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Explicit State and Output Feedback Boundary
Controllers for Partial Differential Equations

Andrey Smyshlyaev and Miroslav Krstic

Abstract— In this paper the explicit (closed form) solutions
to several application-motivated parabolic problems are
presented. The boundary stabilization problem is converted
to a problem of solving a specific linear hyperbolic partial
differential equation (PDE). This PDE is then solved for
several particular cases. Closed loop solutions to the original
parabolic problem are also found explicitly. Output feedback
problem under boundary measurement is explicitly solved
with both anti-collocated and collocated sensor/actuator
locations. It is shown how closed form frequency domain
compensators based on the closed form observers and
controllers can be designed.

Index Terms— parabolic PDE, boundary control, back-
stepping.

I. INTRODUCTION

METHODS for boundary control of linear parabolic
partial differential equation (PDEs) are well estab-

lished (see, e.g., [1]-[10]). However, even in the simplest
case of constant coefficients the existing results are not
explicit and require numerical solution, e.g., solving an
operator Riccati equation in case of the linear quadratic
regulator (LQR) method.

In this paper we present the explicit (closed-form) solu-
tions to several application-motivated parabolic problems
including the very important case of constant coefficients.
The method we use to get those solutions is essentially
the backstepping technique developed originally to handle
nonlinear finite-dimensional systems [11]. Here we apply
it to a linear infinite-dimensional plant. The approach
exploits the structure of the parabolic PDE, namely, its
”tri-diagonal form”. As a result, the boundary stabilization
problem is converted to a problem of solving a specific
linear hyperbolic PDE. In several cases the solution to
this PDE can be found explicitly; we show some of these
cases.

We also give explicit solutions for the output feed-
back problem under boundary measurement. Both anti-
collocated and collocated sensor/actuator pairs are con-
sidered. Duality of the observer design problem to the
stabilization problem is shown, specifically meaning that
the observer gains can be derived from the control gains.
The closed form observers and controllers make it possible
to design closed form frequency domain compensators.
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II. STATE-FEEDBACK DESIGNS

We will present the solutions to four distinct parabolic
PDEs. For the first problem the procedure will be de-
scribed in details and for the remaining cases most of the
details will be omitted.

A. Unstable Heat Equation

Let us consider the following plant:

ut(x, t) = εuxx(x, t) + λ0u(x, t) , x ∈ (0, 1) , (1)
u(0, t) = 0 , (2)

where ε > 0 and λ0 are arbitrary constants. This equation
is controlled at x = 1 using u(1, t) (Dirichlet actuation) or
ux(1, t) (Neumann actuation) as a control input. The open-
loop system (1)–(2) (with u(1, t) = 0 or ux(1, t) = 0) is
unstable with arbitrarily many unstable eigenvalues (for
large λ0/ε). The methods for the boundary control of
(1)–(2) include pole placement [9], LQR [3], and finite-
dimensional backstepping [12]. In [13], two stabilizing
controllers (backstepping and pole placement) were con-
structed in a closed form, but only for λ0/ε < 3π2/4, i.e.,
in case of one unstable eigenvalue. However, the explicit
(closed-form) boundary stabilization result in the case of
arbitrary ε, λ0 is not available in the literature even for
this benchmark constant coefficient case.

We start with the following coordinate transformation

w (x, t) = u (x, t) −
∫ x

0

k (x, y)u (y, t) dy (3)

that transforms system (1)–(2) into the system

wt(x, t) = εwxx(x, t) − cw(x, t) , x ∈ (0, 1) , (4)
w(0, t) = 0 , (5)
w(1, t) = 0 or wx(1, t) = 0, (6)

which is exponentially stable for c ≥ 0. Once we find
the transformation (3) (namely k(x, y)), the boundary
condition (6) gives the controller in the form

u(1, t) =

∫ 1

0

k1(y)u(y, t) dy (7)

for the Dirichlet actuation, k1(y) = k(1, y), and

ux(1, t) = k1(1)u(1, t) +

∫ 1

0

k2(y)u(y, t) dy (8)

for the Neumann actuation, k2(y) = kx(1, y). 
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We are now going to derive k(x, y). From (1), (3), and
(4) we get

wt(x, t) = ut(x, t) −
∫ x

0

k(x, y)(εuyy(y, t) + λ0u) dy

= εuxx(x, t) + λ0u(x, t) − εk(x, x)ux(x, t)

+εk(x, 0)ux(0, t) + εky(x, x)u(x, t)

