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Stabilization of a solid propellant rocket instability by
state feedback

Dejan M. Boskovi¢ and Miroslav Krsti¢*'

Department of Mechanical and Aerospace Engineering, University of California at San Diego,
La Jolla, CA 92093-0411, USA

SUMMARY

In this paper a globally stabilizing feedback boundary control law for an arbitrarily fine discretization of a
one-dimensional nonlinear PDE model of unstable burning in solid propellant rockets is presented. The
PDE has a destabilizing boundary condition imposed on one part of the boundary. We discretize the
original nonlinear PDE model in space using finite difference approximation and get a high order system of
coupled nonlinear ODEs. Then, using backstepping design for parabolic PDEs, properly modified to
accommodate the imposed destabilizing nonlinear boundary condition at the burning end, we transform
the original system into a target system that is asymptotically stable in /’>-norm with the same type of
boundary condition at the burning end, and homogeneous Dirichlet boundary condition at the control
end. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation and problem background

This work on control of combustion instabilities in solid propellants comes in the wake of high
activity in control of liquid fuel combustion [1-3].

Solid propellant rockets come in many different types and sizes. Applications vary from anti-
aircraft, anti-tank, and anti-missile-missiles, to ballistic missiles and large space launch vehicle
booster [4]. Compared to liquid rockets, solid propellant rockets are usually simpler in design,
easy to apply, can be hermetically sealed for long-time (5-10 year) storage, and require little
servicing. On the other hand, they cannot be fully checked before they are used and thrust
cannot be randomly varied.
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484 D. M. BOSKOVIC AND M. KRSTIC

Solid propellant rocket engines are sometimes subject to combustion instabilities that can
cause engine failure either through excess pressure, increased wall heat transfer, or a
combination of the two. Although always undesirable, combustion instabilities are especially
dangerous to larger rockets [5]. Current remedy for reducing instabilities occurring in solid
propellants is either by placing of an irregular rod of non-burning material within the burning
volume, or drilling radial holes at intervals along the grain. Non-steady burning and combustion
instabilities appearing in solid propellants have been investigated extensively both theoretically
and experimentally. Combustion models used, although numerous and different in various
aspects of the analysis, commonly treat the system as a three region problem: the solid phase,
the gas—solid interface region, and the gas phase. The interface is generally collapsed to a plane
and is used as a matching condition between the two phases. Most of the models published agree
in the treatment of the solid phase as a single homogeneous region, up to the interface. The
point where main differences occur is the treatment of the gas phase. The model that we are
using is based on the work of Denison and Baum [6]. The model derived there assumes that
characteristic times for all processes involved in solid propellant combustion are short compared
to the characteristic time for heat conduction in solid. The combustion mechanism involves inert
heat conduction in the solid, surface gasification by an Arrhenius process and a gas-phase
deflagration with a high non-dimensional activation energy. Properties of solid are assumed to
be constant.

1.2. Model

Although models differ importantly in regard to handling the gas phase, most of them arrive at
a two parameter response function of mass flux with respect to pressure disturbances in their
stability analysis, as summarized in an extensive review by Culick [7]. For more details on the
validity of the assumptions used in the model by Denison and Baum, and a more in depth
insight in the work on unsteady combustion in solid propellants, interested readers are referred
to References [7, 8].

The type of instability that we are interested in are self-excited modes of burning rate response
appearing at frequencies which are not acoustic modes of the combustion chamber. For a more
detailed description and classification of combustion instabilities see Reference [9]. Stability
analysis of the model shows that the steady state solution for the uncontrolled case is unstable.

1.3. Control objective

The objective is to stabilize the steady state of the model using boundary control in temperature
on the non-reacting boundary (see Figure 1). While there may be more practical ways of
actuating this problem than heating/cooling at the boundary opposite to the burning end
(distributed heating/cooling would provide more control authority in the case when the heat
conductivity of the solid propellant is low), the boundary actuation considered here offers the
greatest challenge from the point of view of control synthesis.

fOur idea of actively controlling combustion instability by heating/cooling the rocket fuel was motivated by a
proposition made by T’ien and Sirignano [12] for liquid fuel rockets. They suggested that a remedy to instability in the
case of practical liquid rocket could be heating of fuel by the wall of the combustion chamber by regenerative cooling
(cooling of the chamber wall is in addition beneficial on its own).
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Figure 1. Solid propellant rocket.

