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Infinite Dimensional Backstepping-Style Feedback Transformations
for a Heat Equation with an Arbitrary Level of Instability
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We consider feedback transformations of the back-
stepping/feedback linearization type that have been
prevalent in finite dimensional nonlinear stabilization,
and, with the objective of ultimately addressing non-
linear PDEs, generate the first such transformations
for a linear PDE that can have an arbitrary finite
number of open-loop unstable eigenvalues. These
transformations have the form of recursive relation-
ships and the fundamental difficulty is that the recur-
sion has an infinite number of iterations. Naive versions
of backstepping lead to unbounded coefficients in those
transformations. We show how to design them such
that they are sufficiently regular (not continuous but
Ly,). We then establish closed-loop stability, regularity
of control, and regularity of solutions of the PDE.
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1. Introduction

Motivation. In finite dimensions, stabilization problems
for nonlinear systems are today most commonly solved
using the methods of feedback linearization [20] and
backstepping [22]. These methods apply diffeomor-
phic coordinate transformations that put the system
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equations in the form where the stabilization problem
becomes easy (the control input has access to all the
nonlinearities). Thedifference between the two methods
is that feedback linearization was invented for systems
with perfect models, while backstepping, developed
later, allows some flexibility to deal with systems that
contain perturbations, disturbances, and unmodeled
dynamics. For the majority of nonlinear systems, these
are not only the most popular but the only stabiliza-
tion methods available. It is therefore natural that,
in attempting to solve stabilization problems for a
broader class of infinite dimensional nonlinear sys-
tems, one first hopes that feedback linearization or
backstepping can somehow be extended to infinite
dimensions. Unfortunately, the chances that a simple
solution to this problem exists are extremely slim. It is
enough to look at what the coordinate transfor-
mations in feedback linearization and backstepping
involve (repeated differentiation of system nonline-
arities, combined with arithmetic operations on them)
to realize that if such procedures take an infinite
number of steps they will result in very problematic
nonlinear operators for coordinate transformations,
and also for control laws. This does not mean that
proving some desirable properties for those transfor-
mations is impossible — it is just that, if possible, it will
be highly nontrivial.

Because of potential significance of feedback line-
arization and backstepping for nonlinear infinite-
dimensional systems, it is well worth starting the study
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of these methods on linear infinite-dimensional sys-
tems. It turns out that performing these recursive
procedures in infinitely many steps is nontrivial even
for linear systems. The first step in this direction was
made by Boskovic et al. [6] who considered the same
equation as in this paper (to be introduced below) but
with parameters restricted so that the number of open-
loop unstable eigenvalues is not greater than one. In
this limited case, they derived a closed-form and
smooth coordinate transformation based on back-
stepping. This result is peculiar to the mild level of
open-loop instability and cannot be extended to the
same equation with an arbitrary level of instability.
We stress that allowing an arbitrary level of instability
is the whole point here. In finite dimensions back-
stepping can deal with systems where actually all
the eigenvalues are unstable (and furthermore with
finite-escape type instabilities).

The method we present here reveals a key issue for
finding backstepping controls for arbitrarily unstable
linear parabolic PDE systems. This key issue is the
target system to which one is transforming the original
system by coordinate transformation. For example, if
one takes the standard feedback linearization route
leading to the Brunovsky canonical form, or even the
standard backstepping route leading to a tri-diagonal
form, the resulting transformations, if thought of as
integral transformations, end up with “kernels” that
are not even finite. We show how to select the target
system so that the the kernel is bounded and the
solutions corresponding to the controlled problem are
at least continuous.

Equation considered. The equation considered in
this paper is

U (x,8) = e (x, 1) + A(x)u(x, 1),
x€(0,1), t>0, (1.1)
where € is a positive constant and A(x) € L(0, 1), with
initial condition u(x, 0) = up(x), for x €[0, 1]. The bou-
ndary condition at x =0 is homogeneous Dirichlet,

u(0,1)=0, >0, (1.2)
and the boundary condition at the other end,
u(l, 1) = a(u(t)), t>0, (1.3)

is used as the control input, where o is a linear
operator to be designed to achieve stabilization (the
control law). For A(x) =0 the open loop system (when
a(u(t))=0) is the heat equation, which is asymp-
totically stable. However, it is unstable if =
Minyep,) A(x) is large. The growth bound of the

uncontrolled system is at least wo = £ — ex?.
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The physical motivation for considering Eq. (1.1)
is that it represents the linearization of the class of
reaction-diffusion equations that model many physi-
cal phenomena. An example is the problem of com-
pressor rotating stall for which the most recent model
due to Mezic [19] is u, = eu,, + u — u*, whose linear-
ization is (1.1) with A(x) = 1. The Dirichlet boundary
control problem that we are pursuing here corres-
ponds to actuation via air injection on only a small
interval of the compressor annulus. Control via air
injectors distributed along the entire annulus was first
reported in [3].

