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Abstract

We propose an adaptive algorithm for control of combustion instability suitable for reduction of acoustic pressure oscillations in gas
turbine engines, and main burners and augmentors of jet engines over a large range of operating conditions, and supply an experimental
demonstration of oscillation attenuation, the first for a large industrial-scale gas turbine combustor. The algorithm consists of an Extended
Kalman Filter based frequency tracking observer to determine the in-phase component, the quadrature component, and the magnitude of
the acoustic mode of interest, and a phase shifting controller actuating fuel-flow, with the controller phase tuned using extremum-seeking.
The paper also identifies a closed-loop model with phase-shifting control of combustion instability from experimental data; supplies
stability analysis of the adaptive scheme based upon the identified model, and stable extremum-seeking designs used in experiments.
� 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Lower emissions requirements have motivated develop-
ment of lean premixed combustors for industrial gas tur-
bines. Their susceptibility to thermoacoustic pressure oscil-
lations, and subsequent decreased durability have motivated
a large body of research on combustion instability control.
Prior experimental results and model-based analysis show
that pressure measurement and a simple phase-shifting con-
troller with an appropriately chosen phase-shift to actuate ei-
ther fuel-injection or a loudspeaker is sufficient for suppres-
sion of oscillations, given enough control authority (Lang,
Poinsot, & Candel, 1987; Hathout, Annaswamy, Fleifil, &
Ghoniem, 1998; Cohen, Rey, Jacobson, & Anderson, 1998;
Banaszuk, Jacobson, Khibnik, & Mehta, 1999a; Banaszuk,
Jacobson, Khibnik, & Mehta, 1999b). The difficulty in de-
termining the optimal phase shift that minimizes pressure
oscillations, either by analysis or by experiment, especially
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in large industrial-scale combustors that operate over a wide
range of conditions, has led researchers to call for the use
of adaptive schemes (Seume et al., 1997).

This paper proposes an adaptive scheme to find the op-
timal phase shift online (from pressure measurement to
fuel-injection), that is based on extremum seeking and
motivated by physical modeling; identifies a closed loop
model with phase-shifting control of combustion insta-
bility from experimental data; supplies stability analysis
of the adaptive scheme based upon the identified model;
develops stable extremum-seeking designs and provides
the first successful result on oscillation minimization in
an industrial-scale 4 MW gas turbine combustor.1 The
algorithm achieved the objective of monotonically re-
ducing oscillation amplitudes below uncontrolled lev-
els from all initial conditions. An Extended Kalman
Filter (La Scala, 1994) based frequency tracking ob-
server (Banaszuk, Zhang, & Jacobson, 2000b) was used

1 Conducted on a single nozzle rig at United Technologies Re-
search Center (UTRC) in August 1998 before the experiments described in
Johnson, Neumeier, Lubarsky, Lee, Neumaier, and Zinn (2000)and
Murugappan, Gutmark, and Acharya, 2000.
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to reliably detect the in-phase and quadrature components of
the dominant bulk mode of pressure oscillation over a wide
range of operating conditions (bulk-mode frequency varying
from 150 to 250 Hz). This prevented other frequencies and
noise from entering the phase-shifting feedback. The con-
trol phase was updated using classical perturbation-based
extremum seeking (Krstic, 2000) while the control gain was
fixed.

The paper is organized as follows: Section 2 details deriva-
tion of an averaged model of pressure magnitude dynamics
as a function of phase-shifting control; Section 3 presents
experimental identification of the averaged model; Section
4 presents control-phase tuning by extremum seeking along
with stability analysis, and Section 5 presents adaptive os-
cillation attenuation on the 4 MW single nozzle rig.

