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Abstract. In this paper a family of stabilizing boundary feedback control laws

for a class of linear parabolic PDEs motivated by engineering applications is pre-

sented. The design procedure presented here can handle systems with an arbitrary

finite number of open-loop unstable eigenvalues and is not restricted to a particu-

lar type of boundary actuation. Stabilization is achieved through the design of

coordinate transformations that have the form of recursive relationships. The

fundamental di‰culty of such transformations is that the recursion has an infinite

number of iterations. The problem of feedback gains growing unbounded as the

grid becomes infinitely fine is resolved by a proper choice of the target system to

which the original system is transformed. We show how to design coordinate

transformations such that they are su‰ciently regular (not continuous but Ly).

We then establish closed-loop stability, regularity of control, and regularity of

solutions of the PDE. The result is accompanied by a simulation study for a lin-

earization of a tubular chemical reactor around an unstable steady state.

Key words. Boundary control, Linear parabolic PDEs, Stabilization, Backstep-

ping, Coordinate transformations.

1. Introduction

Motivated by the model for the chemical tubular reactor, the model of unstable
burning in solid rocket propellants, and other PDE systems that appear in vari-
ous engineering applications, we present an algorithm for global stabilization of
a broader class of linear parabolic PDEs. The result presented here is a general-
ization of the ideas of Balogh and Krstić [BK1]. The goal is to obtain an Ly co-
ordinate transformation and a boundary control law that renders the closed-loop
system asymptotically stable, and additionally establish regularity of control and
regularity of solutions for the closed-loop system.

The key issue with arbitrarily unstable linear parabolic PDE systems is the
target system to which one is transforming the original system by coordinate
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transformation. For example, if one takes the standard backstepping route lead-
ing to a tridiagonal form, the resulting transformations, if thought of as integral
transformations, end up with ‘‘kernels’’ that are not even finite. A proper selection
of the target system will result in a bounded kernel and the solutions correspond-
ing to the controlled problem are going to be at least continuous.

The class of parabolic PDEs considered in this paper is

utðt; xÞ ¼ euxxðt; xÞ þ Buxðt; xÞ þ lðxÞuðt; xÞ þ
ð x

0

f ðx; xÞuðt; xÞ dx;

x A ð0; 1Þ; t > 0; ð1:1Þ

where e > 0 and B are constants, lðxÞ A Lyð0; 1Þ and f ðx; yÞ A Lyð½0; 1� � ½0; 1�Þ,
with initial condition uð0; xÞ ¼ u0ðxÞ, for x A ½0; 1�. The boundary condition at
x ¼ 0 is either homogeneous Dirichlet,

uðt; 0Þ ¼ 0; t > 0; ð1:2Þ

or homogeneous Neumann,
uxðt; 0Þ ¼ 0; t > 0; ð1:3Þ

while the Dirichlet boundary condition (alternatively Neumann) at the other
end,

uðt; 1Þ ¼ aðuðtÞÞ; 1 t > 0; ð1:4Þ

is used as the control input, where the linear operator a represents a control law
to be designed to achieve stabilization. It is assumed that the initial distribu-
tion is compatible with (1.2) (alternatively with (1.3)), i.e. u0ð0Þ ¼ 0 (alternatively
u0

xð0Þ ¼ 0).
Our interest in systems described by (1.1) is twofold. First, the physical moti-

vation for considering (1.1) is that it represents the linearization of the class of
reaction–di¤usion–convection equations that model many physical phenomena.
Examples are numerous and among others include the problem of compressor
rotating stall (the most recent model due to Mezic [HMBZ] is ut ¼ euxx þ u � u3),
whose linearization is (1.1) with lðxÞ1 1, B1 f ðx; yÞ1 0, the unstable heat equa-
tion [BKL] (e1 1, B1 f ðx; yÞ1 0, and lðxÞ1 l ¼ constant), the linearization of
the unstable burning for solid rocket propellants [BK3] (e1B1 1, lðxÞ1 0, and
f ðx; yÞ ¼ �Ae�xdðyÞ, A ¼ constant), and the linearization of an adiabatic chemi-
cal tubular reactor around either stable or unstable equilibrium [HH1] (e ¼ 1=Pe,
B ¼ �1, lðxÞ is a spatially dependent function that corresponds to either stable or
unstable steady state profile, and f ðx; yÞ1 0).

Second, from the perspective of control theory, systems described by (1.1) are
interesting since their discretization appears in the most general strict-feedback
form [KKK]. Therefore, developing backstepping control algorithms for such a

1 Throughout the paper we use the simplified notation uðtÞ ¼ uðt; �Þ.
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class of problems is of great importance as the first step in an attempt to extend
fully the existing backstepping techniques from the finite-dimensional setup to the
infinite-dimensional one.

For di¤erent combinations of the boundary condition at x ¼ 0 (Dirichlet or
Neumann), and control applied at x ¼ 1 (Dirichlet or Neumann), we use a back-
stepping method for the finite-di¤erence semi-discretized approximation of (1.1)
to derive a boundary feedback control law that makes the infinite-dimensional
closed-loop system stable with an arbitrary prescribed stability margin. We show
that the integral kernel in the control law resides in the function space Lyð0; 1Þ
and that solutions corresponding to the controlled problem are classical.

We should stress that although we focus our attention in this paper on a class
of one-dimensional parabolic problems, the design procedures and results pre-
sented here can be easily extended to higher-dimensional problems. We have dem-
onstrated that fact in [BK2], where backstepping was successfully applied on a
two-dimensional nonlinear heat convection model from Burns et al. [BKR2]. Note
that a further extension to three dimensions would be conceptually the same
and the control would be applied via a planar array of wall actuators and the
coordinate transforms in the backstepping design would depend on three indices
ðaijk; bijk; gijkÞ. As already mentioned, the main issue in our approach is not the
dimension of the system, but the choice of the target system that will result in a
bounded kernel as the grid becomes infinitely fine.

Prior work on stabilization of general parabolic equations includes, among
others, the results of Triggiani [T] and Lasiecka and Triggiani [LT1] who devel-
oped a general framework for the structural assignment of eigenvalues in para-
bolic problems through the use of semigroup theory. Separating the open-loop
system into a finite-dimensional unstable part and an infinite-dimensional stable
part, they apply feedback boundary control that stabilizes the unstable part while
leaving the stable part stable. An LQR approach in Lasiecka and Triggiani [LT2]
is also applicable to this problem. A unified treatment of both interior and
boundary observations/control generalized to semilinear problems can be found
in [A2]. Nambu [N] developed auxiliary functional observers to stabilize di¤usion
equations using boundary observation and feedback. Stabilizability by boundary
control in the optimal control setting is discussed by Bensoussan et al. [BDDM].
For the general Pritchard–Salamon class of state–space systems a number of
frequency-domain results has been established on stabilization during the last
decade (see, e.g. [C3] and [L2] for a survey). The placement of finitely many
eigenvalues were generalized to the case of moving infinitely many eigenvalues by
Russell [R1]. The stabilization problem can also be approached using the abstract
theory of boundary control systems developed by Fattorini [F1] that results in a
dynamical feedback controller (see remarks in Section 3.5 of [CZ]). Extensive sur-
veys on the controllability and stabilizability theory of linear PDEs can be found
in [R2] and [LT2].

The first result, to our knowledge, where backstepping was applied to a PDE is
the control design for a rotating beam by Coron and d’Andréa-Novel [CA]. They
designed a nonlinear feedback torque control law for a hyperbolic PDE model of
a rotating beam with no damping and no control on the free boundary. The scalar
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control input, applied in a distributed fashion, is used to achieve global asymp-
totic stabilization of the system. In addition, the authors show regularity of con-
trol inputs.

Backstepping was successfully applied to parabolic PDEs in [LK] and [BK2]–
[BK4] in settings with only a finite number of steps.

Our work is also related to results of Burns et al. [BKR1]. Although their result
is quite di¤erent because of the di¤erent control objective (theirs is LQR optimal
control, ours is stabilization), and the fact that their plant is open-loop stable but
with the spatial domain of dimension higher than ours, the technical problem of
proving some regularity of the gain kernel ties the two results together.

In an attempt to generalize the backstepping techniques from finite dimensions
to linear parabolic infinite-dimensional systems, Boskovic et al. [BKL] considered
the unstable heat equation with parameters restricted so that the number of open-
loop unstable eigenvalues is no greater than one. In this limited case we derived a
closed-form and smooth coordinate transformation based on backstepping. In an
e¤ort to extend the results from [BKL] for an arbitrary level of instability, Balogh
and Krstić [BK1] obtained the first backstepping-type feedback control law for a
linear PDE that can accommodate an arbitrary level of instability, i.e. stabilize
the system that has an arbitrary number of unstable eigenvalues in an open loop.
By designing a su‰ciently regular (not continuous but Ly) coordinate transfor-
mation they were able to establish closed-loop stability, regularity of control, and
regularity of solutions of the PDE.

