

Proof: Owing to the continuity of x,(¢) and the smoothness of the nonlineari-
ties in (2.1), the solution of the closed-loop adaptive system exists and is unique.
Let its maximum interval of existence be [0, ).

For u > 0 we readily obtain

g

(ﬁmz " |ex|%) < —cole? + LIER + LB - gle,?
di\ 2 45

480
— 2| ¢pPse,)? + 20" ¢pPe,

-~

_—
< —coplzf® = qle.* + Z—“—WP + ~|0f

Ko
D2, . 5
- (A - uﬂ)lmx 5.7
480
Choosing p < 4goA/A(IN? we get

diu, ;2 2) 2 2 (# 1)~2
—|=z|” + |&c|3]| < —coulz|” — gl + | — + =|[8 5.8
dt(2|| 3] < el — aledf + (2o 68)

which, in view of Lemma 5.1, implies that z € £,[0, #;).

We have thus shown that all of the signals of the closed-loop adaptive system
are bounded on [0, t;) by constants depending only on the initial conditions.
Hence t; = .

To prove convergence of z to zero, we recall first that from Lemma 5.1 we
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know that &, € &,. In view of the boundedness of ¢, this guarantees that
6 € ¥,. Factoring the regressor matrix W as follows:

! 0 0]
80’1
-— 1 0
T/, & dxy Ty A 5 T
Wiz, 6,1 = : @' (x) € M(z, 8, )¢ (x)
dar, -y dar,_y 1
ox 9x,

(5.9)

we consider { 2 z — Meg, and obtain
E= ALz, 8, 0E+ M+ Az, §, )M — M(A = A¢"9P)]e, + D(z, 8, 1)
(5.10)

where M + A,(z, 8, )M — M(A — A¢T¢P) is bounded. It is now straightfor-
ward to derive

L) < =Lyep + v+ Az,

£ {318) < =12 + Lot + Az, 6. om
Ligp
_ 48o
and since &,, e ¥,, it follows (see, e.g., Lemma A.1 of Krsti¢ and Kokotovi¢
1993) that { € &,;. Therefore z € £,. We recall that z, £ € £.. and note that
(3.2) implies z € £, and (5.4) implies ¢, € .. Therefore, by Barbalat’s lemma,
z(1), &(t) >0 as t > o, O

- M(A - 2¢"¢P)|3le.* + (5.11)

For the plant-observer scheme, £, tracking performance bounds can be
derived as in Proposition 4.2. In the case 4 = —cy/, I_’=%I, q = ¢g, A= 2k,
and, without loss of generality, £(0) = x(0), I'=2yI, by proceeding from (5.8),
as in the proof of Proposition 4.2, we get

- lé(O)l[ (2ny2)‘/2] _
|2(0)] o) 1+ Py + [2(0)| exp (~co?)

It is not clear, however, how to derive a useful &, tracking performance bound
similar to (4.10).

(5.12)

6. Conclusions

With the observer-based design presented in this paper, we enlarged the class
of adaptive schemes for nonlinear systems which neither satisfy matching nor
growth conditions. The strength of our controllers is evident not only from the
fact that they guarantee stability with different identifiers, but also from their
ability to guarantee similar performance bounds with different identifiers.

Although they have a similar structure, the two observer-based schemes
presented here have different stability properties and proofs. While for the



Adaptive nonlinear state feedback control 1381

error—observer scheme we prove stability of the origin in the sense of Lyapu-
nov, for the plant-observer scheme we only prove boundedness and converg-
ence. The lack of a Lyapunov stability proof is the main reason that an ¥,
performance bound explicit in design parameters and initial conditions is not
available for the plant—observer scheme.
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