−
∫ x

0

(εkyy(x, y) + λ0k(x, y))u(y, t) dy , (9)

wxx(x, t) =uxx(x, t) − k(x, x)ux(x, t) − kx(x, x)u(x, t)

− d

dx
k(x, x) −

∫ x

0

kxx(x, y)u(y, t) dy . (10)

Combining (9) and (10) gives

0 = wt(x, t) − εwxx(x, t) + cw(x, t)

=

(

2ε
d

dx
k(x, x) + λ0 + c

)

u(x, t) + εk(x, 0)ux(0, t)

+

∫ x

0

{εkxx(x, y) − εkyy(x, y)

−(λ0 + c)k(x, y)}u(y, t) dy (11)

We can see now that the kernel k(x, y) must satisfy the
following hyperbolic PDE:

kxx(x, y) − kyy(x, y) = λk(x, y) , (x, y) ∈ T , (12)
k(x, 0) = 0 , (13)

k(x, x) = −λx
2
. (14)

where T = {x, y : 0< y < x < 1} and λ = (λ0 + c)/ε.
To find the solution of this PDE, following Liu [14] and
Colton [15], we use the transformation to an integral
equation and the method of successive approximations.
Introducing the change of variables

ξ = x+ y , η = x− y , (15)

and denoting

G(ξ, η) = k(x, y) = k

(

ξ + η

2
,
ξ − η

2

)

, (16)

we get the PDE

Gξη =
λ

4
G(ξ, η) , (17)

G(ξ, ξ) = 0 , (18)

G(ξ, 0) = −λ
4
ξ . (19)

Integrating (17) with respect to η from 0 to η and using
(19) we obtain

Gξ(ξ, η) = −λ
4

+
λ

4

∫ η

0

G(ξ, s) ds . (20)

Integrating (20) with respect to ξ from η to ξ and using
(18) gives the integral equation for G(ξ, η)

G(ξ, η) = −λ
4
(ξ − η) +

λ

4

ξ
∫

η

η
∫

0

G(τ, s) ds dτ . (21)

Now set

G0(ξ, η) = −λ
4
(ξ − η) ,

Gn+1(ξ, η) =
λ

4

ξ
∫

η

η
∫

0

Gn(τ, s) ds dτ . (22)

We can find the general term Gn in closed form (which
can be proved by induction):

Gn(ξ, η) = − (ξ − η) ξnηn

(n!)2(n+ 1)

(

λ

4

)n+1

. (23)

By the method of successive approximations, the sum of
all the terms Gn gives the solution to (21):

G(ξ, η) =

∞
∑

n=0

Gn(ξ, η) = −λ(ξ − η)

2

I1(
√
λξη)√
λξη

, (24)

where Ii is a modified Bessel function of order i. Writing
(24) in terms of x, y gives the following solution for
k(x, y)

k(x, y) = −λy
I1

(

√

λ(x2 − y2)
)

√

λ(x2 − y2)
, (25)

so, for Dirichlet actuation,

k1(y) = k(1, y) = −λy
I1

(

√

λ(1 − y2)
)

√

λ(1 − y2)
, (26)

and for Neumann actuation,

k2(y) = kx(1, y) = −λy
I2

(

√

λ(1 − y2)
)

1 − y2
. (27)

In Figure 1 the kernel k1(y) is plotted for several values
of λ. We see that the maximum of the absolute value of
the kernel moves to the left as λ grows. We can actually
calculate the area under the curves and estimate an amount
of total gain effort required:

E =

1
∫

0

|k1(y)| dy = λ

1
∫

0

y
I1

(

√

λ(1 − y2)
)

√

λ(1 − y2)
dy

=

√
λ

∫

0

I1(z) dz = I0

(√
λ
)

− 1 . (28)

Thus E ∼ λ for small λ and E ∼ e
√

λ/(
√

2π λ1/4) for
large λ.

For the case of a homogeneous Neumann boundary
condition at x = 0 for the equation (1) it is easy to repeat
all the steps we have done for the Dirichlet case and get
the following closed form solution for the kernel:

k(x, y) = −λxI1(
√

λ(x2 − y2))
√

λ(x2 − y2)
. (29)

Note that the leading factor here is x, versus y in (25). The
maximum of the absolute value of the kernel is reached
at x = 0. This makes sense because the control has to
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Fig. 1. Dependence of the gain kernel on the level of instability.

react the most aggressively to perturbations that are the
farthest from it. The peak value is equal to |k(1, 0)| =√
λ I1(

√
λ) ∼ e

√
λ/λ1/4 as λ→ ∞.