We use a backstepping method for the finite dif-
ference semi-discretized approximation of (1.1) to
derive a boundary feedback control law that makes
the infinite dimensional closed-loop system stable
with an arbitrary prescribed stability margin. We
show that the integral kernel in the control law resides
in the function space L.(0,1) and that solutions
corresponding to the controlled problem are classical.

Prior work. The problem of boundary feedback
stabilization of general parabolic equations is not
new. In dimension higher than one Triggiani [30] and
Lasiecka [23] considered a general framework for the
structural assignment of eigenvalues in parabolic
problems through the use of semigroup theory. In
their approach, the open-loop system is separated into
a finite dimensional unstable part and an infinite
dimensional stable part. They applied feedback con-
trol that stabilizes the unstable part while leaving the
stable part stable. A unified treatment of both interior
and boundary observations/control generalized to
semilinear problems can be found in [2]. Nambu [27]
developed auxiliary functional observers to stabilize
diffusion equations using boundary observation and
feedback. Stabilizability by boundary control in the
optimal control setting is discussed by Bensoussan
et al. [4]. For the general Pritchard—Salamon class of
state—space systems a number of frequency-domain
results has been established on stabilization during the
last decade (see, e.g. [15,26] for a survey). While these
approaches give an answer to our stabilization pro-
blem in principle, ours offers an implementable,
closed-form solution that avoids the additional steps
of estimating eigenfunctions or solving operator
Riccati equations, which are formidable tasks in the
case when A(x) is not a constant.

The stabilization problem can also be approached
using the abstract theory of boundary control systems
developed by Fattorini [17] as described in [16, Section
3.3 and Exercise 5.25] and used in papers by Curtain
and coworkers in the 1980s (e.g. [14]). While this
approach results in a mathematically simple problem
formulation, it has the disadvantage of producing



Infinite Dimensional Backstepping-Style Feedback Transformations

a dynamical feedback as a result of the artificial state—-
space introduced (see remarks in [16, Section 3.5]).

Our work is related to Burns et al. [9]. They already
discovered there the applicability of boundary con-
trols in the form of integral operators. Their result is
quite different because the control objective is differ-
ent (theirs is LQR optimal control, ours is stabili-
zation), and their plant is open-loop stable but the
spatial domain is of dimension higher than ours.
Nonetheless, the technical problem of proving some
regularity of the gain kernel ties the two results toge-
ther. In the paper [9], numerical evidence is presented
that suggests that the gain kernel is an L, function
with compact support concentrated near the bound-
ary. We prove the existence of a non-smooth but
bounded (L.,) gain kernel.

Backstepping was applied to PDEs in {7,13,25] but
in settings with only a finite number of steps. An
approach for control of a fairly broad class of non-
linear parabolic PDEs based on approximate inertial
manifolds was developed by Christofides [11,12].

Organization. This paper is organized as follows. In
Section 2, we formulate our problem and its dis-
cretization and we lay out our strategy for the solution
of the stabilization problem. The precise formulation
of our main theorem is contained in Section 3. In
Lemma 1 of Section 4, we design a coordinate trans-
formation for a semi-discretization of our system
which maps it into an exponentially stable system. We
show in Lemma 2 that the discrete coordinate trans-
formation remains uniformly bounded as the grid gets
refined and hence it converges to a coordinate trans-
formation of the infinite dimensional system. The
regularity C,, ([0, 1], L (0, 1)) of the transformation is
established in Lemma 3. The stability of the infinite
dimensional controlled system is shown in Lemma 4
completing the proof of our main theorem. Finally, we
present numerical simulations in Section 5 showing,
besides the effectiveness of our control, that reduced
versions of the controller stabilizes the infinite
dimensional system as well.