We emphasize that, in addition to being an important step in a generalization
of a finite-dimensional technique to infinite dimensions and with the ultimate goal
of potential applications to nonlinear problems, the backstepping control design
for linear parabolic PDEs presented here has advantages of its own. First, com-
pared with the pole placement type of designs that have been prevalent in the
control of parabolic PDEs, it has the standard advantage of a Lyapunov-based
approach that the designer does not have to look for the solution of the uncon-
trolled system to find the controller that stabilizes it. The problem of finding
modal data in the case of spatially dependent lðxÞ and f ðx; yÞ becomes nontrivial
and finding closed-form expressions for the system eigenvalues and eigenvectors
appears highly unlikely in the general case. In some instances, as is the case for
the tubular reactor example used in our simulation study, the only way to obtain
spatially dependent coe‰cients is numerically. In that case finding eigenvalues
and eigenvectors numerically becomes inevitable, which might be computationally
very expensive if a large number of grid points is necessary for simulating the sys-
tem. To obtain a backstepping controller that stabilizes the system, on the other
hand, the designer has to obtain a kernel given by a simple recursive expression
that is computationally inexpensive. Second, from an applications point of view,
numerical results both for the nonlinear [BK2]–[BK4] and linear (linearization of
the chemical tubular reactor presented here) parabolic PDEs suggest that reduced-
order backstepping control laws (designed on a much coarser grid) that use only a
few state measurements can successfully stabilize the system.

The main reason for choosing a model of a chemical tubular reactor in our
simulation study is because a large amount of research activity has been dedicated
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to the control designs based on PDE models of chemical reactors. Using a combi-
nation of Galerkin’s method with a procedure for the construction of approxi-
mate inertial manifolds, Christofides [C2] designed output feedback controllers for
nonisothermal tubular reactors that guarantee stability and enforce the output of
the closed-loop system to follow, up to a desired accuracy, a prescribed response
for almost all times. In a more recent paper by Orlov and Dochain [OD] a sliding
mode control developed for minimum phase semilinear infinite-dimensional sys-
tems was applied to stabilization of both plug flow (hyperbolic) and tubular (para-
bolic) chemical reactors. Both results use distributed control to stabilize the system
around prespecified temperature and concentration steady-state profiles. On the
other hand, we apply point actuation at x ¼ 1 in our design.

The paper is organized as follows. In Section 2 we formulate our problem and
its discretization for two di¤erent cases of boundary conditions at x ¼ 0 (either
homogeneous Dirichlet uðt; 0Þ ¼ 0, or homogeneous Neumann uxðt; 0Þ ¼ 0) and
we lay out our strategy for the solution of the stabilization problem. The pre-
cise formulations of our main theorems are contained in Section 3. In Lemmas 1
(homogeneous Dirichlet at x ¼ 0) and 5 (homogeneous Neumann at x ¼ 0) of
Section 4 we design coordinate transformations for semi-discretizations of the
system (for a less general case with no integral term on the right-hand side of the
system equation) which map them into exponentially stable systems. We show
in Lemmas 2 (homogeneous Dirichlet at x ¼ 0) and 6 (homogeneous Neumann
at x ¼ 0) that the discrete coordinate transformations remain uniformly bounded
as the grid gets refined and hence converge to coordinate transformations in the
infinite-dimensional case. The regularity Cwð½0; 1�;Lyð0; 1ÞÞ of the transforma-
tion is established in Lemma 3. We complete the proofs of our main theorems
using Lemma 4 [BK1] that establishes the stability of the infinite-dimensional
controlled systems. The extension from Dirichlet to Neumann type of actuation
is presented in Section 5, followed by an extension of the result to the case when
the integral term is present on the right-hand side of the system equation in Sec-
tion 6. Finally, simulation study for a linearized model of an adiabatic chemical
tubular reactor presented in Section 7 shows, besides the e¤ectiveness of our
control, that reduced versions of the controller stabilize the infinite-dimensional
system as well.

2. Motivation

In this section we formulate our problem for a particular case of the system
(1.1) with no integral term on the right-hand side of the system equation, i.e.
for

utðt; xÞ ¼ euxxðt; xÞ þ Buxðt; xÞ þ lðxÞuðt; xÞ; x A ð0; 1Þ; t > 0: ð2:5Þ

This particular case is the most interesting from the applications point of view
and we present results for all four combinations of di¤erent types of boundary
conditions at the uncontrolled end x ¼ 0, and actuations at the control end
x ¼ 1.
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An extension of the result for the most general case of the system (1.1) (integral
term on the right-hand side of the system equation) with homogeneous Dirichlet
boundary condition at x ¼ 0 and Dirichlet type of actuation at x ¼ 1 is presented
in Section 6.

2.1. Case 1: Dirichlet Boundary Condition at x ¼ 0

In this subsection we analyze the case when the homogeneous Dirichlet bound-
ary condition is imposed at x ¼ 0. We first introduce the case when actuation of
the Dirichlet type is applied at x ¼ 1. The extension for the Neumann type of
actuation is presented is Section 5. The semi-discretized version of system (2.5)
with (1.2) and (1.4) using central di¤erencing in space is the finite-dimensional
system:

u0 ¼ 0; ð2:6Þ

_uui ¼ e
uiþ1 � 2ui þ ui�1

h2
þ B

uiþ1 � ui

h
þ liui; i ¼ 1; . . . ; n; ð2:7Þ

unþ1 ¼ anðu1; u2; . . . ; unÞ; ð2:8Þ

where n A N, h ¼ 1=ðn þ 1Þ and ui ¼ uðt; ihÞ, li ¼ lðihÞ, for i ¼ 0; . . . ; n þ 1.
With unþ1 as control, this system is in the strict-feedback form and hence it is
readily stabilizable by standard backstepping. However, the naive version of
backstepping would result in a control law with gains that grow unbounded as
n ! y.

The problem with standard backstepping is that it would not only attempt to
stabilize the equation, but also place all of its poles, and thus, as n ! y, change
its parabolic character. Indeed, an infinite-dimensional version of the tridiagonal
form in backstepping is not parabolic. Our approach will be to transform the sys-
tem, but keep its parabolic character, i.e. keep the second spatial derivative in the
transformed coordinates.

Towards this end, we start with a finite-dimensional backstepping-style coordi-
nate transformation

w0 ¼ u0 ¼ 0; ð2:9Þ

wi ¼ ui � ai�1ðu1; . . . ; ui�1Þ; i ¼ 1; . . . ; n; ð2:10Þ

wnþ1 ¼ 0; ð2:11Þ

for the discretized system (2.6)–(2.8), and seek the functions ai such that the trans-
formed system has the form

w0 ¼ 0; ð2:12Þ

_wwi ¼ e
wiþ1 � 2wi þ wi�1

h2
þ B

wiþ1 � wi

h
� cwi; i ¼ 1; . . . ; n; ð2:13Þ

wnþ1 ¼ 0: ð2:14Þ

The finite-dimensional system (2.12)–(2.14) is the semi-discretized version of the
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infinite-dimensional system

wtðt; xÞ ¼ ewxxðt; xÞ þ Bwxðt; xÞ � cwðt; xÞ; x A ð0; 1Þ; t > 0; ð2:15Þ

with boundary conditions

wðt; 0Þ ¼ 0; ð2:16Þ

wðt; 1Þ ¼ 0; ð2:17Þ

which is exponentially stable for c > �ep2 � B2=ð4eÞ.
The backstepping coordinate transformation is obtained by combining (2.6)–