It is important to note that, due to burning, the length of the domain L(¢) is time varying, with
L(t)<0. A physically realistic assumption is made that the rate of change of L(f) is much
slower than the rate of temperature dynamics in the solid propellant. As we explain in the
stability analysis, the negative sign of L() enhances stability, and for sufficiently short solid
propellants the dynamics become stable, allowing to turn off the controller during the final stage
of burning.

As model parameters are changing and temperature sensors are lost in the process of burning/
shortening of the solid propellant, the controller can be rescheduled to accommodate these
relatively slow changes.

1.4. Results

We start by discretizing the original PDE model in space using finite differences which gives a
high order system of coupled nonlinear ODEs. Applying the backstepping design [10],
appropriately adapted to parabolic PDEs [11] we obtain a discretized co-ordinate transforma-
tion that transforms the original system into a properly chosen target system that is
asymptotically stable in />-norm. Then, using the property that the discretized co-ordinate
transformation is invertible for an arbitrary (finite) grid choice, we conclude that the discretized
version of the original system is globally asymptotically stable and obtain a nonlinear feedback
boundary control law for the temperature in the original set of co-ordinates.

A major novelty of the backstepping design in this paper is that it controls an instability
caused by a boundary condition that the control cannot alter (even in the target system)
but it dominates it in an indirect way, through damping introduced in the target system. This
type of destabilizing boundary condition is a peculiarity of the solid propellant rocket model
and is not found in chemical reactor models, which otherwise have similarities with the rocket
model.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:483—-495
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It is intuitively clear that the number of sensing points needed to stabilize the system is close to
the number of open-loop unstable eigenvalues (provided the sensors are properly positioned for the
given eigenfunctions of the system). For the solid propellant rocket model we show that the
number of unstable eigenvalues is always one. In simulations we show that the controller we
propose works not only with densely distributed sensors (this result is proved by Lyapunov analysis
and therefore skipped in the simulation section) but also with a very low number of sensors.

1.5. Organization

In Section 2 a nonlinear one-dimensional PDE model that governs heat transfer inside the solid
propellant is introduced, followed by the stability analysis of the open loop system. A nonlinear
feedback control law that achieves global asymptotic stabilization is presented in Section 3,
followed by the proof of stability for the target system in Section 4. Finally, a feedback control
law designed on a very coarse grid is shown to successfully stabilize the system for a variety of
different simulation settings in Section 5.

2. MATHEMATICAL MODEL

In this section we introduce a model of transient heat conduction in solid propellants. The
model that we use is based on the model introduced by Denison and Baum [6]. The main
difference is that we are considering a realistic model of a finite length rod, as opposed to the
assumption of an infinitely long rod in Reference [6] introduced to simplify the stability analysis.
We present only the key steps necessary for understanding the model here. For a detailed
derivation see Reference [6]. It is assumed that the characteristic time for heat conduction in the
solid is at least an order of magnitude greater than the characteristic times for the gas phase
transport processes and chemical reactions. That means that we assume quasi-steady-state in the
gas phase that affects the heat conduction in solid phase through boundary condition on gas—
solid interface only. In addition, the principal assumptions include homogeneous propellant
with constant properties, Lewis number of unity, single step combustion reaction of any order,
no reactions in the solid state, vaporization according to an Arrhenius law and no erosive
burning. Under given assumptions the differential equation governing heat transfer in the solid
phase is
2

pscsaa_iw:mwcsz_i‘i’KsaaTZ (1)
where 7 stands for the temperature of the solid defined for x € [0, xmax(#)], ps, Cs, and K,
respectively, for density, specific heat, and thermal conductivity of the solid, and m,, for the
mass flux relative to the burning surface. Note that the length of the solid propellant stick is a
function of time and it continuously decreases, due to deflagration, once the solid propellant is
ignited. The mass flux is governed by m,, = e /K700 where R stands for gas constant, and E,,
for activation energy for vaporization and decomposition at the wall (x = 0). Equation (1)
satisfies boundary condition

