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Observer-based schemes for adaptive nonlinear state-feedback
control

MIROSLAV KRSTICt and PETAR V. KOKOTOVICt

We combine recently proposed adaptive nonlinear controllers with two types of
observer-based identifiers. The controllers guarantee an input-to-state stability
property with respect to 8 and O',_and the observer-based identifiers independ-
ently guarantee boundedness of e. A stability enhancement in the observer
is crucial in establishing stability properties.

1. Introduction
After an initial success of Lyapunov-based adaptive nonlinear schemes

(Kanellakopoulos et al. 1991, Jiang and Praly 1991, Krstic et al. 1992), a new
class of adaptive controllers that guarantee input-to-state stability (ISS, as
defined by Sontag 1989) with respect to 0 and e allowed us to design nonlinear
swapping schemes (Krstic and Kokotovic 1993). They employ parameter identi-
fiers with a wide variety of update laws-gradient and least-squares, normalized
and unnormalized. The demonstrated strength of these controllers motivated us
to re-examine observer-based identifiers (also known as equation error filtering)
(Campion and Bastin 1990, Praly et al. 1991, Teel et al. 1991). Except for Teel
(1992) and Ghanadan and Blankenship (1993), the state of the art of adaptive
nonlinear observer-based schemes is still well represented by the analysis and
systematization of Praly et at. (1991). In the absence of matching conditions, all
the schemes of Praly et al. (1991) involve some growth restrictions.

For parametric-strict-feedback nonlinear systems, an overparametrized adapt-
ive scheme without growth restrictions was designed by Kanellakopoulos et al.
(1991). The overparametrization was completely removed using the 'tuning
function' controller (Krstic et al. 1992). The first observer-based scheme for this
class of systems was designed by Tee] (1992), with the same overparametrization
as used by Kanellakopoulos et al. (1991). Ghanadan and Blankenship (1993)
developed an observer-based scheme for a larger class of approximately lineariz-
able systems.

In this paper, we present two observer-based schemes for parametric-strict-
feedback non-linear systems. The first scheme employs an observer for the error
system which includes the controller, while the second scheme uses an observer
for the plant. The observer-based identifiers independently guarantee bounded-
ness of 0 but not of e. Therefore, the ISS property with respect to 0 and e
previously used by us (Krstic and Kokotovic 1993) is not sufficient to prove the
boundedness of all signals, and our proofs here differ from those in the previous
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work (Krstic and Kokotovic 1993). There is also a difference in stability
properties and proofs between the two schemes presented here.

An advantage of using observer-based identifiers over those based on tuning
functions (Krstic et al . 1992) is a less involved derivation of the control law.
This, however, comes at the expense of an increase in the dynamic order with
an observer. On the other hand, an advantage of using observer-based identi-
fiers over those based on nonlinear swapping (Krstic and Kokotovic 1993) is a
significant reduction in the dynamic order.
The error-observer scheme presented in this paper is readily extendable to

the minimum phase nonlinear systems in the output-feedback canonical form, as
well as to linear systems.
The paper is organized as follows. We introduce the class of uncertain

nonlinear systems and state the control objective in § 2. In § 3, we present our
controller design. The error-observer and plant-observer schemes are presented,
along with an analysis of their stability and performance properties, in §§ 3 and
4, respectively.

2. Problem statement
The problem is adaptively to control nonlinear systems transformable into

the parametric-strict-feedback form

y = Xl

(2.1)

where (J E IRP is the vector of unknown constant parameters, f3a, and the
components of f{Ji, 1'" i '" n , are smooth nonlinear functions in IRn,
f{J, (0) = ... = f{Jn(O) =0, and f3a(x) *- 0, for all X E W.
The control objective is to force the output y of the system (2.1) asymptotic-

ally to track the output y, of a known linear reference model of the form

. _ [ In-l ] [ ]x ; - 0 Xm + 0 r
-rna -rnn-l km

(2.2)

y, = Xm.l

where M(s) = s" + rnn_1Sn-' + ... + rnlS + rna is Hurwitz, km > 0, and r(l) is
bounded and piecewise continuous. An alternative objective, as used by Kanel-
lakopoulos el al. (1991), is asymptotically to track a given reference signal y,(I)
with the assumption that its first n derivatives are known, bounded and
piecewise continuous.