(2.8), (2.9)–(2.11), and (2.12)–(2.14) and solving the resulting system for the
ai’s. Namely, subtracting (2.13) from (2.7), expressing the obtained equation in
terms of uk � wk, k ¼ i � 1; i; i þ 1, and applying (2.10) we obtain the recursive
form

ai ¼ ðeþ BhÞ�1

(
ð2eþ Bh þ ch2Þai�1 � eai�2 � ðc þ liÞh2ui

þ
Xi�1

j¼1

qai�1

quj

ððeþ BhÞujþ1 � ð2eþ Bh � ljh
2Þuj þ euj�1Þ

)
; ð2:18Þ

for i ¼ 1; . . . ; n with initial values a0 ¼ 0 and2

a1 ¼ � h2

eþ Bh
ðc þ l1Þu1: ð2:19Þ

Writing the ai’s in the linear form

ai ¼
Xi

j¼1

ki; juj; i ¼ 1; . . . ; n; ð2:20Þ

and performing simple calculations we obtain the general recursive relationship

ki;1 ¼ h2

eþ Bh
ðc þ l1Þki�1;1 þ

e

eþ Bh
ðki�1;2 � ki�2;1Þ; ð2:21Þ

ki; j ¼
h2

eþ Bh
ðc þ ljÞki�1; j þ ki�1; j�1 þ

e

eþ Bh
ðki�1; jþ1 � ki�2; jÞ;

j ¼ 2; . . . ; i � 2; ð2:22Þ

ki; i�1 ¼ h2

eþ Bh
ðc þ li�1Þki�1; i�1 þ ki�1; i�2; ð2:23Þ

ki; i ¼ ki�1; i�1 �
h2

eþ Bh
ðc þ liÞ; ð2:24Þ

2 From now on we assume that n is large enough to have the inequality eþ Bh > 0 satisfied.
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for i ¼ 4; . . . ; n with initial conditions

k1;1 ¼ � h2

eþ Bh
ðc þ l1Þ; ð2:25Þ

k2;1 ¼ � h4

ðeþ BhÞ2
ðc þ l1Þ2; ð2:26Þ

k2;2 ¼ � h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ

� �
; ð2:27Þ

k3;1 ¼ � h6

ðeþ BhÞ3
ðc þ l1Þ3 � e

ðeþ BhÞ
h2

ðeþ BhÞ ðc þ l2Þ; ð2:28Þ

k3;2 ¼ � h2

eþ Bh
ðc þ l2Þ

h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ

� �

� h4

ðeþ BhÞ2
ðc þ l1Þ2; ð2:29Þ

k3;3 ¼ � h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ þ

h2

eþ Bh
ðc þ l3Þ

� �
: ð2:30Þ

For the simple case when lðxÞ1 l ¼ constant, (2.21)–(2.30) can be solved explic-
itly to obtain

ki; i�j ¼ � i

j þ 1

� �
L jþ1

n � ði � jÞ
X½ j=2�

l¼1

1

l

j � l

l � 1

� �
i � l

j � 2l

� �
L j�2lþ1

n M l
n ð2:31Þ

for i ¼ 1; . . . ; n, j ¼ 0; . . . ; i � 1, where

Ln ¼ h2

eþ Bh
ðc þ lÞ; ð2:32Þ

Mn ¼ e

eþ Bh
: ð2:33Þ

Regarding the infinite-dimensional system (2.5) with (1.2) and (1.4), the linearity
of the control law in (2.20) suggests a stabilizing boundary feedback control of the
form

aðuÞ ¼
ð1

0

kðxÞuðxÞ dx; ð2:34Þ

where the function kðxÞ is obtained as a limit of fðn þ 1Þkn; jgn
j¼1 as n ! y. From

the complicated expression (2.31) it is not clear if such a limit exists. A quick
numerical simulation (see Fig. 1) shows that the coe‰cients fðn þ 1Þkn; jgn

j¼1 remain
bounded but it also shows their oscillation, and increasing n only increases the
oscillation (see Fig. 2). A similar type of behavior was encountered in the related
work of Balogh and Krstić [BK1]. Clearly, there is no hope for pointwise conver-
gence to a continuous kernel kðxÞ. However, as we will see in the next sections,
there is weak* convergence in Ly as we go from the finite-dimensional case to the
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infinite-dimensional one. As a result, we obtain a solution to our stabilization
problem (2.5) with boundary conditions (1.2) and (1.4).

2.2. Case 2: Neumann Boundary Condition at x ¼ 0

If a homogeneous Neumann boundary condition is prescribed at x ¼ 0, a slightly
di¤erent procedure has to be applied. Note that we may assume without loss
of generality that the boundary condition at x ¼ 0 is homogeneous since the
boundary condition of the third kind can be easily converted into a homoge-
neous Neumann boundary condition without changing the qualitative structure
of the system equation. For example, the boundary condition uxð0Þ ¼ quð0Þ, q ¼
constant, would be converted by a variable change zðt; xÞ ¼ uðt; xÞe�qx. The sys-
tem equation for that case would be transformed into zt ¼ ezxx þ ðB þ 2qeÞzx þ
ðlðxÞ þ Bq þ eq2Þz. The main idea for the case of a homogeneous Neumann
boundary condition is very similar to the case with homogeneous Dirichlet
boundary condition at x ¼ 0, and we only outline the di¤erences.
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Fig. 1. Oscillation of the approximating kernel for n ¼ 50, l ¼ 5, e ¼ 1, B ¼ 1, and c ¼ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-5

-4

-3

-2

-1

0

x

k  1
00

(x
)

 

Fig. 2. Oscillation of the approximating kernel for n ¼ 100, l ¼ 5, e ¼ 1, B ¼ 1, and c ¼ 1.
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We start with a finite-dimensional backstepping-style coordinate transformation

w0 ¼ u0; ð2:35Þ

w1 ¼ u1; ð2:36Þ

wi ¼ ui � ai�1ðu1; . . . ; ui�1Þ; i ¼ 2; . . . ; n; ð2:37Þ

wnþ1 ¼ 0; ð2:38Þ
that transforms the original system into the semi-discretized version of the infinite-
dimensional system

wtðt; xÞ ¼ ewxxðt; xÞ þ Bwxðt; xÞ � cwðt; xÞ; x A ð0; 1Þ; t > 0; ð2:39Þ
with boundary conditions

wxðt; 0Þ ¼ 0; ð2:40Þ

wðt; 1Þ ¼ 0; ð2:41Þ
which is exponentially stable for c > �ep2 � B2=ð4eÞ. Note that the given bound
is not optimal. The optimal bound is c > �eh2 � B2=ð4eÞ, where h is the smallest
positive root of equation �ð2=BÞh ¼ tanðhÞ.

Using the same approach as in Section 2.1 we obtain

ai ¼ ðeþ BhÞ�1

(
ð2eþ Bh þ ch2Þai�1 � eai�2 � ðc þ liÞh2ui

þ qai�1

qu1
ððeþ BhÞu2 � ðeþ Bh � l1h2Þu1Þ

þ
Xi�1

j¼2

qai�1

quj

ððeþ BhÞujþ1 � ð2eþ Bh � ljh
2Þuj þ euj�1Þ

)
; ð2:42Þ

instead of (2.18), with a0 ¼ 0 and a1 given by (2.19). Writing the ai’s in the linear
form (2.20) we obtain

ki;1 ¼ h2

eþ Bh
ðc þ l1Þ þ

e

eþ Bh

� �
ki�1;1 þ

e

eþ Bh
ðki�1;2 � ki�2;1Þ; ð2:43Þ

and ki; j , ki; i�1, and ki; i given by (2.22)–(2.24). The initial conditions for the recur-
sion are given as

k2;1 ¼ � h2

eþ Bh
ðc þ l1Þ þ

e

eþ Bh

� �
h2

eþ Bh
ðc þ l1Þ; ð2:44Þ

k3;1 ¼ � h2

eþ Bh
ðc þ l1Þ þ

e

eþ Bh

� �2
h2

eþ Bh
ðc þ l1Þ

� e

ðeþ BhÞ
h2

ðeþ BhÞ ðc þ l2Þ; ð2:45Þ

k3;2 ¼ � h2

eþ Bh
ðc þ l2Þ

h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ

� �

� h4

ðeþ BhÞ2
ðc þ l1Þ2 � e

eþ Bh

h2

eþ Bh
ðc þ l1Þ; ð2:46Þ
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and k1;1, k2;2, and k3;3 the same as for the Dirichlet case. For the simple case
when lðxÞ1 l ¼ constant, (2.31) becomes

ki; i�j ¼ � i

j þ 1

� �
L jþ1

n � ði � jÞ
X½ j=2�

l¼1

1

l

j � l

l � 1

� �
i � l

j � 2l

� �
L j�2lþ1

n M l
n

�
X½ð j�1Þ=2�

l¼0

Xj�2l�1

k¼0

l þ k

l

� �
i � l � 1

k

� �
M j�l�k

n Lkþ1
n

þ
X½ð j�1Þ=2�

l¼1

Xj�2l�1

k¼1

l þ k

l � 1

� �
i � l � 1

k � 1

� �
M j�l�k

n Lkþ1
n : ð2:47Þ

Same as for the Dirichlet case, the stabilizing boundary feedback control will be in
the form (2.34), where the function kðxÞ is obtained as a limit of fðn þ 1Þkn; jgn

j¼1

for kn; j from (2.47) as n ! y.

3. Main Result

3.1. Case 1: Dirichlet Boundary Condition at x ¼ 0

As we stated earlier, we use a backstepping scheme for the semi-discretized finite-
di¤erence approximation of system (2.5), (1.2), (1.4), (2.34) to derive a linear
boundary feedback control law that makes the infinite-dimensional closed-loop
system stable with an arbitrary prescribed stability margin. The precise formula-
tion of our main result is given by the following theorem.