In order to prove stability we need to prove that the
transformation (3) is invertible. Let us write the inverse
transformation in the form

u(x, t) = w(x, t) +

∫ x

0

l(x, y)w(y, t) dy . (30)

Substituting (30) into equations (4)–(6) and using (1)–(2)
we obtain the following PDE governing l(x, y):

lxx(x, y) − lyy(x, y) = −λl(x, y) , (x, y) ∈ T , (31)
l(x, 0) = 0 , (32)

l(x, x) = −λx
2
. (33)

Noticing that in this case l(x, y) = −k(x, y) when λ is
replaced by −λ, we immediately obtain

l(x, y) = −λyJ1(
√

λ(x2 − y2))
√

λ(x2 − y2)
(34)

where J1 is the usual (non-modified) Bessel function of
the first order, which, incidentally, is a bounded function
of λ ≥ 0. The smoothness of the both k(x, y) and l(x, y)
in x, y establishes the equivalence of norms of u and w
in both L2 and H1. From the properties of the damped
heat equation (4)–(6) exponential stability in both L2 and
H1 follows.

Furthermore, the system (1)–(2), (7) is not only well
posed but its solution is explicitly available. Let us show
how it can be obtained. First we solve the dumped heat
equation (4)–(6):

w(x, t)=2

∞
∑

n=1

e−
(c+π2n2)t

ε sin(πnx)

∫ 1

0

w0(ξ) sin(πnξ) dξ.

(35)
The initial condition w0 can be calculated explicitly from
u0 via (3), (25). Substituting the result into (30), (34),
changing order of integration and calculating some inte-
grals we obtain the explicit solution to closed loop system
(1)–(2), (7):

u(x, t) =
∞
∑

n=1

e−
(c+π2n2)t

ε φn(x)

∫ 1

0

ψn(ξ)u0(ξ) dξ ,

(36)

where

ψn(x) = sin(πnx) +

∫ 1

x

λx
I1(
√

λ(ξ2 − x2))
√

λ(ξ2 − x2)
sin(πnξ) dξ,

φn(x) =
2πn√

λ+ π2n2
sin(

√

λ+ π2n2x). (37)

Several things can be noticed here. One can directly see
from (36) that the backstepping controller has moved
the eigenvalues from their open-loop (unstable) locations
λ0 − π2n2 into locations of the damped heat equation
−(c + π2n2). It is interesting to note, that although
infinitely many eigenvalues cannot be arbitrarily assigned,
our controller is able to assign all of them to the particular
location −(c + π2n2). The eigenfunctions of the closed-
loop system are assigned to φn(x). We can see from (37)
that the controller has reduced the amplitude and increased
the frequency of the open-loop eigenfunctions 2 sin(πnx).

We come to the following result.
Theorem 1: For any u0 ∈ L2(0, 1) the system (1)–(2),

(7) with the kernel k1(y) given by (26) has a unique
classical solution u(x, t) ∈ C2,1((0, 1) × (0,∞)) and is
exponentially stable at the origin, u(x, t) ≡ 0, in the
L2(0, 1) and H1(0, 1) norms. The same result holds in
case of the Neumann type of actuation with k2(y) given
by (27).

For the rest of the paper we will not repeat the pro-
cedure of derivation of a PDE for the kernel and the
arguments of previous paragraph proving stability and
well posedness.

B. Heat Equation with Destabilizing Boundary Condition

We now consider a more complicated system

ut(x, t) = εuxx(x, t) + λ0u(x, t) , (38)
ux(0, t) = qu(0, t) , (39)

u(1, t) =

∫ 1

0

k(1, y)u(y) dy , (40)

where the boundary condition on the uncontrolled end
is mixed and can cause instability for q < 0. We use
the transformation (3) to map this system into the target
system

wt(x, t) = εwxx(x, t) − cw(x, t) , (41)
w(0, t) = qw(0, t) , (42)
w(1, t) = 0 , (43)

which is exponentially stable for c > max{0,−εq|q|}.
It can be shown that the gain kernel should satisfy the
following PDE:

kxx(x, y) − kyy(x, y) = λk(x, y) , (44)
ky(x, 0) = qk(x, 0) , (45)

k(x, x) = −λx
2
. (46)



where λ = (λ0 + c)/ε. We propose to search a solution
in the following form

k(x, y) = −λxI1(
√

λ(x2 − y2))
√

λ(x2 − y2)

+

∫ x−y

0

I0(
√

λ(x+ y)(x− y − τ))σ(τ) dτ. (47)