Notation: For vectors we use Ixlp (x T PX)l/2 to denote the weighted euclidean
norm of x. For matrices, IxI2 denotes the induced 2-norm of X. The :£", and
:£2 norms for signals are denoted by II· II", and 11·lb, respectively. The spaces of
all signals which are globally bounded, locally bounded and square-integrable on
[0, tf), ti> 0, are denoted by :£",[0, If), :£"'e[O, If) and :£2[0, If), respectively. 0
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3. Controller and its error system
The adaptive nonlinear controller is recursively defined by

Zj = Xi - Xm,i - (fj-l

1375

_ (O£1'j_1 O£1'j_1 )
£1'j(X), ... , Xj, 8, xm) - -Zj_1 - CjZj - 8 Wj + L... --Xk+l + --xm.k+l

OXk OXm,k

- Si(Xl, .. 0' x., 0, Xm)Zi

I == 1, ... , n

1
u == {3o(x)[£1'n(X, 8, Xm) - mOxm.l - ... - mn-Ixm,n + kmr]

(3.1)
where Cj> 0, i == 1, ... , n , and, for notational convenience Zo 0, £1'0 O. The
remaining freedom is in the choice of the nonlinear dampling functions
Sj(XI, ... , x., 8, xm). The resulting system, called the error system, is

i == Az(z, e, t)z + W(z, e, I)T(j + oi«, e, 1)8, Z E IRn (3.2)
where ZI == XI - Xm,1 == Y - Yr represents the tracking error, and

-CI - Sj 1 0

-1 -C2 - S2 1

Az(z, e, I) == 0 -1

0 0 -1

o

o
I

o

E IRn x p (3.3)

Now we design the nonlinear damping functions Si(XI> ... , x., e, Xm) as
Sj(X), ... , x., e, Xm) == Kilw ;i2+ gil0;;;1 TI2 (3.4)

where Kj, g;, i == I, ... , n are positive scalar constants. The 'kappa-terms' KjlWjl2
have been introduced recently (Kanellakopoulos 1992). We have proved (Krstic
and Kokotovic 1993) that the controller with nonlinear damping functions Sj
achieves the following ISS property of the error system (3.2) with respect to (j
and e:
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1 (1 - 2 1;. 2) 1/2Iz(t)1 '" / -llell", + -llell", + Iz(O)1 exp (-cot)
2(CO)1 2 KO go

(3.5)

4. Error-observer scheme
We implement an 'observer' for the error state z of (3.2) by dropping the
B-term, i.e.

= Az(z, e, t)z + D(z, e, t)e
With (4.1), the observer error

10 = Z - z
is governed by the equation in which the B-term reappears:

. T-
10 = Az(z, e, t)E + W(z, e, t) e

As the parameter update law we employ

e= rw 10 F = t" > 0,

(4.1)

(4.2)

(4.3)

(4.4)

It is important to note that our closed-loop adaptive system with the controller
(3.1) has two equivalent state representations (2.1), (4.1), (4.4) - and - (3.2),
(4.3), (4.4).

Proposition 4.1-Stability and tracking: The closed-loop adaptive system consist-
ing of the plant (2.1), controller (3.1), observer (4.1), and update law (4.4) has a
globally uniformly stable equilibrium at the origin z = 0, 10 = 0, e= 0, and
limt_ ", Z(I) = lim,_", 10(1) = O. This means, in particular, that global asymptotic
tracking is achieved:

lim [yet) - Yr(t)] = 0t_'"
(4.5)

(4.6)

Proof: Starting from the update law (4.4), we obtain the following inequalities:

. I"1 2
"liW '" X(T)2IwEI2 = X(T)2 '"

We make use of the following constants: Co=minI"';"'" C;, Km =minl"'i"'" Kio
1"1 1"1- = L - and - = L-
KO ;=1 x, go g;

and II> 0 to be chosen later. Along the solutions of (4.1), (4.3), (4.4), we have

( ) " ( Ia T12)d II 2 1 2 1 - 2 2 (1";-1- -Izl + -lEI + -lel r - 1 '" -ilL c, + K;lw;1 + gi z ,
dt 2 2 2 ;=1 ae

" a(l"i-l;'

;=1 ae
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n

-COIEI2 - K m L lw;12E7
i=1

(4.7)

Choosing f.l < 4goKm/nX(f)2 we get

+ + "" -f.lcolzI2 - colE12 (4.8)
dt 2 2 2

which proves that z = 0, E = 0, 6 = 0 is g.u.s. From LaSalle's invariance
theorem, it further follows that z(t), E(t) -> 0 as t -> co. 0

Note that the stability enhancing terms K;lw;12 in the matrix A, of the
observer error equation (4.3) are crucial for counteracting the destabilizing
effects of e. .