Theorem 1. For any lðxÞ A Lyð0; 1Þ and e; c > 0 there exists a function k A
Lyð0; 1Þ such that for any u0 A Lyð0; 1Þ the unique classical solution uðt; xÞ A
C1ðð0;yÞ;C2ð0; 1ÞÞ of system (2.5), (1.2), (1.4), (2.34) is exponentially stable in

the L2ð0; 1Þ and maximum norms with decay rate c. The precise statements of sta-

bility properties are the following: there exists a positive constant M3 such that for

all t > 0,
kuðtÞk2 aMku0k2e�ct ð3:48Þ

and
max

x A ½0;1�
juðt; xÞjaM sup

x A ½0;1�
ju0ðxÞje�ct: ð3:49Þ

Remark 1. For a given integral kernel k A Lyð0; 1Þ the existence and regularity
results for the corresponding solution uðt; xÞ follows from trivial modifications in
the proof of Theorem 4.1 of [L1]. See also [F2].

3.2. Case 2: Neumann Boundary Condition at x ¼ 0

Theorem 2. For any lðxÞ A Lyð0; 1Þ and e; c > 0 there exists a function k A
Lyð0; 1Þ such that for any u0 A Lyð0; 1Þ the unique classical solution uðt; xÞ A

3 M grows with c, l, and 1=e.
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C1ðð0;yÞ;C 2ð0; 1ÞÞ of system (2.5), (1.3), (1.4), (2.34) is exponentially stable in

the L2ð0; 1Þ and maximum norms with decay rate c. The precise statements of sta-

bility properties are the following: there exists positive constant M4 such that for all

t > 0,
kuðtÞk2 aMku0k2e�ct ð3:50Þ

and
max

x A ½0;1�
juðt; xÞjaM sup

x A ½0;1�
ju0ðxÞje�ct: ð3:51Þ

4. Proof of Main Result

4.1. Case 1: Dirichlet Boundary Condition at x ¼ 0

As was already mentioned in the Introduction, the proof of Theorem 1 requires
four lemmas.

Lemma 1. The elements of the sequence fki; jg defined in (2.21)–(2.30) satisfy

jki; i�jja
i

j þ 1

� �
L jþ1

n þ ði � jÞ
X½ j=2�

l¼1

1

l

j � l

l � 1

� �
i � l

j � 2l

� �
L j�2lþ1

n M l
n; ð4:52Þ

where l ¼ maxx A ½0;1�jlðxÞj.

Remark 2. There is equality in (4.52) when lðxÞ1 l ¼ constant > 0.

Proof. The right-hand side of (2.25)–(2.30) can be estimated to obtain estimates
for the initial values of k’s:

jk1;1ja
h2

eþ Bh
ðc þ lÞ ¼ Ln; ð4:53Þ

jk2;1ja
h4

ðeþ BhÞ2
ðc þ lÞ2 ¼ L2

n ; ð4:54Þ

jk2;2ja 2
h2

eþ Bh
ðc þ lÞ ¼ 2Ln; ð4:55Þ

jk3;1ja
h6

ðeþ BhÞ3
ðc þ lÞ3 þ e

eþ Bh

h2

eþ Bh
ðc þ lÞ ¼ L3

n þ MnLn; ð4:56Þ

jk3;2ja 3
h4

ðeþ BhÞ2
ðc þ lÞ2 ¼ 3L2

n ; ð4:57Þ

jk3;3ja 3
h2

eþ Bh
ðc þ lÞ ¼ 3Ln: ð4:58Þ

4 M grows with c, l, and 1=e.
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We then go from j ¼ i backwards to obtain from (2.24) and (2.23)

jki; ija i
h2

eþ Bh
ðc þ lÞ ¼ iLn; ð4; 59Þ

jki; i�1ja
iði � 1Þ

2

h4

ðeþ BhÞ2
ðc þ lÞ2 ¼ iði � 1Þ

2
L2

n : ð4:60Þ

Finally we obtain inequality (4.52) of Lemma 1 using the general identity (2.22)
and mathematical induction. 9

In order to prove that the finite-dimensional coordinate transformation (2.9),
(2.10), (2.20) converges to an infinite-dimensional one that is well defined, we
show the uniform boundedness of ðn þ 1Þki; j with respect to n A N as i ¼ 1; . . . ; n,
j ¼ 1; . . . ; i. Note that the binomial coe‰cients in inequality (4.52) are monotone
increasing in i and hence it is enough to show the boundedness of terms ðn þ 1Þkn; j,
or equivalently ðn þ 1Þkn;n�j. Also, we introduce notations

q ¼ j

n
A ½0; 1�; ð4:61Þ

and

E ¼ 2
lþ c

e
; ð4:62Þ

R ¼ 2jBj
e

; ð4:63Þ
so that we can write

jkn;n�j j ¼ jkn;n�qnj

a
n

qn þ 1

� �
Lqnþ1

n

þ ðn � qnÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
Lqn�2lþ1

n M l
n; ð4:64Þ

Ln ¼ h2

eþ Bh
ðc þ lÞa E

ðn þ 1Þ2
; ð4:65Þ

and

Mn ¼ e

eþ Bh
¼ 1 � Bh

eþ Bh
a 1 þ jBjh

e=2
¼ 1 þ R

n þ 1
; ð4:66Þ

for su‰ciently large n.

Lemma 2. The sequence fðn þ 1Þkn; jgj¼1;...;n;nb1 remains bounded uniformly in n

and j as n ! y.
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Proof. We can write, according to (4.64),

ðn þ 1Þjkn;n�qnj

a ðn þ 1Þ n

qn þ 1

� �
E

ðn þ 1Þ2

 !qnþ1

þ ðn þ 1Þðn � qnÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
E

ðn þ 1Þ2

 !qn�2lþ1

M l
n:

ð4:67Þ
The first term can be estimated as

ðn þ 1Þ n

qn þ 1

� �
E

ðn þ 1Þ2

 !qnþ1

a ðn þ 1Þqnþ2 E

n þ 1

� �qn
E

ðn þ 1Þqnþ2

aE
E

n

� �qn

aEeE=e; ð4:68Þ
where the last line shows that the bound is uniform in n and also in q.

In the following steps we will use the simple inequalities

ðn � lÞ!
ðn � qn þ lÞ!a

n

n � qn þ 2l

n � 1

n � qn þ 2l � 1
� � � n � l þ 1

n � qn þ l þ 1

ðn � lÞ!
ðn � qn þ lÞ!

¼ n!

ðn � qn þ 2lÞ! ð4:69Þ

and
ðqn � lÞ!

l!ðqn � 2l þ 1Þ!
1

n þ 1

� �qn�2l

a q ð4:70Þ

to obtain

ðn þ 1Þðn � nqÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
E

ðn þ 1Þ2

 !qn�2lþ1

M l
n

aE
ðn þ 1Þn
ðn þ 1Þ2

X½qn=2�

l¼1

ðqn � lÞ!
l!ðqn � 2l þ 1Þ!

1

n þ 1

� �qn�2l

� n!

ðqn � 2lÞ!ðn � qn þ 2lÞ!
E

n þ 1

� �qn�2l

1 þ R

n þ 1

� �l

aEq 1 þ R

n þ 1

� �nqXnq

s¼0

n

s

� �
E

n

� �s

1n�s

aEq 1 þ R

n

� �nq

1 þ E

n

� �nq

aEeRþE :

Here in the last step we used the fact that the convergence ð1 þ X=nÞn ��!n!y
eX is

monotone increasing and q A ½0; 1�. This proves the lemma. 9

Backstepping in Infinite Dimension 57



As a result of the above boundedness, we obtain a sequence of piecewise con-
stant functions

knðx; yÞ ¼ ðn þ 1Þ
Xn

i¼1

Xi

j¼1

ki; jwIi; j
ðx; yÞ; ðx; yÞ A ½0; 1� � ½0; 1�; nb 1; ð4:71Þ

where

Ii; j ¼
i

n þ 1
;

i þ 1

n þ 1

� �
� j

n þ 1
;

j þ 1

n þ 1

� �
; j ¼ 1; . . . ; i; i ¼ 1; . . . ; n; nb 1:

ð4:72Þ

The sequence (4.71) is bounded in Lyð½0; 1� � ½0; 1�Þ. The space Lyð½0; 1� � ½0; 1�Þ is
the dual space of L1ð½0; 1� � ½0; 1�Þ, hence, it has a corresponding weak*-topology.
Since the space L1ð½0; 1� � ½0; 1�Þ is separable, it follows now by Alaoglu’s theo-
rem, see, e.g. p. 140 of [K] or Theorem 6.62 of [RR], that (4.71) converges in
the weak*-topology to a function ~kkðx; yÞ A Lyð½0; 1� � ½0; 1�Þ. The uniform in
p A N weak convergence in each Lpð½0; 1� � ½0; 1�ÞILyð½0; 1� � ½0; 1�Þ, immedi-
ately follows.