2. Averaged pressure magnitude model of a controlled
combustion process

In this section we derive a simplified model of combustion
instability for analysis of the control algorithm. A simplified
version of the physics-based model of coupled acoustics and
heat release fromJacobson, Khibnik, Banaszuk, Cohen, and
Proscia (2000)is

v̇n(t) = − V ss
n

C2
d Ln

vn(t) − 1

�3Ln
pc(t), (1)

ṗc(t)=�3An

Cc
vn(t) − �CdAe√

T4Cc
pc(t)

+h(vn(t − �), wf (t − �)), (2)

wherevn(t) is the perturbation velocity at nozzle exit and
V ss

n the steady-state velocity,pc(t) is the perturbation pres-
sure in the combustor, andwf (t) fuel mass flow rate (the
control variable).�3 is density at the nozzle exit,Ln denotes
effective nozzle length,Cd is the discharge coefficient,Cc
is the capacitance of combustor volume,An is the physical
area of nozzle cross section,Ae is the physical area of exit
cross section,� is the constant in choked flow equation,T4
is the exit temperature in combustor.� is the heat release
delay due to transport of the mixture of fuel and air to the
flame front, mixing of cold mixture with the hot products
in the combustor recirculation zone, and chemical reaction.
The heat release functionh(·, ·) represents the mass flow ad-
dition due to heat release. We assume thath(0,0) = 0. We
also assume that the combustor is operating at a lean condi-
tion in which the heat release rate is an increasing function
of fuel to air mass flow ratio, i.e.,h(v,w) is an increasing
function ofw if v is held constant and a decreasing function
of v if w is held constant.

One can show that the linearization of the acoustic part
of system (1)–(2) has a pair of complex conjugate eigen-
values close to imaginary axis. The acoustic damping is
�0 = V ss
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. We are going to replace the velocity in

the nozzlevn with the quadrature component of pressurepq.
This change of coordinates puts the acoustic part of system
(1)–(2) in the Jordan canonical form keepingpc as one of the
state variables. The change of coordinates ispq=s1vn+s2pc
and the inverse transformation isvn = t1pq + t2pc, where

t1= �0Cc
�3An

, t2=
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V ss
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In new coordinates (1)–(2) takes the form

ṗq(t)=−�0pq(t) − �0pc(t)

+s2h(vn(t − �), wf (t − �)), (3)

ṗc(t)=�0pq(t) − �0pc(t)

+h(vn(t − �), wf (t − �)). (4)

We are going to represent system (3)–(4) in polar coordinates

A=
√
p2

c + p2
q, �=arctan

(
pq
pc

)
. (The inverse transformation

is pc =A sin �, pq =A cos�.) In these coordinates system
(3)–(4) takes the form

Ȧ(t)=−�0A(t) + (sin �(t) + s2 cos�(t))h
×(t1A(t − �) sin �(t − �)
+t2A(t − �) cos�(t − �), wf (t − �)), (5)

�̇(t) = �0 + (cos�(t) − s2 sin �(t))

×h(t1A(t−�) sin�(t−�)+t2A(t−�) cos�(t−�), wf (t−�))
A(t)

.

(6)

We assume that the dynamics of (5)–(6) is a harmonic motion
with nearly constant frequency

� = �0 + (cos�(t) − s2 sin�(t))

×h(t1A(t−�) sin�(t−�)+t2A(t−�) cos�(t−�), wf (t−�))
A(t)

and slowly varying magnitudeA(t). This justifies applica-
tion of averaging to obtain an average pressure magnitude
dynamics model (Murray et al., 1997). In particular, we as-
sume that�(t)=�t and thus�(t − �)=�t −��. Moreover,
since the magnitude dynamics time scale is assumed to be
much slower than the heat release time delay�, the approxi-
mationA(t −�)=A(t) is justified. Using these assumptions
and trigonometric identityb1 sin �+b2 cos�=B sin(�−�1)

for B =
√
b2

1 + b2
2 and�1 = − arctanb2

b1
we obtaint1A(t −

�) sin �(t−�)+t2A(t−�) cos�(t−�) ≈ k1A(t) sin(�−�1),

for k1=
√
t21 + t22 and�1=− arctant2

t1
−��. Using the same

trigonometric identity we obtain sin�(t) + s2 cos�(t) =
k2 sin(� − �2), for k2 =

√
1 + s2

2 and�2 = − arctans2.
We assume that the fuel valve is driven by control law

wf (t)=kcA sin(�−�c), wherekc is the control gain, and�c
is the control phase shift (both relative to measured pressure
signalpc(t)). Note that this control law can be implemented
aswf (t)=kc(pc(t) cos�c −pq(t) sin �c). To obtain an esti-
mate of the quadrature componentpq(t) from the measured
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in-phase componentpc(t) one can use a frequency track-
ing observerBanaszuk et al., 2000b. We neglect the fuel
line dynamics and assume thatwf (t) = kcA sin(� − �c).
(Alternatively, if the phase lag due to actuation is known,
it could be added to�c in the expression forwf (t).) Thus,
wf (t − �) = kcA sin(� − �c − ��).