T(xmamt) = TnB (2)
where Tnp stands for the temperature at the non-reacting boundary. The other boundary

condition at the burning end (x = 0) is obtained from the heat balance at the solid surface. The
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heat conducted into solid is given by

o7(0,1) oT(0,1)
K =K
Ox ( Ox

) +my(CT(0,1) — C,T(0,1) — Lyq) 3)
g

where C, stands for specific heat of gas, L,q for heat absorbed by vaporization and
decomposition, and subscript g refers to properties of gas. In addition, by simultancously
integrating energy and species conservation equations in the gas phase we obtain a relation for
the temperature gradient at any point in the gas phase as

S a—T—<Tf—T—%er> )

Cpmy, Ox n '

where 7t stands for flame temperature, O, for heat of combustion, and ¢, for fraction of total
mass flux associated with reactant species. Evaluating (4) at x = 0 and substituting it in (3) we
obtain the boundary condition at x = 0 as
0T(0,7) e [Ew/RTON]

ox K

[Cpr + &wOr + Lva — GT(0, )] (5)

System (1) with boundary conditions (2) and (5) has a steady-state

T(0) — Ty ;
(0) — Tng [1 — ¢ 0 G/ (6)

e*(’;lw Cs /Ks MXmax L

T = 7(0) -
where 71, = my(T(0)). Introducing non-dimensional spatial variable, time, and, non-dimen-
sional temperature deviation from the steady-state (6) respectively as x' = (mmyCs/Ks)x,
! = (m2Cs/pKo)t, u(x', ) = [T(x,#) — T(x)]/T(0), and omitting superscripts ' for convenience,
we obtain a non-dimensionalized system

u(x, 1) = ue(x, 1) + f1((0, D)ux(x, 1) + Bre 1 — f1(u(0, )] (7
ux(oa t) = _f2(u(09 t))
u(L, t) = control (®)

where we denote fi(u) = /001 £u) = B[ fi(u) — 11+ fi(uu, and L = (171, Cs/Ks)Xmax:

_1-[Tw/TO]  , _ E
I—eL ° 727 RTO0)

Note that since u(0,¢) > —1(u(0,7) = —1 corresponds to absolute zero), both f; and f, are well
defined. Although it appears that B; might start increasing as L slowly changes, it actually
remains constant. Since both 7(0) and T are constant, from (5) we conclude that 87/(0)/dx
does not change. Taking a derivative of 7T(x) and evaluating obtained expression for x =0
we get

B

oT(0)  T(0)—Tng =
T Bt —B,T(0) ©))

Since both T'(0) and 8T(0) /ox remain unchanged, we conclude that B; does not change either.
Physically, as the solid propellant burns it becomes shorter, the influence of the burning end
becomes more pronounced, and Ty increases in a fashion that keeps By constant. As shown in
Reference [6], depending on the current steady-state, small pressure disturbances in gas pressure
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can lead to instability, i.e. the departure of the surface temperature, and hence mass flux, from
the steady-state value. Linearizing (7) around the equilibrium at the origin we obtain the
linearized system as

Uy = Uy + ty — Au(0, )™ (10)
MX(O, t) = _qu(07 t) (1 1)
u(L,t) =0 (12)

where 4 = B1B; and ¢ =1+ A. To prove that the linearized system (10)—(12) can become
unstable we show that there exists a particular solution that grows exponentially for some choice
of 4, g, and L. We start by introducing a coordinate change z(x,7) = e~(1/2*(/9(x 1) that
transforms (10)—(12) into

2z = zg — Az(0, 1)e (/2 (13)
z(0,1) = — (q - %) u(0, ) (14)
2L, 1) =0 (15)

Postulating a solution of the z-system as z(x, #) = f(x)z(0, t), where by definition
f0)=1 (16)
and substituting it in (13), we get
2106, 0)f (%) = 20, )] fru(x) — A=/ (17
Now it becomes obvious from (17) that if we can construct f(x) that satisfies
fo—Ae VP =2 f k2 >% (18)

boundary conditions (14) and (15), and condition (16), system (10)—(12) will be unstable. We
indeed find such a solution as

4
u(x, ) = (C(k)e“‘“/ X C(—ke*HIx 4 aa-@ ex) ®=1/D00, 0) (19)

where
k(1)) —qlk+(1/2) + 4
k) = 2Kk + (1/2)) (20)

and k satisfies

k3+k2<%—q) —|—k(A —%) + (%—é—%)

—2kL | 1.3 2 1 1 1 4 ¢
—e |:k +k (q—§>+k(z4—z>+(§+§—z):|
+ 24ke~k+(/DL (21)

Note that in the limit case L — oo, following the same approach as for the finite L, for the
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linearized system to be unstable £ has to satisfy

k2+(1—q)k+<A+%—g>:0 (22)

If ¢ > 1 and ¢* > 44, we find that a sufficient condition for k* >} becomes
¢ —q—24>0 (23)

that is exactly the same stability condition that Denison and Baum arrived at in Reference [6].