Next, we give 9;2 and 9;", tracking performance bounds. Without loss of
generality, we assume that z(O) = z(O) and r = y l.

Proposition4.2-Performance: In the adaptive system (2.1), (3.1), (4.1), (4.4),
the following inequalities hold:

(i) Ilzlb "" 16(0)1 [1 + + 1 Iz(O)1 (4.9)
(2coy)I/2 2goK m (2co)1/2

(ii) Iz(t)1 "" 16(0)11/2 [1 + (2ny2 )1/2] + Iz(o)1exp( -cot) (4.10)
2(COKO) goKm

Proof:

(i) Along the solutions of (4.3)-(4.4), we have

+ -1-1( 12) "" -COIEI2 (4.11)
dt 2 2y

Since E(O) = z(O) - z(O)= 0, this implies that 11611", = 16(0)1 and

IIEI12 "" 1 16(0)1 (4.12)
(2cod /2

Now from (4.8), for 11 < 4goKm/ n y2, we get

+ "" + IE(O)12 + _1 16(0)12 ) (4.13)
Co 2 2y

and, since z(O) = z(O), then

Ilzlb "" 1 /21 6(0)1 + 1 / Iz(O)1 (4.14)
(2coYf.l)1 (2CO)12

Letting f.l = 2goKm/ny2 and adding (4.12) and (4.14) in Ilzlb"" IIElb + Ilzlb, we
arrive at (4.9).
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(ii) In a fashion similar to (4.7), we compute

d ( III Z1
2 + 1£1

2)
( I [2 I 12) I 12 2 I 12 2- .;;; -co lIZ + e -1lL.,.K; w; Z; - L.,.Ki Wi £;

dr 2 i=1 i=1

.;;; -co(lllzI2 + 1£12) + LliW + -l-liW
4Ko 2Ko

_ (Km
_ Il nr )±lw;i2£7

2 4go i=1

Choosing Il = gOKm/ n y2, we get

Illz(I)12 + 1£(/)12 .;;; (1lIz(o)12 + 1£(0)l2)exp(-2cot)

+ 2 ('+ _11__)( exp(-2co[1 - r]) 16(r)12dr
2Ko 0

(4.15)

(4.16)

(4.17)

which implies

1 [ ( 2 )1/2]IZ(I)I.;;; 1/2 1 + - 1161100 + Iz(O)lexp(-cot)
2(COKO) II

The last inequality proves (4.10) and also establishes an ISS property from 6 to
Z. It is easy to see that 1£(/)1.;;; 1/2(cOKO)I/21161100 describes the ISS property from
6 to e, 0

Remark 4.1: Although the initial states Z2(O), ... , zp(O) may depend on c., Ki,
g;, this dependence can be removed by setting z(O) = 0 with the following
initialization of the reference model:

Xm.i(O) = x;(O) - ll'i_1(X1(O), ... , Xi_I(O), f}(O), Xm,I(O), ... , Xm,;-I(O» (4.18)
It can also be proven that in this initialization xm(O) does not depend on c., K;,
gj. Therefore the bounds (4.9), (4.10) can be made as small as desired by a
choice of co. 0

5. Plant-observer scheme
For the plant (2.1) rewritten in the form

x = Ex + enu + lj>(x)Te (5.1)
where

E In-I ] and Ij>T =
. .. 0 qJn

we implement an 'observer'

i = (,4 - J..1j>(x)TIj>(x)p)(x - x) + Ex + enu + lj>(x)Tf} (5.2)
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where A satisfies PA + ATP= -qI, P= pT> 0, and A, q > O. The observer
error

is governed by

Ex = x - X (5.3)

Ex = (A - AcjJ(x)TcjJ(x)p) Ex + cjJ(x)Te (5.4)