Here the first term is a solution to (44)–(46) with q = 0
which have been obtained in the previous subsection.
Second term is just one of the solutions to (44), σ being an
arbitrary function. We can see now that (47) is a solution
to (44), (46) and we need only to choose σ(τ) so that
(45) is satisfied. Substituting (47) into (45) we obtain the
following integral equation for σ(x):

x
∫

0

σ(τ)

(

λ

2
τ
I1(
√

λx(x− τ))
√

λx(x− τ)
+ qI0(

√

λx(x− τ))

)

dτ

+ σ(x) =
√
λqI1(

√
λx) . (48)

To solve this equation we apply Laplace transform with
respect to x to both sides of (48) and get:

σ(s) +

∞
∫

0

e−sξ

x
∫

0

σ(τ)

(

λ

2
τ
I1(
√

λx(x− τ))
√

λx(x− τ)

+ qI0(
√

λx(x− τ))

)

dτ dξ = q
s−

√
s2 − λ√

s2 − λ
. (49)

After changing the order of integration, calculating of the
inner integral, and introducing s′ = (s+

√
s2 − λ)/2 we

obtain:

∞
∫

0

σ(τ)e−s′τ dτ = q
s−

√
s2 − λ

q +
√
s2 − λ

, (50)

Now using the relation s = s′ + λ/(4s′) we get

σ(s′) =
2qλ

(2s′ + q)2 − (λ+ q2)
. (51)

Taking inverse Laplace transform we get

σ(x) =
qλ

√

λ+ q2
e−qx/2 sinh

√

λ+ q2

2
x . (52)

So, the final solution to (44)–(46) is

k(x, y) = −λxI1(
√

λ(x2 − y2))
√

λ(x2 − y2)

+
qλ

√

λ+ q2

x−y
∫

0

e−qτ/2 sinh

(

√

λ+ q2

2
τ

)

×

× I0(
√

λ(x+ y)(x− y − τ)) dτ. (53)
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Fig. 2. ”One-peak” λαβ(x) for α = 4 and ε = 1.

C. ”One-Peak” Family – Chemical Tubular Reactor

Consider the system

ut(x, t) = εuxx(x, t) + λαβ(x)u(x, t) , x ∈ (0, 1), (54)
u(0, t) = 0 , (55)

where λαβ(x) is given by

λαβ(x) =
2εα2

cosh2(αx− β)
. (56)

This function parametrizes a family of ”one-peak” func-
tions. The maximum of λ(x) is 2εα2 and is achieved at
x = β/α. The parameters α and β can be chosen to give
the maximum an arbitrary value and location. Examples
of λαβ(x) for different values of α and β are shown in
Figure 2. The ”sharpness” of the peak is not arbitrary
and is given by λ′′max = −λ2

max/ε. Despite the strange-
looking expression for λαβ(x), the system (54)–(55) can
approximate very well the linearized model of chemical
tubular reactor (see [16] and references therein) which is
open loop unstable. Our result on stabilization of (54)–
(55) is given by the following theorem.

Theorem 2: The controller

u(1, t) = −
∫ 1

0

αeα tanh β(1−y) [tanhβ

− tanh(β − αy)]u(y, t) dy (57)

exponentially stabilizes the zero solution of the system
(54)–(55).

Proof: Using the same procedure as in the previous
subsection we map (54)–(55) into the system (4)–(6) using
the transformation (3) Without repeating all the steps (9)–
(11) we show the resulting PDE for the kernel k(x, y):

kxx(x, y) − kyy(x, y) = ε−1λαβ(y)k(x, y) , (58)
k(x, 0) = 0 , (59)

k(x, x) = − 1

2ε

∫ x

0

λαβ(τ) dτ . (60)

Postulating k(x, y) = X(x)Y (y), we have the following
set of ODEs:

X ′′(x) = µX(x) , (61)
Y ′′(y) = Y (y)(µ+ 2X(y)Y ′(y) + 2X ′(y)Y (y)) , (62)

with the additional conditions

Y (0) = 0, (X(x)Y (x))′ = −λαβ(x)/(2ε) , (63)

4  SMYSHLYAEV A., KRSTIĆ M.  EXPLICIT STATE AND OUTPUT FEEDBACK BOUNDARY CONTROLLERS... 



                                                JOURNAL OF AUTOMATIC CONTROL, UNIVERSITY OF BELGRADE                                                  5 
 

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0
β=3.5

β=0.5

β=2

k
1
(y) 

y 

Fig. 3. Gain kernel k1(y) for (54)–(55) with α = 4 and ε = 1.