Numerically finding the eigenvalues of (10)—(12), we were able to show that regardless of the
values for the system parameters By, B;, and L, or in other words regardless of the level of the
open-loop instability, the system could have only one unstable eigenvalue. As the open-loop
system becomes more unstable the magnitude of the unstable eigenvalue increases, but the total
number of unstable eigenvalues remains one. The dependence of the magnitude of the largest
eigenvalue Ayqyx of system (10)—(12) for a particular choice 4 = 1.0 is shown in Figure 2. What is
interesting is that our analysis shows that a longer rocket will tend to be more unstable than a
shorter one, given all the system parameters same. This means that if we can stabilize the system
at the beginning we will be able to do so at any other time instant since the solid propellant
burns and its length reduces due to deflagration. In addition, from the point of view of
implementation, the control algorithm can be turned off after the remaining length of the solid
propellant stick becomes smaller than the critical length L., defined as value for which A«
reaches zero, i.e. Amax(Leri) = 0.

8
I
g
~<
gl ; ; ; ;
0.5 1 15 2 25 3
L
Figure 2. Dependence of the largest open-loop eigenvalue ., on the non-dimensionalized rocket length L
for 4 = 1.0.
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3. CONTROL LAW

In this section we present a feedback boundary control design for unstable burning in solid
rocket propellants.

Unlike most control problems for PDEs that assume the freedom for the designer in
prescribing boundary conditions everywhere on the boundary, this 1D nonlinear PDE model
has an unfavourable nonlinear boundary condition imposed at one of the boundaries by the
nature of the system itself. This fact presents a design challenge since the standard backstepping
procedure for parabolic PDEs of transforming the original system into a target system with
homogeneous boundary conditions, and then proving asymptotic stability using Poincaré
inequality (see Reference [13] for details) cannot work. We present here a modified version of the
standard backstepping design for parabolic PDEs that can accommodate the imposed
destabilizing boundary condition at the burning end. The first aspect of the modification
consists in choosing a target system that has the same type of boundary condition at x = 0 as the
original system, and homogencous Dirichlet boundary condition at x = L. We then prove
asymptotic stability of the transformed system using Agmon’s instead of Poincaré inequality. As
it will become obvious from the stability proof, the proposed technique can be extended to a
more general class of nonlinear parabolic PDE systems with imposed boundary conditions.

To discretize the problem, let us start by denoting 7 = L/N, where N is an integer. Then, with

u; defined as wu;(¢t) = u(ih,t), i = 0,...,N, we represent the non-dimensional system (7) as
1 2 filu)
Ui _h_zuiH 2T Ui
1 u i
e~ 2+ e i (4
with boundary condition at zero end expressed as (ug — u_;)/h = — f2(up), where u_; stands for

an artificially introduced phantom node. Since u(L, ¢) is the control in the PDE, the control input
to the discretized system is uy. We now suggest a backstepping controller that transforms the
original system into the discretization of the system

wi(x, 1) = wie (x, 1) + f1(W(0, ) wi(x, 1) — ew(x, 1) (25)
wi(0,1) = — f2(w(0, 7)) (26)
w(L,t) =0 (27

where ¢ > k3, k being a positive constant that satisfies fz(w(O))w(O)<k2w(0)2 for Yw(0). Under
given conditions system (25)—(27) can be shown to be asymptotically stable. We should stress
that the choice of the target system is one of the key issues here. When transforming the original
system we should try to keep its parabolic character, i.e. keep the second spatial derivative in the
transformed co-ordinates. Even when applied for linear parabolic PDEs, the control laws
obtained using standard backstepping would have gains that grow unbounded as N — oo. The
problem with standard backstepping is that it would not only attempt to stabilize the equation,
but also place its poles, and thus as N — oo, change its parabolic character. The co-ordinate
transformation is sought in the form