We obtain the average model of the pressure magnitude
dynamics in the form

Ȧ(t) = −�0A(t) + H(A(t), kc, �c), (7)

whereH(A)= k2
2�

∫ 2�
0 h(k1A sin(� − �1), kcA sin(� − �c −

��)) sin(�−�2)d�. The approximate limit cycle magnitudes
Aare found by solving the equation−�0A+H(A, kc, �c)=0.
For a fixed control gainkc, we assume that there is a unique
stable equilibriumA of (7) of the formA = g(�c). Under
this assumption Eq. (7) can be put in the form

Ȧ(t) = −�0(A(t), �c)(A(t) − g(�c)) (8)

for some�0(A(t), �c) nonnegative for all arguments. In Sec-
tion 3 we will identify functionsg(�c) and�0(A(t), �c) from
an experiment. More precisely, we will obtain a local model
of the growth rate coefficient�0(A(t), �c) under assumption
that it only depends on�c. This model will be valid locally
aroundA = g(�c). However, the model will not be valid
globally, as it does not represent the fact thatA = 0 is also
an equilibrium of Eq. (8).

Experimentally obtained estimates of the pressure mag-
nitude show a strong random component. InJacobson et al.
(2000), it was determined that the turbulent fluctuations of
about 10% of the mean air flow lead to good agreement be-
tween the level of random pressure oscillations in the model
and in the experimental data. Since the random component
of the pressure magnitude will play a very important role in
performance of the adaptive algorithm, we include it in the
model. The physically motivated noise could be added to
the velocity at nozzle exit in Eq. (2) at a white noise source.
Rather than going through the difficulty of transformation
of the input noise through all changes of variables described
in this section, we will simply add a colored output noise
component to the pressure magnitude obtained from Eq. (8).
The output noise model will be identified from experimental
data.

3. Identification of averaged pressure magnitude
dynamics of a controlled combustion instability

Closed-loop identification experiments were conducted
with the purpose of identifying the average model of
pressure magnitude dynamics of the form represented
by Eq. (8)

ẋ0 = −�(�c)(x0 − g(�c)), (9)

A = x0 + 	, (10)
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Fig. 1. Static map from control phase�c to oscillation amplitudeA.

where�(�c)>0 are the time constants of the exponential re-
laxation processes at the equilibriaA=g(�c) of (9), A is the
measured instantaneous pressure magnitude, and	 is a col-
ored noise modeling pressure magnitude fluctuation (due to
turbulent velocity fluctuation in the nozzle). In experiments,
the control phase input�c(t) is provided and response of
the pressure magnitude estimateA(t) from the frequency-
tracking Extended Kalman Filter described inBanaszuk
et al. (2000b)is recorded. The equilibrium mapg(�c) is
obtained by fitting a curve through the equilibria found
from steady-state experiments, and decay rates�(�c) at
these equilibria are estimated from cumulative averaging
of several step responses (the steps are in the controller
parameter) to eliminate noise. A linear colored noise model
(independent of�c) is obtained to fit the spectrum of the
fluctuating component	 in experimental data.2

3.1. Identification of equilibrium map

An experimental equilibrium map is obtained by varying
�c in a phase ramp/staircase of discrete steps from 0◦ to 360◦:
�c(t)=�st[t], where[t] denotes the greatest integer less than
time t, and�st = 15◦ is the discrete increment in�c in each
step. The duration of steps is sufficiently long (1 s) to allow
for the transients in pressure magnitude to settle down. The
steady-state values are estimated by averaging the magnitude
data after the transient is over. From experimental data at
a low combustor power shown inFig. 1, there does seem
to be a smooth variation of the steady-state magnitudes of
thermoacoustic instability with�c along a single curve, and
there is a definite minimum oscillation magnitude at a certain
phase. A parametrization for the static map, motivated in
part by analysis in Section 2 and in part by the shape of the