where µ is an arbitrary parameter. Let us choose X(x) =
e
√

µx and substitute it into (62). We get

Y ′′(y) = µY (y)

+2e
√

µyY ′(y)Y (y) + 2
√
µ e

√
µyY 2(y). (64)

Changing variables Y = f(y)e−
√

µy we arrive at the
following ODE:

f ′′(y) − 2f ′(y)f(y) − 2
√
µf ′(y) = 0 (65)
f(0) = 0 , (66)
f ′(0) = µ− α2 . (67)

with the additional condition

f ′(x) = −λαβ(x)

2ε
. (68)

The solution to the problem (65)–(67) is

f(y) = −α (tanh(αy − β) + tanhβ) , (69)

where tanhβ =
√
µ/α. We can check that this solution

satisfies (68) and gives the kernel

k(x, y) = −αeα tanh β(x−y) (tanhβ − tanh(β − αy)) .
(70)

Setting x = 1 in (70) concludes the proof.
In Figure 3 the stabilizing kernels corresponding to
λαβ(x) from Figure 2 are shown. We can see that the
controller effort depends very much on the location of the
peak of λ(x), which has an obvious explanation. When the
peak is close to x = 1, the controller’s influence is very
high, when it is close to x = 0, the boundary condition
helps to stabilize, so the worst case is the peak somewhere
in the middle of the domain.

D. Solid Propellant Rocket Model

Consider the following system

ut(x, t) = uxx(x, t) + geγxu(0, t) , x ∈ (0, 1) ,(71)
ux(0, t) = 0 . (72)

Here g and γ are arbitrary constants. This equation rep-
resents a model of unstable burning in solid propellant
rockets (for more details see [17] and references therein).
This system is unstable (with u(1) = 0) for any g > 2,
γ ≥ 0.

PDE for the gain kernel can be obtained using the
same procedure as in Section II-A except that now the
transformation (3) is used to convert the plant into system
(4)–(6) with wx(0, t) = 0 instead of w(0, t) = 0:

kxx(x, y) − kyy(x, y) = 0 , (x, y) ∈ T , (73)

ky(x, 0) = geγx − g

∫ x

0

k(x, y)eγy dy, (74)

k(x, x) = 0 . (75)

Note the non-local character of the boundary condition
(74). The structure of (73)–(75) suggests to search for the
solution in the following form:

k(x, y) = C1e
γ1(x−y) + C2e

γ2(x−y) . (76)

Substituting (76) into (73)–(75) we determine the con-
stants C1, C2, γ1, γ2 and thus obtain the solution

k(x, y) = − g

g0
e

γ

2 (x−y) sinh (g0(x− y)) ,

g0 =

√

g +
γ2

4
. (77)

We arrive at the following result:
Theorem 3: The controller

u(1, t) = −
1
∫

0

ge
γ

2 (1−y)

g0
sinh (g0(1 − y))u(y, t) dy

(78)
exponentially stabilizes the zero solution of the system
(71)–(72).

E. Combining Previous Results

The solutions presented in subsections II-A– II-B can
be combined to obtain the explicit result for the more
complex systems. Consider the system

ut(x, t) = εuxx(x, t) + (λαβ(x) + λ0)u(x, t) , (79)
u(0, t) = 0 , (80)

u(1, t) =

∫ 1

0

kc(y)u(y) dy . (81)

where kc(y) is sought to stabilize this system. Denote by
kαβ(x, y) and kλ(x, y) the control gains for the equations
(54)–(55) and (1)–(2), respectively. The transformation (3)
with k(x, y) = kαβ(x, y) maps (79)–(81) into the system

wt(x, t) = εwxx(x, t) + λ0w(x, t) , (82)
w(0, t) = 0 , (83)

w(1, t) =

∫ 1

0

kλ
1 (y)w(y) dy . (84)

which is stabilized by kλ
1 (y). Thus we can get for kc(y)

the expression in quadratures in terms of kαβ(x, y) and
kλ(x, y):

kc(y) = kλ
1 (y) + kαβ

1 (y) −
∫ 1

y

kλ
1 (ξ)kαβ(ξ, y) dξ (85)



For example for β=0 one can get the closed-form solution

kc(y) = −λy
I1

(

√

λ(1 − y2)
)

√

λ(1 − y2)

−α tanh(αy)I0

(

√

λ(1 − y2)
)

(86)

In the same fashion one can obtain the explicit stabilizing
controllers for even more complicated plants. Here is the
most general plant for which we have been able to do it:

ut(x, t) = εuxx(x, t) + bux(x, t) + λ0u(x, t)

+ geγxu(0, t) , (87)
ux(0, t) = qu(0, t) . (88)

This is a system with 6 parameters, each of them can
contribute to instability. It is remarkable that it can be
stabilized by closed form control law.