Wo = ug (28)
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wi = uy — oo(up) (29)
Wi:Llj—O(i,](u(),...,Mifl), i:2,...,N—1 (30)
uy = oy—1(uo, ..., un—1) (31

where w;(tf) = w(ih, t). The discretized form of Equation (25) is

1 2 filwo) 1 filwo)
Wi = 53 Wittt — [ﬁ T +c|lwi+ 2, | (32)
with (wo — w_1)/h = — fo(wg), wy = 0, w_; being a phantom node. By combining the above

expressions, namely subtracting (32) from (24), expressing the obtained equation in terms of
uy —wi, k=1i—1,1i,i+ 1, and applying (30), we obtain

wmef[2 A ), [ ),

A o [ 1 5
— cu; — Ble—lh[l — filuo)] + Z %(ﬁulwl . I: fl(uo)] "y

£ Ouy h? h
1 u
o Do - i) | 33)
fori=0,...,N—1. Wethenset x| =a_, =0 and use uy = ay_; as control. By inspection of

the recursive control design algorithm one can verify that the co-ordinate transformation is
invertible (which implies global asymptotic stability of the discretized system) and that the
control law is smooth.

We should stress that the control law uy obtained by recursively applying (33) is of a Dirichlet
type. The only reason for giving the control law as a temperature control law, although flux
actuation would be both more realistic and more effective, is because the model from Reference
[6] that we are using gives boundary condition at x = L as Dirichlet boundary condition.
Extension from Dirichlet to Neumann boundary condition at x = L would be performed in
exactly the same fashion as we did for the model of thermal convection loop in Reference [13].

4. ASYMPTOTIC STABILITY OF THE DISCRETIZED SYSTEM IN MODIFIED
COORDINATES

In this section we prove global asymptotic stability for (25)+(27) in L>-norm. The effect of the
moving boundary is resolved by utilizing the approach of Armaou and Christofides (see
Reference [14] and references therein) for control of parabolic PDEs with time-dependent
spatial domains. Note that we do not require an actuator whose position changes with time
since the co-ordinate system in the model of Denison and Baum [6] is selected so that the solid—
gas interface is maintained at x = 0. In real application the actuator would be placed at the
nonreacting end of the solid propellant stick that does not move. We start with a Lyapunov
function

L(0)
V=3 /0 W&, 17 dE (34)
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and find its derivative with respect to time, along the trajectories of system (25) (27), to be

. L(1) 1. L(1)
V= / ww, dé + 5L(z)w(L)2 < / ww, dé
0 0

L)

L(t) L(t)
= F1w(0, £)yww; A& + / wwee dé — ¢ / w? dé
0 0 0

L() 0 L@ L(1) L(1)
:/ Md(wz) +ww —/ wldé c/ w2 dé (35)
0 0 0 0
where we have used the fact that L <0. Since
0< fi<eb (36)
Fw(0, 0)w(0, ) <kow(0,2)%, Ky >0 (37)

we get

L(1)

. eB2 L(D)
V< —5wO, 17 — wy(0, Hw(0, 1) — / widé—c / w? dé
0 0

L(1) L(1)
< Lm0~ [ ataz—e [l
0 ) 0
L(t) L(t)
< kow(0,1)* — / widé —c / w? dé (38)
0 ) 0

Now using Agmon’s inequality

20 < wA(L) 4+ 2 o 24 " 24¢ 39
mas ) <) + /0 W(®) é/o Wwe(&)? de (39)

we get

. L(t) L(t) L(t) L(t)
V< 2k / w2 dé / wé dé—/ w% df—c/ w? dé
0 0 0 0

L(1) L(t) L(t) L(t)
<k§/ w2d5+/ wﬁdﬁf/ wédffc/ w? dé
0 0 i 0 0

L(1)
= e &) / W(E D dé = —2[c — K7, (40)
0

which implies that system (25)—(27) is asymptotically stable in Z?>-norm. The proof that (32) is
asymptotically stable in />-norm with (wy — w_1)/h = — fa(wp) and wy = 0 would be completely
analogous. We would start with Lyapunov function 73 =1 SV w2, use the fact that N(1) <0,
use discretized version of the Agmon’s inequality (39), and obtain V4< — 2[c — K31V
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5. SIMULATION STUDY

In this section we present simulation results for the unstable burning in homogeneous solid
propellants.