Remark 3. Alternatively, using the Eberlein–Shmulyan theorem see, e.g. p. 141
of [Y], one finds that (4.71) has a weakly convergent subsequence in each
Lpð½0; 1� � ½0; 1�Þ space for 1 < p < y with Lp-norms bounded uniformly in
p. Using a diagonal process we choose a subsequence mðnÞ A N such that
fkmðnÞðx; yÞgnb1 converges weakly to the same function ~kkðx; yÞ in each of the
spaces Lpð½0; 1� � ½0; 1�Þ, p A N. The function ~kkðx; yÞ along with fkmðnÞðx; yÞgnb1

is uniformly bounded in all these Lp-spaces with the same bound for all p A N.

Remark 4. In the case of constant l we have equality in (4.52). The right-
hand side is strictly monotone increasing in i, which results in ~kk A Cð½0; 1�;
Lyð0; 1ÞÞ.

Lemma 3. The map ~kk: ½0; 1� ! Lyð0; 1Þ given by x 7! ~kkðx; �Þ is weakly con-

tinuous.

Proof. From the uniform boundedness in i of (4.52) we obtain that

X½nx�

j¼1

k½nx�; juj ¼
X½nx�

j¼1

ððn þ 1Þk½nx�; jÞuj

1

n þ 1
��!n!y

ð x

0

~kkðx; xÞuðxÞ dx;

Eu A L1ð0; 1Þ; Ex A ½0; 1�: ð4:73Þ

Here ½nx� denotes the largest integer not larger than nx and the convergence is
uniform in x, meaning that for all e > 0 there exists NðeÞ A N such that

ð x

0

~kkðx; xÞuðxÞ dx�
X½nx�

j¼1

k½nx�; juj

�����
����� < e; Ex A ½0; 1�; En > N:
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For an arbitrary x A ½0; 1� we now fix an n > Nðe=2Þ and choose a d > 0 such that
½nx� ¼ ½nðx þ dÞ�. We obtainð1

0

~kkðx; xÞuðxÞ dx�
ð1

0

~kkðx þ d; xÞuðxÞ dx

����
����

a

ð x

0

~kkðx; xÞuðxÞ dx�
X½nx�

j¼1

k½nx�; juj

�����
�����þ X½nx�

j¼1

k½nx�; juj �
X½nðxþdÞ�

j¼1

k½nðxþdÞ�; juj

�����
�����

þ
X½nðxþdÞ�

j¼1

k½nðxþdÞ�; juj �
ð xþd

0

~kkðx þ d; xÞuðxÞ dx

�����
�����

<
e

2
þ 0 þ e

2
¼ e ð4:74Þ

which proves weak continuity of ~kk from the right. For an arbitrary x A ½0; 1� we
now fix an n > Nðe=2Þ such that ½nx�0 nx and choose a d < 0 such that ½nx� ¼
½nðx þ dÞ�. Inequality (4.74) holds again, proving weak continuity from the left.
With this we obtain the statement of the lemma, i.e.

~kk A Cwð½0; 1�;Lyð0; 1ÞÞ: 9 ð4:75Þ

The following lemma shows how norms change under the above transforma-
tion.

Lemma 4 [BK1]. Suppose that two functions wðxÞ A Lyð0; 1Þ and uðxÞ A Lyð0; 1Þ
satisfy the relationship

wðxÞ ¼ uðxÞ �
ð x

0

~kkðx; xÞuðxÞ dx; Ex A ½0; 1�; ð4:76Þ

where
~kk A Cwð½0; 1�;Lyð0; 1ÞÞ: ð4:77Þ

Then there exist positive constants m and M, whose sizes depend only on ~kk, such

that

mkwky a kuky aMkwky

and

mkwk2 a kuk2 aMkwk2:

Proof of Theorem 1. We now complete the proof of Theorem 1 by combining
the results of Lemmas 1–4. In Lemma 1 we derived a coordinate transformation
that transforms the finite-dimensional system (2.6)–(2.8) into the finite-dimensional
system (2.12)–(2.14). As a result of the uniform boundedness of the transformation
(shown in Lemma 2) we obtained the coordinate transformation (4.76) that trans-
forms the system (2.5), (1.2) into the asymptotically stable system (2.15)–(2.17).
Due to the weak continuity proven in Lemma 3 the infinite-dimensional coordinate
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transformation results in the specific boundary condition

uðt; 1Þ ¼ aðuÞ ¼
ð1

0

kðxÞuðt; xÞ dx; ð4:78Þ

where
kðxÞ ¼ ~kkð1; xÞ; x A ½0; 1� ð4:79Þ

with k A Lyð0; 1Þ.
Figures 1 and 2 suggest the existence of smooth upper and lower envelopes to

the strongly oscillating approximating kernel functions. This, in turn, could mean
that the kernel function kðxÞ coincides with the average of these smooth functions
and hence is smooth itself, at least in this simple case of constant coe‰cients.
However, a kernel function in Lyð0; 1Þ is su‰cient for us both in theory and in
practice.

The convergence in Sobolev spaces W 2;1
2 (see, e.g. [A1]) of the finite-di¤erence

approximations obtained from (2.6)–(2.8) and (2.12)–(2.14) to the solutions of
(1.1)–(1.4) and (2.15)–(2.17) respectively is obtained using interpolation techni-
ques (see, e.g. [BJ].) Using Green’s function and the fixed-point method as
was done in [L1], we see that solutions to (1.1)–(1.4), (4.78) are, in fact, classical
solutions.

Introducing a variable change

sðt; xÞ ¼ wðt; xÞeðB=ð2eÞÞxþðcþB2=ð4eÞÞt ð4:80Þ

we transform the w system (2.15)–(2.17) into a heat equation

stðt; xÞ ¼ esxxðt; xÞ ð4:81Þ

with homogeneous Dirichlet boundary conditions. The well-known (see, e.g. [C1])
stability properties of the s system (4.81) along with Lemma 4 proves the stability
statements of Theorem 1. 9

4.2. Case 2: Neumann Boundary Condition at x ¼ 0

In this section we prove Theorem 2. The proof is completely analogous to the
proof of Theorem 1 and we only outline the di¤erences.

Lemma 5. The elements of the sequence fki; jg defined in (2.43)–(2.46) satisfy

jki; i�jj <
i

j þ 1

� �
L jþ1

n þ ði � jÞ
X½ j=2�

l¼1

1

l

j � l

l � 1

� �
i � l

j � 2l

� �
L j�2lþ1

n M l
n

þ 2
X½ð j�1Þ=2�

l¼0

Xj�2l�1

k¼0

l þ k

l

� �
i � l � 1

k

� �
M j�l�k

n Lkþ1
n ; ð4:82Þ

where l ¼ maxx A ½0;1�jlðxÞj.
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Proof. The proof goes along the same lines as the proof of the Lemma 1. We
first obtain estimates for the initial values of k’s as

jk1;1ja
h2

eþ Bh
ðc þ lÞ ¼ Ln; ð4:83Þ

jk2;1ja
h2

eþ Bh
ðc þ lÞ þ e

eþ Bh

� �
h2

eþ Bh
ðc þ lÞ ¼ L2

n þ MnLn

aL2
n þ 2MnLn; ð4:84Þ

jk2;2ja 2
h2

eþ Bh
ðc þ lÞ ¼ 2Ln; ð4:85Þ

jk3;1ja
h2

eþ Bh
ðc þ lÞ þ e

eþ Bh

� �2
h2

eþ Bh
ðc þ lÞ þ e

ðeþ BhÞ
h2

ðeþ BhÞ ðc þ lÞ

¼ ðLn þ MnÞ2
Ln þ MnLn ¼ L3

n þ 2MnL2
n þ M 2

n Ln þ MnLn

aL3
n þ 4MnL2

n þ 2M 2
n Ln þ MnLn; ð4:86Þ

jk3;2ja 3
h4

ðeþ BhÞ2
ðc þ lÞ2 þ e

eþ Bh

h2

eþ Bh
ðc þ lÞ ¼ 3L2

n þ MnLn

a 3L2
n þ 2MnLn; ð4:87Þ

jk3;3ja 3
h2

eþ Bh
ðc þ lÞ ¼ 3Ln; ð4:88Þ

and for ki; i and ki; i�1 as

jki; ija i
h2

eþ Bh
ðc þ lÞ ¼ iLn; ð4:89Þ

jki; i�1ja
iði � 1Þ

2

h4

ðeþ BhÞ2
ðc þ lÞ2 þ e

eþ Bh

h2

eþ Bh
ðc þ lÞ ¼ iði � 1Þ

2
L2

n þ MnLn

a
iði � 1Þ

2
L2

n þ 2MnLn: ð4:90Þ

Finally we obtain inequality (4.82) of Lemma 5 using the general identity for ki; j

and mathematical induction. 9

The only thing left now is to prove the uniform boundedness of ðn þ 1Þkn;n�qn,
with the bound on kn;n�qn given by

jkn;n�jj ¼ jkn;n�qnj

a
n

qn þ 1

� �
Lqnþ1

n þ ðn � qnÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
Lqn�2lþ1

n M l
n

þ 2
X½ðqn�1Þ=2�

l¼0

Xqn�2l�1

k¼0

l þ k

l

� �
n � l � 1

k

� �
M qn�l�k

n Lkþ1
n : ð4:91Þ
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Lemma 6. The sequence fðn þ 1Þkn; jgj¼1;...;n;nb1 remains bounded uniformly in n

and j as n ! y.