III. OUTPUT-FEEDBACK DESIGNS

The stabilizing controllers developed thus far require
complete measurements from the interior of the domain
which are usually unavailable. So we look for the ob-
servers that estimate u(x, t) inside the domain. We assume
that sensing is available only at the boundary and thus
consider two cases: anti-collocated, when the sensor is
placed on the opposite boundary to the actuator (so u(0, t)
is measured, u(1, t) is controlled), and collocated, when
the sensor and the actuator are set at the same boundary
(so u(1, t) is measured, ux(1, t) is controlled).

A. Unstable Heat Equation

Consider the following equation

ut(x, t) = εuxx(x, t) + λ0u(x, t) , (89)
ux(0, t) = 0 , (90)

with only u(0) measured. We propose the following
Luenberger-type observer motivated by a finite dimen-
sional backstepping type observer of Krener and Wang
[18]:

ût(x, t) = εûxx(x, t) + λ0û(x, t)

+p1(x)[u(0, t) − û(0, t)] , (91)
ûx(0, t) = p10[u(0, t) − û(0, t)] , (92)

û(1, t) =

∫ 1

0

k1(y)û(y, t) dy , (93)

and the controller

u(1, t) =

∫ 1

0

k1(y)û(y, t) dy . (94)

Here p1(x) and p10 are output injection functions (p10 is
a constant) to be designed. Note, that we introduce output
injection not only in the equation (91) but also at the
boundary where measurement is available. The observer

error ũ(x, t) = u(x, t) − û(x, t) satisfies the following
PDE:

ũt (x, t) = εũxx (x, t) + λ0ũ (x, t) − p1(x)ũ(0, t) , (95)
ũx (0, t) = −p10ũ(0, t) , (96)
ũ (1, t) = 0. (97)

Observer gains p1(x) and p10 should now be chosen to sta-
bilize the system (95)–(97). For linear finite dimensional
systems the problem of finding the observer gains is dual
to the problem of finding the control gains. This motivates
us to try to solve the problem of stabilization of (95)–
(97) by the same integral transformation approach as the
(state feedback) boundary control problem. We look for a
backstepping-like transformation

ũ (x, t) = w̃ (x, t) −
∫ x

0

p (x, y) w̃ (y, t) dy (98)

that transforms system (95)–(97) into the exponentially
stable system

w̃t(x, t) = εw̃xx(x, t) − cw̃(x, t) , x ∈ (0, 1) ,(99)
w̃x(0, t) = 0 , (100)
w̃(1, t) = 0. (101)

By substituting (98) into (95)–(97) and using (99)–(101)
it can be shown that the kernel p(x, y) must satisfy the
following hyperbolic PDE:

pyy(x, y) − pxx(x, y) = λp(x, y) , (102)
d

dx
p(x, x) =

λ

2
, (103)

p(1, y) = 0 . (104)

In addition, the following conditions must be satisfied:

p1(x) = εpy(x, 0), p10 = p(0, 0). (105)

Let us make a change of variables

x̆ = 1 − y, y̆ = 1 − x, p̆(x̆, y̆) = p(x, y). (106)

It can be verified that in these new variables the problem
(102)–(104) becomes exactly the same as (12)–(14) for
k(x, y) and we get

p̆(x̆, y̆) = −λy̆
I1

(

√

λ(x̆2 − y̆2)
)

√

λ(x̆2 − y̆2)
. (107)

Using (105) we obtain the following result.
Theorem 4: The controller (94) with the observer (91)–

(93) where k1(x) and p1(x) are given by

k1(y) = −λ
I1

(

√

λ(1 − y2)
)

√

λ(1 − y2)
,

p1(x) =
λ(1 − x)

x(2 − x)
I2

(

√

λx(2 − x)
)

, (108)

and p10 = −λ/2, exponentially stabilizes the zero solution
of the system (89)–(90).