2Youping Zhang fit the output noise model using combustion data
and implemented the identified model in SIMULINK.
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experimental static map itself, is

g(�c) = 

{

1 + L sin(�c + �)
1 + M sin(�c + �)

}
, (11)

where�c is the phase of the phase-shifting controller, and
g(�c) is the steady-state oscillation magnitude. Note that the
map is parametrized with only four parameters. The param-
eters are obtained by fitting the parametrization to the ex-
perimental data by a nonlinear least-squares fit. For the ex-
periment at a low combustor power, the parameters obtained
were
 = 0.1246,L = 0.7659,M = 0.6286,� = −0.9614.

3.2. Identification of decay rates

Experimentally, the magnitude transients are obtained by
introducing a large square wave variation in the control
phase. The duration of the pulses is long enough (2 s) to al-
low settling of the transients of each step, and the upper and
lower values of�c in the pulses are chosen so as to ensure
an observable difference in equilibrium magnitudeg(�c),
typically 90◦.

To eliminate noise in the transient measurements, a cu-
mulative averaging of the various step responses in a given
square wave response is performed. We assume that the
noise is zero mean, its autocorrelation function decays to
zero within half-pulse periodT, and that the magnitude tran-
sients settle within half-pulse periodT. Time traces of tran-
sient responses are averaged cumulatively to obtain theN th
estimate of the magnitude time-trace:

Ā(t) = 1

[t/T ] + 1

[t/T ]∑
i=0

A(t − iT ), (12)

whereA(t) is the measurement of magnitude as in the pre-
vious section,T = 2 s is the time period of the pulses, and
[t/T ] denotes the greatest integer less thant/T . The tran-
sients due to the upward and downward steps are averaged
separately, since they represent transients at different equi-
libria. The corresponding final averages are shown inFig. 2.
In the figures, the smooth curves of the exponential fits
are superimposed over the rough curves from cumulative
averages.

In the case where we can measure the magnitude perfectly
without noise, direct integration of Eq. (9) yields�(�fin) as

�(�fin) = A(t) − A(t + s)∫ t+s

t
A(�)d� − sg(�fin)

(13)

∀t s.t.
[2t
T

] =
[

2(t+s)
T

]
, and∀s <T/2, where�fin is the fi-

nal phase of the phase step. However, since we do not have
noise-free data, we estimate the exponent from theN th cu-
mulative average of the measured transients (Eq. (12)) as
follows:

�̂N(�fin) = Ā(NT ) − Ā(NT + Tsettle)∫ NT+Tsettle
NT

Ā(�)d� − Tsettleg(�fin)
. (14)
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Fig. 2. Estimate of the decay rate.

Here, we approximateĀ(NT )≈ g(�in), and Ā(NT +
Tsettle)≈ g(�fin), where�in is the starting phase of the phase
step,NT is a step time instant, andTsettle is such that the
magnitude transients settle within it. The exponents�̂(�c)

(�c in degrees) thus calculated are indicated onFig. 2.
The identified pressure magnitude dynamics and the col-
ored noise model have been implemented in SIMULINK
for simulation studies of the adaptive algorithm to narrow
the range of adjustable parameters and thereby minimize
experimental time and expense.

4. Controller phase tuning using extremum-seeking
algorithms

In Section 2, we derived through analysis, the dynamical
dependence of pressure oscillation amplitudeA upon con-
trol phase�c; in Section 3, we identified this model from
closed-loop experiments. The optimal phase shift, being a
function of the operating conditions, and being dependent
upon several unknown parameters that are difficult to esti-
mate (like heat release time delay�) is tuned online by ex-
tremum seeking for the following reasons:

1. The stable combustion process and actuator dynamics
(around 200 Hz) are much faster than the pressure mag-
nitude dynamics (≈ 10 Hz) as verified by experiment
in Section 3, and therefore permit the problem to be
reduced to simply the reduction of the pressure ampli-
tude (the dynamics of the frequency tracking observer
are also as fast as the combustion process dynamics it
observes).

2. Direct availability of the phase-shift�c for tuning, and

the magnitudeA(t) =
√
pc(t)

2 + pq(t)
2 for measure-

ment as an objective to minimize, through the frequency
tracking observer.
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Fig. 3. Extremum-seeking scheme.