2. Motivation

The semi-discretized version of system (1.1)-(1.3)
using central differencing in space is the finite
dimensional system:

up = 0, (2.1)

s = 22U u

U; = 5—}12———'— + A, (2‘2)
i=1,...,n,

Upil = an(ul sU2, vty un); (23)
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where ne N, h=1/(n+1) and u;=u(ih, 1), \;= A(ih)
fori=0,...,n+ 1. With u, as control, this system is
in the strict-feedback form and hence it is readily
stabilizable by, e.g., backstepping, or by transforming
the system into the Brunovsky form and applying pole
placement, i.e., by “feedback linearization.” However,
these naive control laws would have gains that grow
unbounded as n — oc.

The problem with standard backstepping and feed-
back linearization is that they would not only attempt
to stabilize the equation, but also place all of its poles,
and thus as n— oo, change its parabolic character.
Indeed, an infinite dimensional version of the Bru-
novsky form or the tridiagonal form in backstepping
are not parabolic. Our approach will be to transform
the system, but keep its parabolic character, i.e., keep
the second spatial derivative in the transformed
coordinates.

Towards this end, we start with a finite dimensional
backstepping-style coordinate transformation

Wo = UYp = 0, (24)
Wi = u; — ai~1(ul,- vy ui—l),

i=1,...,n, (2:5)
Wn+| =0, (26)

for the discretized system (2.1)-(2.3), and seek the
functions «; such that the transformed system has the
form

wy = 0, (2.7)
Wit — 2Wi + Wiy
i h2 — CWy,
i=1,...,n (2.8)
Wyt = 0. (2.9)

The finite dimensional system (2.7)~(2.9) is the semi-
discretized version of the infinite dimensional
system

wi(x, 1) = ewyy(x, 1) — ew(x, 1),

xe (0,1), t>0, (2.10)

with boundary conditions
w(0,1) = 0, (2.11)
w(l, 1) =0, (2.12)

which is exponentially stable for ¢ > —en?.

The backstepping coordinate transformation is
obtained by combining (2.1)-(2.3), (2.4)—(2.6) and
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(2.7)~(2.9) and solving the resulting system for the
«;’s. We obtain the recursive form

1 h?
= 2(25 +ch)ai) —aiy — ?()\,‘ + )y
Oy 1
+ Qi <u2 — 2uy +—h2>\1u1>
311] £
i—-1
301'_1 1
+ jzzz:—é—:;j— (uj+1 - 2uj +uy + ghz)\juj) s
(2.13)

for i=1,...,n with initial values ag=c _ | =0. Writ-
ing the a/’s in the linear form

ar=> kyw, i=1...n (2.14)
J=1

and performing simple calculations, we obtain the
general recursive relationship:

h2
kip = “E—(C +Ankiiy —kioag ki, (2.15)
hZ
ki ;= - (c+ N)kicy, j+kict jo1 + kicy j
ks, j=2...,0-2, (2.16)
/’12
k'}ffl = ? (C + Ai—l)ki—],iv] + k,;l,,;z, (2.17)
/’12
ki = ki1 — —E~(C + ). (2.18)
for i=3,...,n with initial conditions
h2
ki = —?(C'*')\l), (2.19)
I’ 2
kay = == (e+ A1) (2.20)
h? h?
kya = —<?(C+/\1)+?(c+)\2)>, (2.21)
s h?
ksy = —25(04-)\1)3 -——E—(c+/\2), (2.22)
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hZ /12 hZ
k3,2 = -—-—E—(C+ )\2)(';‘(0+ A]) +?(C+ Az))

4

h
_?(c+ A% (2.23)

h2 a 2
kyz = —(—(c+)\1)+—-(c+)\2)+—(c+/\3)).
(3 £ £

(2.24)

For the simple case when A(x)= A=constant, Eqs
(2.15)—(2.24) can be solved explicitly to obtain

1
U SR Y B GV R
Kiici (j+ 1) (E(n + 1)2> =1

AL =N =N e+ n) YT
* ;7(1— 1)(1‘—21) <€(n+1)2
(2.25)

fori=1,...,n,j=1,...,i

Regarding the infinite dimensional system (1.1)-
(1.3), the linearity of the control law in (2.14) suggests
a stabilizing boundary feedback control of the form