Proof. We can write, according to (4.91),

ðn þ 1Þjkn;n�qnj

a ðn þ 1Þ n

qn þ 1

� �
E

ðn þ 1Þ2

 !qnþ1

þ ðn þ 1Þðn � qnÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
E

ðn þ 1Þ2

 !qn�2lþ1

M l
n

þ 2ðn þ 1Þ
X½ðqn�1Þ=2�

l¼0

Xqn�2l�1

k¼0

l þ k

l

� �
n � l � 1

k

� �

� E

ðn þ 1Þ2

 !kþ1

M qn�l�k
n : ð4:92Þ

Since the first two terms are identical to terms appearing in expression (4.67), we
only have to estimate the third term from (4.92). Using the simple inequalities

l þ k
l

� �
¼ l þ k

k

� �
a ðl þ kÞk; ð4:93Þ

n � l � 1
k

� �
a

n
k

� �
; ð4:94Þ

and
l þ k a l þ kmax ¼ l þ qn � 2l � 1 ¼ qn � l � 1a qn < n þ 1; ð4:95Þ

we obtain

ðn þ 1Þ
X½ðqn�1Þ=2�

l¼0

Xqn�2l�1

k¼0

l þ k

l

� �
n � l � 1

k

� �
E

ðn þ 1Þ2

 !kþ1

M qn�l�k
n

a
E

n þ 1

X½ðqn�1Þ=2�

l¼0

Xqn�2l�1

k¼0

l þ k

n þ 1

� �k n

k

� �
E

n þ 1

� �k

1 þ R

n þ 1

� �qn�l�k

a
E

n þ 1
1 þ R

n

� �n X½ðqn�1Þ=2�

l¼0

Xqn

s¼0

n

s

� �
E

n

� �s

1n�s

a
E

n þ 1
eR 1 þ E

n

� �n X½ðqn�1Þ=2�

l¼0

1

aEeRþE :

This proves the lemma. 9

5. Extension of the Result to the Neumann Type of Actuation

In previous sections we derived control laws of the Dirichlet type to stabilize the
system. We show here briefly how to extend them to the Neumann case.
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Dirichlet control uðt; 1Þ was obtained by setting wðt; 1Þ ¼ 0 in the transformation

wðt; xÞ ¼ uðt; xÞ �
ð x

0

~kkðx; xÞuðxÞ dx; x A ½0; 1�: ð5:96Þ

If one uses uxðt; 1Þ for feedback, then the boundary condition of the target system
at x ¼ 1 will be

wxðt; 1Þ ¼ C1wðt; 1Þ; ð5:97Þ
which can be shown to be exponentially stabilizing for both wðt; 0Þ ¼ 0 and
wxðt; 0Þ ¼ 0 for su‰ciently large c > 0. We obtain the expression for the Neu-
mann actuation in the original u coordinates by implementing the Neumann
boundary condition (5.97) as

uxðt; 1Þ ¼ C1uðt; 1Þ þ ~kkð1; 1Þuðt; 1Þ þ
ð1

0

~kkxð1; xÞuðxÞ dx� C1

ð1

0

~kkð1; xÞuðxÞ dx;

x A ½0; 1�; ð5:98Þ
where ~kkx denotes a partial derivative with respect to the first variable.

In terms of the discretized original and target systems, and discrete coordinate
transformation ai ¼

P i
j¼1 ki; juj, i ¼ 1; . . . ; n, the discretized equivalent udis

x ðt; 1Þ of
uxðt; 1Þ is

udis
x ðt; 1Þ ¼ C1un þ

an � an�1

h
� C1an

¼ C1un þ
kn;n

h
un þ

Xn�1

j¼1

kn; j � kn�1; j

h
uj � C1

Xn

j¼1

kn; juj: ð5:99Þ

Comparing (5.99) and (5.98) term by term, it is evident that uniform boundedness
of ki; j=h will guarantee that

udis
x ðt; 1Þ ��!n!y

uxðt; 1Þ ð5:100Þ
for all t > 0.

6. Extension to the Case with Nonzero Integral Term on the Right-Hand

Side of the System Equation

In previous sections we showed how to stabilize a less general case of the system
(1.1) with no integral term on the right-hand side of the system equation. In this
section we present the extension to

utðt; xÞ ¼ euxxðt; xÞ þ Buxðt; xÞ þ lðxÞuðt; xÞ þ
ð x

0

f ðx; xÞuðt; xÞ dx;

x A ð0; 1Þ; t > 0; ð6:101Þ
with a homogeneous Dirichlet boundary condition at x ¼ 0,

uðt; 0Þ ¼ 0; t > 0; ð6:102Þ
and Dirichlet boundary condition

uðt; 1Þ ¼ aðuðtÞÞ; t > 0; ð6:103Þ
used for actuation at the other end. One immediately notices the overlap between
the extension presented in this section and the results from Section 2.1 that are a
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special case. A natural question to ask would be why the problem was not given
in its most general form in Section 2.1. The reason is that as of now we have not
succeeded in extending the results from Section 2.2 to the most general case, and
it is easy to see why. By comparing Dirichlet and Neumann control results for the
case without the integral term one can see that the expression for the kernel in
the Neumann case (2.47) is much more complex than the Dirichlet one given by
expression (2.31). The level of complexity increases even more when the integral
term is present, as will be seen in this section, which prevented us from obtaining
a closed-form expression in the Neumann case with the integral term. The only
reason for presenting the less general Dirichlet result first was to draw the parallel
between the cases for uðt; 0Þ ¼ 0 and uxðt; 0Þ ¼ 0 and present only the di¤erences.

As in Section 2.1 we choose discretization of (2.15)–(2.17) for our target sys-
tem, obtain the recursive expression for the discretized backstepping-style coordi-
nate transformation as

ai ¼ ðeþ BhÞ�1

(
ð2eþ Bh þ ch2Þai�1 � eai�2 � ðli þ cÞh2ui

� h3
Xi�1

k¼1

fi;kuk þ
qai�1

qu1
ððeþ BhÞu2 � ð2eþ Bh � l1h2Þu1Þ

þ
Xi�1

j¼2

qai�1

quj

 
ðeþ BhÞujþ1 � ð2eþ Bh � ljh

2Þuj

þ euj�1 þ h3
Xj�1

k¼1

fj;kuk

!)
; ð6:104Þ

and then, assuming the linear form for ai’s (ai ¼
P i

j¼1 ki; juj), obtain the general
recursive relationship for the kernel as

ki;1 ¼ h2

eþ Bh
ðc þ l1Þki�1;1 þ

e

eþ Bh
ðki�1;2 � ki�2;1Þ

� h3

eþ Bh
fi;1 þ

h3

eþ Bh

Xi�1

l¼2

fl;1ki�1; l ; ð6:105Þ

ki; j ¼
h2

eþ Bh
ðc þ ljÞki�1; j þ ki�1; j�1 þ

e

eþ Bh
ðki�1; jþ1 � ki�2; jÞ

� h3

eþ Bh
fi; j þ

h3

eþ Bh

Xi�1

l¼jþ1

fl; jki�1; l ; j ¼ 2; . . . ; i � 2; ð6:106Þ

ki; i�1 ¼ h2

eþ Bh
ðc þ li�1Þki�1; i�1 þ ki�1; i�2 �

h3

eþ Bh
fi; i�1; ð6:107Þ

ki; i ¼ ki�1; i�1 �
h2

eþ Bh
ðc þ liÞ; ð6:108Þ
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for i ¼ 4; . . . ; n with initial conditions

k1;1 ¼ � h2

eþ Bh
ðc þ l1Þ; ð6:109Þ

k2;1 ¼ � h4

ðeþ BhÞ2
ðc þ l1Þ2 � h3

eþ Bh
f2;1; ð6:110Þ

k2;2 ¼ � h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ

� �
; ð6:111Þ

k3;1 ¼ � h6

ðeþ BhÞ3
ðc þ l1Þ3 � h2

eþ Bh
ðc þ l1Þ

h3

eþ Bh
f2;1 �

e

eþ Bh

h2

eþ Bh
ðc þ l2Þ

� h3

eþ Bh
f3;1 �

h3

eþ Bh

h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ

� �
f2;1; ð6:112Þ

k3;2 ¼ � h2

eþ Bh
ðc þ l2Þ

h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ

� �

� h4

ðeþ BhÞ2
ðc þ l1Þ2 � h3

eþ Bh
f2;1 �

h3

eþ Bh
f3;2; ð6:113Þ

k3;3 ¼ � h2

eþ Bh
ðc þ l1Þ þ

h2

eþ Bh
ðc þ l2Þ þ

h2

eþ Bh
ðc þ l3Þ

� �
: ð6:114Þ

For the simple case when lðxÞ1 l ¼ constant and f ðx; yÞ1 f ¼ constant,
(6.105)–(6.114) can be solved explicitly to obtain