3. The equilibrium mapg(�c) of pressure amplitude ver-
sus control phase is smooth, unique, and has a unique
minimum.

4. Perturbation-based extremum seeking provides guaran-
tees of stability and convergence of�c to its optimum;
this can be proved as inKrstic (2000)and Krstic and
Wang (2000)using the separation of time-scales be-
tween the slow update of�c and the faster magnitude
dynamics.

A modified version of the classical extremum-seeking
scheme (Krstic, 2000) implemented for phase-shift tuning is
shown inFig. 3. The extremum-seeking algorithm used in
this paper relies on a small sinusoidal variation of�c with
frequency� and amplitudea to obtain a measure of the
gradient of the mapg(�c).3 Instead of a simple washout
filter, it uses a magnitude observer to extract the in-phase
and quadrature components of the magnitude estimate of
A at the frequency�. The magnitude observer decomposes
the magnitude estimate signal into constant, in-phase, and
quadrature component (the last two relative to the phase per-
turbation signal sin(�t)). The transfer functions from the
magnitude estimate to the in-phase and quadrature compo-
nents are given below:

Cs(s) = l2s + �l1

s3 + (l2 + l3)s2 + (�2 + l1�)s + l3�2 , (15)

Cc(s) = l1s − �l2

s3 + (l2 + l3)s2 + (�2 + l1�)s + l3�2 , (16)

wherel1 = −0.016, l2 = 1.996 andl3 = 1.996 were chosen
for stable observation. The sine and cosine components ofA
are demodulated bya sin�t anda cos�t , respectively, and
then summed up and passed through the integrator which
has a gaink.

3A different approach inZhang (2000)uses the triangular search
algorithm, which uses three past-sampled average magnitude values to
determine the new control phase.

4.1. Averaged linearized models

To aid selection of extremum-seeking parameters�, a and
k to ensure stable extremum-seeking, we derive averaged
linearized models of system inFig. 3 as in Krstic (2000).
One of them relates tracking error in controller parameter
�̃ = �∗

c − �c + a sin�t with change in minimizer�∗
c which

minimizesg(�c):

�̃(s)
�∗

c(s)
= 1

1 + L(s)
. (17)

The other relates outputA to output noisen:

A(s)

n(s)
= 1

1 + M(s)
, (18)

where

L(s)=ka2

2
g′′(�∗

c)[Fo(s + j�)(s + j�)

×(Cs(s + j�) − jCc(s + j�))

+Fo(s − j�)(s − j�)(Cs(s − j�)

+jCc(s − j�))] 1

s
, (19)

M(s) = ka2g′′(�∗
c)sF o(s)

(
sCs(s) + �Cc(s)

s2 + �2

)
, (20)

where Fo(s) = �
s+� approximates the magnitude dynam-

ics. An assumption made in the derivation of the trans-
fer functions is�(�c) = � is a constant. This is partially
justified by the fact that the local behavior is dominated
by frequencies (<1 rad/s) of an order of magnitude less
than�(�c) ∈ [15,45] rad/s in the identified models. Asymp-
totic stability/instability of 1

1+L(s)
in Eq. (17) gives local

asymptotic stability/instability in tracking near the minimum
g(�∗

c). Similarly, 1
1+M(s)

in Eq. (18) reveals noise sensitiv-
ity and steady-state output performance. The analysis pre-
sented can be used for parameter selection in extremum
seeking with the aid of tools for linear time invariant sys-
tems such as root-locus, Bode, and Nyquist. It can especially
be used a priori to rule out destabilizing designs, or de-
signs that are sensitive to noise frequencies in the operating
environment.

5. Experiments with adaptive algorithm in
combustion rig

A cost-effective alternative to both engine and full annu-
lar combustor testing is to test a sector cut from the full
combustor annulus containing one or several fuel nozzles.
In this section, we present results of experiments in United
Technologies Research Center (UTRC) conducted on 4 MW
Single Nozzle Rig in August 1998 using full-scale engine
fuel nozzle at realistic operating conditions. Rig schemat-
ics are presented inFig. 4. About 10% of the net fuel was
modulated for control purposes using a linear proportional
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Fig. 4. UTRC single-nozzle combustion rig.

valve (For more details on the UTRC experimental rigs see
Cohen et al. (1998)). The control gain is fixed and only the
control phase is updated using the algorithm described in
Section 4.