1
cz(u):/0 k(x)u(x) dx, (2.26)

where the function k(x) is obtained as a limit of
{(n+ Vkn,};_; as n—oco. From the complicated
expression (2.25), it is not clear if such limit exists. A
quick numerical simulation (see Fig. 1) shows that the
coefficients {(n + 1)k, ,};_; remain bounded but it
also shows their oscillation, and increasing » only

increases the oscillation (see Fig. 2). Clearly, there is

kgglx)

0 0.2 0.4 0.6 0.8 1
x

Fig. 1. Oscillation of the approximating kernel for n =50,
A=17,e=1, ¢=0.
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0 0.2 04 0.6 0.8 1
X

Fig. 2. Oscillation of the approximating kernel for n =100,
A=17e=1,¢c=0.

no hope for pointwise convergence to a continuous
kernel k(x). However, as we will see in the next sec-
tions, there is weak* convergence in L, as we go from
the finite dimensional case to the infinite dimensional
one. As a result, we obtain a solution to our stabili-
zation problem (1.1)—(1.3).

3. Main Result

As we stated earlier, we use a backstepping scheme for
the semi-discretized finite difference approximation of
system (1.1)—(1.3), (2.26) to derive a linear boundary
feedback control law that makes the infinite dimen-
sional closed-loop system stable with an arbitrary
prescribed stability margin. The precise formulation
of our main result is given by the following theorem.

Theorem 1. For any A(x) € L.(0,1) and ¢, ¢ > 0 there
exists a function k € L,(0, 1) such that for any u, €
L.(0,1) the unique classical solution u(x,t)€
C'((0,50); C*0,1)) of system (1.1)—(1.3), (2.26) is
exponentially stable in the L,(0,1) and maximum
norms with decay rate ¢. The precise statements of
stability properties are the following: There exists a
positive constant M such that for all 1> 0

lu()ll < Miluolle™ (3.1)

and

max |u(t,x)] < M sup |up(x)le™ . (3.2)
x€l0.1] xel0,1]

“M grows with ¢, X and 1/e.
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Remark 1. For a given integral kernel k € L_,(0, 1) the
existence and regularity results for the corresponding
solution u(x, ¢) follows from trivial modifications in
the proof of [24, Theorem 4.1]. See also [18].

4. Proof of Main Result

As it was already mentioned in the introduction, the
proof of Theorem 1 requires four lemmas.

Lemma 1. The elements of the sequence {k;;} defined
in (2.15)—(2.24) satisfy

lkii—j| < (]i 1) (%Z(A + C)>j+l+(f -

(D) Fesa)
(4.1)

where A=max, ¢ o 1] A(x)|.

Remark 2. There is equality in (4.1) when A(x)=
) =constant with a minus sign replacing the absolute
value sign.

Proof. The right-hand side of Eqgs (2.19)—(2.24) can be
estimated to obtain estimates for the initial values
of k’s

h2
ki) < " (c+ ), (4.2)
h4
eaa| < (e + Py (4.3)
2
ool <22 (e ), (44)
o 3 X
k3.1 56—3(c+)\) +—€-(c+)\), (4.5)
ko) < K 2 4
| 3,2|_3'€—2(C+/\), (4.6)
h2

We then go from j = i backwards to obtain from (2.18)

h2
[kigl < i?(c +A), (4.8)
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|ki,i—ll S (C + /\)2

ii—1)h
(2 L (4.9)

g2

Finally, we obtain inequality (4.1) of Lemma 1 using the
general identity (2.16) and mathematical induction. [J

In order to prove that the finite dimensional coor-
dinate transformation (2.4), (2.5) and (2.14) converges
to an infinite dimensional one that is well-defined, we
show the uniform boundedness of (n+ 1)k;; with
respect to neNas i=1,...,n, j=1,...,i. Note that
the binomial coefficients of equation (4.1) are mono-
tone increasing in i and hence it is enough to show the
boundedness of terms (n+ )|k, ,—;|. Also, we intro-
duce notations

F_2te (4.10)
€
and
J
g==¢€10,1], (4.11)
n
so that we can write
h2
e+ N = 4.12
SN = (4.12)

and
|kn,nvj| - lkn,n-qn|

gn+1
= <qnn+ 1) ((7-’1-5—1)2>

+ (n—gn) [‘iﬂ]l(qn_ i)

—i\i-1

N i E gn—2i+1
% <qn—2i> ((n+1)2> ' (4.13)

Lemma 2. The sequence {(n+ )kn}io)  p>i
remains bounded uniformly in » and j as n — 0.