The stability enhancing matrix -;-AcjJ(X?cjJ(x) P plays a crucial role in counter-
acting the destabilizing effect of e. The update law is

e= rcjJPEx> T = t" > 0 (5.5)

Lemma 5.1: If x E .:£ooe[O, tf), then the update law (5.5) guarantees thateE .:£00[0, tf) and Ex E .:£00[0, tf) n ,;ez[O, tf)'
Proof: Standard, using

o

Proposition 5.I-Boundedness and tracking: All the signals in the closed-loop
adaptive system consisting of the plant (2.1), controller (3.1), observer (5.2), and
the update law (5.5), are globally uniformly bounded, and lim/- 00 z(t) =
lim l _ oo EAt) = O. This means, in particular, that global asymptotic tracking is
achieved:

lim [yet) - y,(t)] = 01_00 (5.6)

Proof: Owing to the continuity of xm(t) and the smoothness of the nonlineari-
ties in (2.1), the solution of the closed-loop adaptive system exists and is unique.
Let its maximum interval of existence be [0, /f).

For /1 > 0 we readily obtain
+ -co/1lzlz+ Llelz+ Llelz- qlExlZ

dt 2 4Ko 4go
- 2AlcjJPExlz + 2eT4>PEx

-co/1lzlz- qlExlZ + Llelz+ llelz4Ko A

- (A - i(r)2)lcjJPEx I
Z (5.7)4go

Choosing /1 < 4goA/J..(ryZ we get

+ -co/1lzlz- qlExlZ + (L + l)IW (5.8)
dt 2 4Ko A

which, in view of Lemma 5.1, implies that z E .:£00[0, tf).
We have thus shown that all of the signals of the closed-loop adaptive system

are bounded on [0, tf) by constants depending only on the initial conditions.
Hence tf = 00.

To prove convergence of z to zero, we recall first that from Lemma 5.1 we
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know that Ex E ;/',2' In view of the boundedness of cp, this guarantees thateE ;/',2' Factoring the regressor matrix W as follows:

o
1

o
o

1

cpT(X) M(z, 8, t)cpT(x)

(5.9)

(5.12)

we consider z - M Ex and obtain

t = A,(z, e, + [M + A,(z, e, t)M - M(A - AcpTCPP)]Ex + D(z, e, t)e
(5.10)

where M+ A,(z, 8, t)M - M(A - AcpTcpp) is bounded. It is now straightfor-
ward to derive

'" _ + _I_1M+ A,(z, 8, t)M
dt 2 2 2co

- M(A - AcpT + _1_1el 2 (5.11)
. 4go

and since Ex> {j E ;/',2, it follows (see, e.g., Lemma A.l of Krstic and Kokotovic
1993) that E ;/',2' Therefore z E ;/',2' We recall that z, Ex E;/',oo and note that
(3.2) implies i: E;/',oo and (5.4) implies Ex E ;/',00' Therefore, by Barbalat's lemma,
z(t), EAt) ..... 0 as t ..... 00. D

For the plant-observer scheme, ;/',00 tracking performance bounds can be
derived as in Proposition 4.2. In the case A = -col, P= q =co, A= 2Ko,
and, without loss of generality, .\'(0) =x(O), r= 2yl, by proceeding from (5.8),
as in the proof of Proposition 4.2, we get

Iz(t)1 '" 10(0)'1/2 [1 + (2n y2 )1/2] + Iz(O)1 exp (-cot)
2(COKO) goKm

It is not clear, however, how to derive a useful ;/',2 tracking performance bound
similar to (4.10).

6. Conclusions
With the observer-based design presented in this paper, we enlarged the class

of adaptive schemes for nonlinear systems which neither satisfy matching nor
growth conditions. The strength of our controllers is evident not only from the
fact that they guarantee stability with different identifiers, but also from their
ability to guarantee similar performance bounds with different identifiers.

Although they have a similar structure, the two observer-based schemes
presented here have different stability properties and proofs. While for the
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error-observer scheme we prove stability of the origin in the sense of Lyapu-
nov, for the plant-observer scheme we only prove boundedness and converg-
ence. The lack of a Lyapunov stability proof is the main reason that an :£2
performance bound explicit in design parameters and initial conditions is not
available for the plant-observer scheme.
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