ki; i�j ¼ � i

j þ 1

� �
L jþ1

n � ði � jÞ
X½ j=2�

l¼1

1

l

j � l

l � 1

� �
i � l

j � 2l

� �
L j�2lþ1

n M l
n

� ði � jÞ
X½ð jþ1Þ=2�

l¼1

1

l
Pl

n

X½ð jþ1Þ=2��l

m¼0

l þ m � 1

l � 1

� �
M m

n

�
Xjþ1�2l�2m

k¼0

j � l � 2m � k

l � 1

� �
k þ l þ m � 1

k

� �
i � m

k þ l � 1

� �
Lk

n ð6:115Þ

for i ¼ 1; . . . ; n, j ¼ 0; . . . ; i � 1, where

Pn ¼ h3

eþ Bh
f : ð6:116Þ

The precise formulation of the main result in this section is summarized in the fol-
lowing theorem.

Theorem 3. For any lðxÞ A Lyð0; 1Þ, f ðx; yÞ A Lyð½0; 1� � ½0; 1�Þ, and e; c > 0
there exists a function k A Lyð0; 1Þ such that for any u0 A Lyð0; 1Þ the unique

classical solution uðt; xÞ A C1ðð0;yÞ;C2ð0; 1ÞÞ of system (6.101)–(6.103), (2.34) is

exponentially stable in the L2ð0; 1Þ and maximum norms with decay rate c. The

precise statements of stability properties are the following: there exists positive con-
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stant M5 such that for all t > 0,

kuðtÞk2 aMku0k2e�ct ð6:117Þ
and

max
x A ½0;1�

juðt; xÞjaM sup
x A ½0;1�

ju0ðxÞje�ct: ð6:118Þ

The proof of Theorem 3 is completely analogous to the proof of Theorem 1 and
we only outline the di¤erences.

Lemma 7. The elements of the sequence fki; jg defined in (6.105)–(6.114) satisfy

jki; i�jja
i

j þ 1

� �
L jþ1

n þ ði � jÞ
X½ j=2�

l¼1

1

l

j � l

l � 1

� �
i � l

j � 2l

� �
L j�2lþ1

n M l
n

þ ði � jÞ
X½ð jþ1Þ=2�

l¼1

1

l
Pl

n

X½ð jþ1Þ=2��l

m¼0

l þ m � 1

l � 1

� �
M m

n

�
Xjþ1�2l�2m

k¼0

j � l � 2m � k

l � 1

� �
k þ l þ m � 1

k

� �
i � m

k þ l � 1

� �
Lk

n ;

ð6:119Þ
where l ¼ maxx A ½0;1�jlðxÞj and f ¼ supðx;yÞ A ½0;1��½0;1�j f ðx; yÞj.

Remark 5. There is equality in (6.119) when lðxÞ1 l ¼ constant > 0 and
f ðx; yÞ1 f ¼ constant > 0.

Proof. The right-hand side of (6.109)–(6.114) can be estimated to obtain esti-
mates for the initial values of k’s:

jk1;1ja
h2

eþ Bh
ðc þ lÞ ¼ Ln; ð6:120Þ

jk2;1ja
h4

ðeþ BhÞ2
ðc þ lÞ2 þ h3

eþ Bh
f ¼ L2

n þ Pn; ð6:121Þ

jk2;2ja 2
h2

eþ Bh
ðc þ lÞ ¼ 2Ln; ð6:122Þ

jk3;1ja
h6

ðeþ BhÞ3
ðc þ lÞ3 þ 3

h2

eþ Bh
ðc þ lÞ h3

eþ Bh
f þ e

eþ Bh

h2

eþ Bh
ðc þ lÞ

þ h3

eþ Bh
f ¼ L3

n þ 3LnPn þ MnLn þ Pn; ð6:123Þ

jk3;2ja 3
h4

ðeþ BhÞ2
ðc þ lÞ2 þ 2

h3

eþ Bh
f ¼ 3L2

n þ 2Pn; ð6:124Þ

jk3;3ja 3
h2

eþ Bh
ðc þ lÞ ¼ 3Ln: ð6:125Þ

5 M grows with c, l, and 1=e.
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We then go from j ¼ i backwards and obtain

jki; ija i
h2

eþ Bh
ðc þ lÞ ¼ iLn; ð6:126Þ

jki; i�1ja
iði � 1Þ

2

h4

ðeþ BhÞ2
ðc þ lÞ2 þ ði � 1Þ h3

eþ Bh
f

¼ iði � 1Þ
2

L2
n þ ði � 1ÞPn; ð6:127Þ

from (6.107) and (6.108), respectively. Finally we obtain inequality (6.119)
of Lemma 7 using the general identity (6.106) and mathematical induc-
tion. 9

To prove the uniform boundedness of ðn þ 1Þkn;n�qn we start by finding a bound
on kn;n�qn as

jkn;n�jj ¼ jkn;n�qnj

a
n

qn þ 1

� �
Lqnþ1

n þ ðn � qnÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
Lqn�2lþ1

n M l
n

þ ðn � qnÞ
X½ðqnþ1Þ=2�

l¼1

1

l
Pl

n

X½ðqnþ1Þ=2��l

m¼0

l þ m � 1

l � 1

� �
M m

n

�
Xqnþ1�2l�2m

k¼0

qn � l � 2m � k

l � 1

� �

� k þ l þ m � 1

k

� �
n � m

k þ l � 1

� �
Lk

n ; ð6:128Þ

where

Pn ¼ h3

eþ Bh
f a

j f jh3

e=2
¼ H

ðn þ 1Þ3
; ð6:129Þ

H being defined as

H ¼ 2j f j
e

: ð6:130Þ

The uniform boundedness of the kernel is given by the following lemma.

Lemma 8. The sequence fðn þ 1Þkn; jgj¼1;...;n;nb1 remains bounded uniformly in n

and j as n ! y.
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Proof. We can write, according to (6.128),

ðn þ 1Þjkn;n�qnj

a ðn þ 1Þ n

qn þ 1

� �
E

ðn þ 1Þ2

 !qnþ1

þ ðn þ 1Þðn � qnÞ
X½qn=2�

l¼1

1

l

qn � l

l � 1

� �
n � l

qn � 2l

� �
E

ðn þ 1Þ2

 !qn�2lþ1

M l
n

þ ðn þ 1Þðn � qnÞ
X½ðqnþ1Þ=2�

l¼1

1

l
Pl

n

X½ðqnþ1Þ=2��l

m¼0

l þ m � 1

l � 1

� �
M m

n

�
Xqnþ1�2l�2m

k¼0

qn � l � 2m � k

l � 1

� �
k þ l þ m � 1

k

� �

� n � m

k þ l � 1

� �
E

ðn þ 1Þ2

 !k

: ð6:131Þ

Since the first two terms are identical to terms appearing in expression (4.67), we
only have to estimate the third term in (6.131). We start with simple inequalities