As shown in Section 3, control law (33) is given in a recursive form that can be easily applied
using symbolic tools available. Once the final expression for temperature control is obtained, for
some particular choice of N, one would have to use full state feedback to stabilize the system, i.e.
the complete knowledge of the temperature field is necessary. Instead, we show that controllers
of relatively low order (designed on a much coarser grid) can successfully stabilize the system for
a variety of different simulation settings.

The reasoning behind the idea of using low order backstepping controllers is based on
intuition and is given here without any formal proof. The idea of using controllers designed
using only a small number of steps of backstepping to stabilize the system for a certain range of
the open-loop instability is based on the fact that in most real life systems only a finite number
of open-loop eigenvalues is unstable. The conjecture is then to apply a low order backstepping
controller (controller that uses only a small number of state measurements) that is capable of
detecting the occurrence of instability from a limited number of measurements, and stabilize the
system. Indeed, extensive simulation study for thermal convection loop [13] suggested that to
accommodate a higher level of open-loop instability one would have to increase the order of
controller, i.e. use a controller designed using more steps of backstepping. The situation is even
more promising for the solid propellant instability. Unlike in the case of the heat convection
loop, the increased level of open-loop instability for the solid propellant will not result in the
increased number of open-loop unstable eigenvalues. Instead, only the magnitude of the single
unstable eigenvalue will increase as the system becomes more unstable (the level of open-loop
instability increases as either L, B; or B; increases). This fact suggested that a fixed low order
controller might be capable of stabilizing the system for a variety of simulation settings.

Indeed, a controller designed using only one step of backstepping (using only two
temperature measurements u(0,7) and u(L/2,t)) was capable of successfully stabilizing the
system for a variety of different simulation settings. By controller designed using only one step
of backstepping we assume controller designed on a very coarse grid, namely on a grid with just
two points. In this case the control is implemented by using o for control, where o is obtained
from expression (33) for i = 1 with 4 = L/2 and u; = u(L/2, ). Simulations were run with initial
temperature distribution u(x,0) = 0.01(cos(nx/2L) + cos(nx/3L) + cos(nx/5L)) using BTCS
finite difference method for N = 200 and the time step equal to 0.01 s. The effect of moving
boundary due to deflagration was not taken into account in any of the simulations in this
simulation study. Although we have tested the controller for several different combinations of 4
and L, we only present a result for 4 =1 (B; = B, = 1.0) and L = 2.0, and briefly summarize
results for various other combinations. The controller was capable of stabilizing solid propellant
oflength L=05uptod=5L=10uptod=3,L=15uptod=2,L=20uptod=1.5,
and L = 2.5 up to 4 = 0.5. A trend of a decreasing range of 4 for which we could stabilize the
system as L increases is obvious. We come to the same conclusion as in the eigenvalue analysis
for the open loop system: longer rockets tend to be harder to stabilize.

The simulation results presented here are for a solid propellant rocket of non-dimensional
length L = 2.0 with B; = 1.0 and B, = 1.0. The temperature response for the uncontrolled case is
shown in Figure 3. As it can be seen from Figure 3, the particular choice of L, B, and B,
corresponds to a highly unstable solid propellant system. The system goes to an undesired
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Figure 3. Open loop temperature u(x, t) for By = B, = 1.0 and L = 2.0.

Figure 4. Closed loop temperature u(x, ) for By = B, = 1.0 and L = 2.0 with feedback controller designed
using only one step of backstepping.

equilibrium profile where the burning temperature is about four-times higher than the nominal
temperature, and therefore would result in a destructive failure. The corresponding temperature
u(x, t) for the controlled case is shown in Figure 4. The controller was capable of stabilizing the
system very fast using relatively small control effort.
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6. CONCLUSIONS

A nonlinear feedback controller based on Lyapunov backstepping design that achieves global
asymptotic stabilization of the unstable burning in solid propellants has been derived. The result
holds for any finite discretization in space of the original PDE model.

The simulation study indicates that a feedback control law designed using only one step of

backstepping can be successfully used to stabilize the system for a variety of different simulation
settings.
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