Performance specifications for the adaptive algorithm
have been defined for algorithm initialization transients
and engine acceleration transients: when initialized with a
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Fig. 5. Initialization transients: time traces of pressure amplitude (instantaneous and average) and control phase (top) and pressure magnitude asfunction
of control phase (bottom). Parameters: higher power, left-f = 1 Hz, a = 15◦, k = 1000, �m(0) = 60◦; lower power, right-f = 1 Hz, a = 15◦, k = 150,
�m(0) = 115◦.

phase corresponding to amplification of oscillations, the al-
gorithms should quickly produce and maintain phases cor-
responding to suppression of the oscillations; during engine
acceleration transients the algorithms should be able to sup-
press oscillations relative to uncontrolled levels.

The dependence of the mean pressure magnitude and
frequency of the corresponding mode on the control phase
has been determined experimentally at several power con-
ditions, so that the optimal control phase�∗

c was known a
priori. This information let us check the performance of
the extremum-seeking algorithm. To test the transient per-
formance of the adaptive algorithm, initialization transients
are introduced, where the initial control phase�c(0) differs
significantly from�∗

c. We show two time traces of control
phase and pressure magnitude (instantaneous and low-pass
filtered) as functions of time during initialization transients
in Fig. 5. The horizontal lines in the top figures represent
the optimal control phase�∗

c. The horizontal lines in the
middle figures show the mean values of pressure magnitude
for the uncontrolled case and for the closed-loop optimal
control phase. The bottom figures show dependence of
low-pass filtered pressure magnitude on the control phase
overlaid over a sketch of the map representing the mean



A. Banaszuk et al. / Automatica 40 (2004) 1965–1972 1971

pressure magnitude from control phase ramp experiments.
The horizontal lines represent the mean value of pressure
magnitude for the uncontrolled case. For the frequencyf =
�/2� of sinusoidal variation introduced in the control phase
below 10 Hz (corresponding to a separation of time-scales),
integrator gaink ranging from 150 to 1000, and amplitude
of forcing a = 10◦,15◦, the algorithm behaved very well
at high-power condition (medium noise and small pressure
oscillations) and reasonably well at low-power conditions
(large noise and pressure oscillations). On reaching a neigh-
borhood of the optimal value, the control phase usually
stayed in a reasonably small neighborhood of that value,
rarely produced control phases corresponding to level higher
than uncontrolled levels, and always provided better average
pressure oscillations levels than uncontrolled levels. For fur-
ther details on the experimental attenuation of pressure os-
cillations using the extremum-seeking algorithm described
in this paper seeBanaszuk, Zhang, & Jacobson (2000a).

It has been inferred that the major factor affecting the per-
formance of the extremum-seeking schemes is the “noise”
present in the pressure magnitude. This noise component
(denoted by	) was introduced in the model in Section 3. As
we mentioned in Section 2, the noise can be attributed to an
effect of turbulent flow in the nozzle. The changes in operat-
ing conditions appearing during engine acceleration and de-
celeration are likely to resemble the transients between dif-
ferent power levels on single nozzle rig. In experiments, the
frequencies of the pressure modes, the mean pressure mag-
nitude levels, and noise levels varied significantly between
power levels.

It was determined that in order to work in a simulated
transient from low- to high-power conditions, the classical
algorithm would have to be modified to allow for adaptive
gain change (by a factor of five). One fixed gaink would
not work at both low- and high-power conditions.

Ability of an extremum-seeking algorithm to track the
fast-changing�∗

c during the engine acceleration and deceler-
ation transient conditions in the presence of disturbance driv-
ing the system can be studied by simulation as inBanaszuk
et al. (2000a). However, there is a need to study stability,
robustness, and performance of the algorithmsduring fast
engine transientsusing analytical tools. Traditional methods
based on simplistic time-scale separation are not applicable
as thetime scale of change of operating conditions during
engine transientsis not well separated from the time scale
of the transients in the pressure magnitude dynamics.
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