The above result can be easily extended for the Neu-
mann type of actuation as well.
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Since both the controller and the observer are explicit
in our design we can derive again (following the same
procedure as in section II-A) the closed loop solution of
(89)–(94). The presence of the second PDE (the observer)
makes it more complicated:

u(x, t) =

∞
∑

n=0

e−
(c+µ2

n)t

ε φn(x)







∫ 1

0

ψn(ξ)u0(ξ) dξ

−(−µn)n



Cnt+

∞
∑

m6=n

Cm
1 − e

(µ2
n−µ2

m)t

ε

µ2
n − µ2

m











,(109)

where µn = π(n+ 1/2),

Cn =

∫ 1

0

λ
I1(
√

λ(1 − ξ2))
√

λ(1 − ξ2)
ψ′

n(1 − ξ) dξ ×

×
∫ 1

0

φ′n(1 − ξ)

λ+ µ2
n

(u0(ξ) − û0(ξ)) dξ, (110)

ψn(x) = cos(µnx)+

∫ x

0

λξ
I1(
√

λ(x2 − ξ2))
√

λ(x2 − ξ2)
cos(µnξ) dξ,

φn(x) = 2 cos(
√

λ+ µ2
nx). (111)

B. Explicit Solution for a ”One-Peak” Family of λ(x)

We show now how the observer for the collocated case
can be designed. Of course, for the problem to make sense
we assume that the actuation is Neumann type. Consider
the problem (54)–(56) with only u(1, t) measured. We
propose the following observer

ût (x, t) = εûxx (x, t) + λαβ (x) û (x, t)

+p1(x)[u(1, t) − û(1, t)] , (112)
û (0, t) = 0 , (113)
ûx (1, t) = −p10[u(1, t) − û(1, t)]

+k1(1)û(1, t) +

∫ 1

0

k2(y)û(y, t) dy ,(114)

with the controller

ux (1, t) = k1(1)û(1, t) +

∫ 1

0

k2(y)û(y, t) dy , (115)

Control gains k1 and k2 have been determined in Section
II-C.

The observer error ũ(x) satisfies the equation

ũt(x, t) = εũxx(x, t)+λαβ(x)ũ(x, t)−p1(x)ũ(1, t)(116)
ũ(0, t) = 0 , (117)
ũx(1, t) = p10ũ(1, t). (118)

We are looking for the transformation:

ũ (x, t) = w̃ (x, t) −
∫ 1

x

p (x, y) w̃ (y, t) dy (119)

that transforms (116)–(118) into the exponentially stable
target system

w̃t(x, t) = εw̃xx(x, t), x ∈ (0, 1) , (120)
w̃(0, t) = 0 , (121)
w̃x(1, t) = 0. (122)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

x 

β=0.5

β=2

β=3.5

p
1
(x) 

Fig. 4. Observer gain for α = 4.

Note, that the transformation (119) is in upper-triangular
form. By substituting (119) into (116)–(118) and using
(120)–(122) it can be shown that the kernel p(x, y) must
satisfy the following hyperbolic PDE:

εpyy(x, y) − εpxx(x, y) = λαβ(x)p(x, y), (123)
px(0, y) = qp(0, y), (124)

p(x, x) = − 1

2ε

∫ x

0

(λ(ξ) + c) dξ .(125)

In addition, the following conditions must be satisfied:

p1(x) = −εpy(x, 1), p10 = p(1, 1). (126)

Once the solution p(x, y) to the problem (123)–(125) is
found, the observer gains can be obtained from (126). It
can be verified that the solution of this PDE is p(x, y) =
k(x, y) where k(x, y) is given by (70). We immediately
get p1(x) = εk2(x), p10 = k1(1) and the following result.

Theorem 5: The controller (115) with the observer
(112)–(114) where k2(x) and p1(x) are given by

k2(x) = p1(x) = εα2 tanh(β) ×
×e(1−x)α tanh β(tanhβ − tanh(β − αx)), (127)

stabilizes the zero solution of the system (54)–(55).
In Figure 4 the observer gains corresponding to λαβ(x)

from Figure 2 are shown.

C. Combining Results
The solutions from Sections III-A and III-B can be

combined to obtain an explicit solution to (79)–(81).
Denote by pαβ(x, y) and pλ(x, y) the observer gains for
(54)–(55) and (1)–(2), respectively. In the same fashion
as it was done in Section II-E we can obtain the observer
gain for the equation (79)-(81):

p1(x) = pλ
1 (x) + pαβ

1 (x) + εpλ
10p

αβ(x, 1)

−
∫ 1

x

pαβ(x, ξ)pλ
1 (ξ) dξ , (128)

p10 = pλ
10 + pαβ

10 . (129)

For example for β = 0 one can get the closed-form
solution

p1(x) =
ελ

1 − y2
I2

(

√

λ(1 − x2)
)

+ελα tanh(αx)
I1

(

√

λ(1 − x2)
)