n � m

k þ l � 1

� �
a

n

k

� �
; ð6:132Þ

qn � l � 2m � k

l � 1

� �
ðn þ 1Þ l�1

a 1; ð6:133Þ

k þ l þ m � 1

k

� �
ðn þ 1Þk

a 1; ð6:134Þ

and obtain

ðn þ 1Þðn � qnÞ
X½ðqnþ1Þ=2�

l¼1

1

l
Pl

n

X½ðqnþ1Þ=2��l

m¼0

l þ m � 1

l � 1

� �
M m

n

�
Xqnþ1�2l�2m

k¼0

qn � l � 2m � k

l � 1

� �
k þ l þ m � 1

k

� �

� n � m

k þ l � 1

� �
E

ðn þ 1Þ2

 !k

a ðn þ 1Þ2
X½ðqnþ1Þ=2�

l¼1

1

l

H l

ðn þ 1Þ2lþ1

X½ðqnþ1Þ=2��l

m¼0

1 þ R

n

� �m
l þ m � 1

l � 1

� �
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�
Xqnþ1�2l�2m

k¼0

qn � l � 2m � k
l � 1

� �
ðn þ 1Þ l�1

k þ l þ m � 1
k

� �
ðn þ 1Þk

n � m
k þ l � 1

� �
E

n þ 1

� �k

aH
X½ðqnþ1Þ=2�

l¼1

H l�1

ðn þ 1Þ2l�1

X½ðqnþ1Þ=2��l

m¼0

1 þ R

n

� �m l þ m � 1

l � 1

� �

�
Xqnþ1�2l�2m

k¼0

n

k

� �
E

n þ 1

� �k

1n�k

aH 1 þ R

n

� �n X½ðqnþ1Þ=2�

l¼1

H l�1

ðn þ 1Þ2l�1

0
B@ qn þ 1

2

� �
� 1

l � 1

1
CA

�
X½ðqnþ1Þ=2��l

m¼0

1
Xn

k¼0

n

k

� �
E

n

� �k

1n�k

aH 1 þ R

n

� �n

1 þ E

n

� �n X½ðqnþ1Þ=2�

l¼1

0
B@ qn þ 1

2

� �
� 1

l � 1

1
CA H

n

� �l�1½ðqn þ 1Þ=2� � l þ 1

ðn þ 1Þ l

aH 1 þ R

n

� �n

1 þ E

n

� �nXn

l¼1

n � 1

l � 1

� �
H

n

� �l�1
n

ðn þ 1Þ l

aH 1 þ R

n

� �n

1 þ E

n

� �nXn

l¼0

n � 1

l

� �
H

n

� �l�1

1n�l�1

aH 1 þ R

n

� �n

1 þ E

n

� �n

1 þ H

n

� �n

aHeðRþEþHÞ:

This proves the lemma. 9

7. Simulation Study

In this section we present the simulation results for a linearization of an adiabatic
chemical tubular reactor. For the case when Peclet numbers for heat and mass
transfer are equal (Lewis number of unity) the two equations for the temperature
and concentration can be reduced to one equation [HH1]:

yt ¼
1

Pe
yxx � yx þ Daðb � yÞey=ð1þmyÞ; x A ð0; 1Þ; t > 0; ð7:135Þ

yxðt; 0Þ ¼ Peyðt; 0Þ; ð7:136Þ

yxðt; 1Þ ¼ 0; ð7:137Þ

Backstepping in Infinite Dimension 69



where Pe stands for the Peclet number, Da for the Damköhler number, m for the
dimensionless activation energy, and b for the dimensionless adiabatic temperature
rise. For a particular choice of system parameters (Pe ¼ 6, Da ¼ 0:05, m ¼ 0:05,
and b ¼ 10) system (7.135)–(7.137) has three equilibria [HH2]. As shown in [HH2],
the middle profile is unstable while the outer two profiles are stable. The equilib-
rium profiles for this case are shown in Fig. 3. Linearizing the system around the
unstable equilibrium profile yðxÞ we obtain

yt ¼
1

Pe
yxx � yx þ DaGðyðxÞÞy; ð7:138Þ

yxðt; 0Þ ¼ Peyðt; 0Þ; ð7:139Þ

yxðt; 1Þ ¼ 0; ð7:140Þ

where y now stands for the deviation variable from the steady state yðxÞ, and G is
a spatially dependent coe‰cient defined as

GðyÞ ¼ b � y

ð1 þ myÞ2
� 1

" #
ey=ð1þmyÞ: ð7:141Þ

Although not obvious from (7.138)–(7.140), it is physically justifiable to apply
feedback boundary control at the 0-end only. In real applications control would
be implemented through small variations of the inlet temperature and the inlet
reactant concentration (see [VA] and [HH1]). Since our control algorithm assumes
actuation at the 1-end we transform the original system (7.138)–(7.140) by intro-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

θ̄(ξ)

ξ

Fig. 3. Steady-state profiles for the adiabatic chemical tubular reactor with Pe ¼ 6, Da ¼ 0:05,

m ¼ 0:05, and b ¼ 10.
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ducing a variable change
uðt; xÞ ¼ yð1 � xÞ: ð7:142Þ

In the new set of variables the system (7.138)–(7.140) becomes

utðt; xÞ ¼ 1

Pe
uxxðt; xÞ þ uxðt; xÞ þ DagðxÞuðt; xÞ; ð7:143Þ

uxðt; 0Þ ¼ 0; ð7:144Þ

uxðt; 1Þ ¼ �Peuðt; 1Þ þ Duxðt; 1Þ; ð7:145Þ

where gðxÞ is defined as
gðxÞ ¼ Gðyð1 � xÞÞ; ð7:146Þ

and Duxðt; 1Þ stands for the control law to be designed. All simulations pre-
sented in this study were done using the BTCS finite-di¤erence method for
n ¼ 200 and a time step equal to 0.001 s. Although we have tested the con-
troller for several di¤erent combinations of initial distributions and target sys-
tems, we only present results for c ¼ 0:1 and uð0; xÞ ¼ �ððo=ðPeÞÞ cosðoxÞþ
sinðoxÞÞ, o ¼ 1:48396. This particular initial distribution has been constructed
to satisfy the imposed boundary conditions on both ends in the open-loop case
exactly.

As expected, since the system (7.143)–(7.145) represents a linearization around
the unstable steady state, the open-loop system (Duxðt; 1Þ ¼ 0) is unstable, and
the state grows exponentially as shown in Fig. 4. We now apply the approach
outlined in Section 2.2 and obtain a coordinate transformation that transforms
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Fig. 4. Open-loop response of the system.
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the discretization of (7.143)–(7.145) into discretization of the asymptotically
stable system

wtðt; xÞ ¼ 1

Pe
wxxðt; xÞ þ wxðt; xÞ � cwðt; xÞ; ð7:147Þ

wxðt; 0Þ ¼ 0; ð7:148Þ

wxðt; 1Þ ¼ �Pewðt; 1Þ: ð7:149Þ
The control is implemented as

Duxðt; 1Þ ¼ anðu1; . . . ; unÞ � an�1ðu1; . . . ; un�1Þ
h

þ Peanðu1; . . . ; unÞ; ð7:150Þ

where h stands for the discretization step in the controller design. The closed-loop
response of the system with a controller designed for n ¼ 200 and c ¼ 0:1 and the
corresponding control e¤ort Duxðt; 1Þ are shown in Fig. 5.

From an applications point of view it would of interest to see whether the sys-
tem (7.143)–(7.145) could be stabilized with a reduced version of the control law
(7.150). By a reduced-order controller we assume a controller designed on a much
coarser grid than the one used for simulating the response of the system. The
expectation that the system might be rendered stable with a low-order back-
stepping controller is based on our past experience in designing nonlinear low-
order backstepping controllers for the heat convection loop [BK2], stabilization of
unstable burning in solid propellant rockets [BK3], and stabilization of chemical
tubular reactors [BK4]. The idea of using controllers designed using only a small
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Fig. 5. Closed-loop response of the system with a controller that uses full state information. (First

row: uðt; xÞ; second row: the control e¤ort Duxðt; 1Þ.)
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number of steps of backstepping to stabilize the system for a certain range of the
open-loop instability is based on the fact that in most real-life systems only a finite
number of open-loop eigenvalues is unstable. The conjecture is then to apply a
low-order backstepping controller (controller that uses only a small number of
state measurements) that is capable of detecting the occurrence of instability from
a limited number of measurements, and stabilize the system. Indeed, simulation
results show that we can successfully stabilize the unstable equilibrium using a
kernel obtained with only two steps of backstepping (using only two state mea-
surements u t; 1

3

� �
and u t; 2

3

� �
) with the same c ¼ 0:1. By a controller designed using

only two steps of backstepping we assume a controller designed on a very coarse
grid, namely, on a grid with just three points. In this case control is implemented
by substituting a1 and a2 in expression (7.150) for Duxðt; 1Þ, where a1 and a2 are
obtained from expressions (2.25), (2.44), and (2.27) with h ¼ 1

3 , e ¼ 1=ðPeÞ, B ¼ 1,
l1 ¼ Dag 1

3

� �
, l2 ¼ Dag 2

3

� �
, u1 ¼ u t; 1

3

� �
, and u2 ¼ u t; 2

3

� �
. The closed-loop response

of the system with a reduced-order controller and corresponding control e¤ort
Duxðt; 1Þ are shown in Fig. 6.
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[BK1] Balogh A and Krstić M, Infinite-step backstepping for a heat equation-like PDE with arbi-

trarily many unstable eigenvalues, Proc. 2001 American Control Conference

[BDDM] Bensoussan A, Da Prato G, Delfour MC and Mitter SK (1993) Representation and Control

of Infinite-Dimensional Systems, Vol. II, Systems & Control: Foundations & Applications,
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[HH2] Hlaváček V and Hofmann H (1970) Modeling of chemical reactors—XVII: Steady state

axial heat and mass transfer in tubular reactors—numerical investigation of multiplicity,

Chem. Engrg. Sci. Vol. 25, 187–199

[K] Kato T (1966) Perturbation Theory for Linear Operators, Springer-Verlag, New York
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