√

λ(1 − x2
. (130)



IV. EXPLICIT COMPENSATOR DESIGN (FREQUENCY
DOMAIN)

The solutions obtained in previous sections can be used
to get the explicit compensator transfer functions (treating
u(0, t) or u(1, t) as an input and u(1, t) or ux(1, t) as an
output). We will illustrate this point with the system from
Section II-D with γ = 0 and u(0, t) measured:

ut(x, t) = uxx(x, t) + gu(0, t) , (131)
ux(0, t) = 0 . (132)

Consider the following observer:

ût(x, t) = ûxx(x, t) + gu(0, t) , (133)
ûx(0, t) = 0 , (134)

û(1, t) = −√
g

∫ 1

0

sinh(
√
g(1 − y))û(y, t) dy . (135)

The controller (and the output for the observer) is (see
(78)):

u(1, t) = −√
g

∫ 1

0

sinh(
√
g(1 − y))û(y, t) dy . (136)

We want to find a transfer function from the input u(0, t)
to the output u(1, t), i.e., u(1, s) = −C(s)u(0, s). Taking
the Laplace transform of (133)–(135), setting the initial
condition to zero, û(x, 0) = 0, we have (for simplicity
of notation we denote by û(x, s) and u(0, s) the Laplace
transforms of û(x, t) and u(0, t), respectively):

sû(x, s) = ûxx(x, s) + gu(0, s) , (137)
ûx(0, s) = 0 , (138)

û(1, s) = −√
g

∫ 1

0

sinh(
√
g(1 − y))û(y, s) dy . (139)

The equation (137) with boundary conditions (138)–(139)
is an ODE with respect to x (we regard s as a parameter).
The solution of (137) satisfying (138) is:

û(x, s) = û(0, s) cosh(
√
sx) +

g

s
(1 − cosh(

√
sx))u(0, s)

(140)
Using boundary condition (139) we obtain û(0, s):

û(0, s) =
cosh(

√
s) − cosh(

√
g)

s cosh(
√
s) − g cosh(

√
g)
gu(0, s) (141)

Substituting now (141) into (140) with x = 1 we obtain
the following result:

Theorem 6: The transfer function of the system (133)–
(136) with u(0, t) as an input and u(1, t) as an output
is

C(s) =
g

s

(

−1 +
(s− g) cosh(

√
s) cosh(

√
g)

s cosh(
√
s) − g cosh(

√
g)

)

. (142)

The validation of application of the above procedure for
linear parabolic PDEs (which proves that C(s) is indeed
a transfer function) can be found in [1, Chapter 4]. Note
that s = 0 is not the pole:

C(0) =
g

2
+

1

cosh(
√
g)

− 1 (143)
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Fig. 5. Bode plot of C(jω) for g = 8.

The transfer function (142) has infinitely many poles, all
of them are real and negative. The Bode plots of C(s) for
g = 8 are presented in Figure 5. It is evident from the
Bode plots that C(s) can be approximated by a second
order, relative degree one transfer function. For example,
a rough estimate would be

C(s) ≈ 60
s+ 17

s2 + 25s+ 320
. (144)

The relative degree one nature of the compensator is the
result of employing a full order (rather than a reduced
order) observer.

V. CONCLUSION

We presented closed form solutions to a boundary
stabilization problem for a class of parabolic PDEs. We
should note that the described method is not limited to
plants for which an explicit solution can be found. It can
be applied to a general class of parabolic PDEs

ut (x, t) = εuxx (x, t) + λ (x)u (x, t) + g (x)u (0, t)

+

∫ x

0

f(x, y)u(y, t) dy . (145)

It turns out that in this case the gain kernel should satisfy
the following hyperbolic Klein-Gordon type PDE [19]

εkxx(x, y) − εkyy(x, y) = (λ(y) + c)k(x, y) − f(x, y)

+

∫ x

y

k(x, τ)f(τ, y) dτ, (146)

with boundary conditions

εky(x, 0) = εqk(x, 0)+g(x)−
∫ x

0

k(x, y)g(y) dy, (147)

k(x, x) = − 1

2ε

∫ x

0

(λ(y) + c) dy . (148)
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 This PDE can be solved either by the method of successive
approximations much like in Section II-A (see (15)–(24))
or by using a numerical scheme for Klein-Gordon type of
equations.

The approach can also be modified to obtain a con-
troller that minimizes a reasonable cost functional that
puts penalty on both state and control (so-called inverse
optimal controller) giving stability margins and robust-
ness [19].
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