Proof. We can write, according to (4.13),

gn+1
o s kool <000 () ()

[4"/2]1 _l
gn
+ (n+ 1){(n — gn) 27( 1 )
=1

gn—21+1
g ( n—1 ) E .
gn—21)\(n+1)?

(4.14)
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The first term in (4.14) can be estimated as

" E gn+1
nt 1)<qn+ 1) <(n+ 1)2>

S (}'l + l)qn+2<

gn
n

< Eefle,

E )qn E
n+1 (n+1)qn+2

(4.15)

where the last line shows that the bound is uniform in
n and also in q.

In the following steps, we will use the simple
inequalities

(n- D!
(n—gn+ D!
< n n—1 on—i+1 (n—=1
“n—gn+2n—gn+2-1 n—gn+l+1(n—gn+1)!

o 4.16
T (n—gn+ 20! (4.16)

and

(gn —I)! o\
< 4.17
Ngn =20+ ) \n+1 =4 (4.17)

with this we obtain

/2] | fan— / wl E qn—2+1
(n+1)(n — ng) ;7( [-1 >(qn—2/) ((n+1)2>

(n+Dn lgn21

<E (gn— ) ( 1 )""’21
T+ 1) Mgn -2+ ) \n+ 1

M E gn—21
X (gn — 2D!{(n — gn + 20)! (n + 1)

" /n E s
< E =)
==3:(0) ()
ng
SEq<l+§>

< EeE.

Here in the last step, we used the fact that the con-
nHo0 [ . .

vergence (1 + (E/n))" — " is monotone increasing

and g €10, 1]. This proves the lemma. O

As a result of the above boundedness, we obtain a
sequence of piecewise constant functions

k"(x’y) = (I’l + 1) Z Zki,jXI,,,(x»Y)a

i=1 j=1
(x,y) € [0,1]x [0,1], n>1, (4.18)
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where
I = i ,z+1 y J ’j+1’
n+1 n+1 n+1 n+1
j=1,...,i i=1,...,n, n>1. (4.19)

The sequence (4.18) is bounded in L,([0, 1] x [0, 1]).
The space L ([0,1]x]0,1]) is the dual space of
L1([0, 1] x [0, 1) hence, it has a corresponding weak*-
topology. Since the space L,{[0, 1] x [0, 1}) is separ-
able, it follows now by Alaoglu’s theorem, see, e.g. [21,
p. 140] or [28, Theorem 6.62], that (4.18) converges in
the weak*-topology to a function k(x, y) € L ([0, 1]x
[0, 1]). The uniform in p € N weak convergence in each
L, ([0,1]x[0,1])) D Lo ([0,1] x [0, 1]), immediately
follows.

Remark 3. Alternatively, using the Eberlein—
Shmulyan theorem see, e.g., [32, p. 141], one finds that
(4.18) has a weekly convergent subsequence in
each L,([0,1]x{0,1]) space for 1 <p< oo with L,-
norms bounded uniformly in p. Using diagonal pro-
cess, we choose a subsequence m(n) €N such that
{Km@(¥, ¥)}u > 1 converges weakly to the same func-
tion k(x,y) in each of the spaces L,([0,1] x [0, 1]),
p €N. The function k(x, y) along with {6, V)1
is uniformly bounded in all these L,-spaces with the
same bound for all peN, :

Remark 4. In the case of constant A we have equality
in (4.1). The right-hand side is strictly monotone
increasing in i, which results in k € C([0, 1};L»(0, 1)).

Lemma 3. The map k:[0,1] — Lo(0,1) is weakly
continuous.

Proof. From the uniform boundedness in i of (4.1) we
obtain that

=
D ki
=y

{x] 1 oo
2 ((n + Dk 77—

Vu € Li(0,1),

X .
A k(x, §)u(§) 4§
vx € [0, 1]. (4.20)
Here [nx] denotes the largest integer not larger than nx

and the convergence is uniform in x, meaning that for
all £ > 0 there exists N(e) € N such that

X [x}
1/0 k(xv E)H(E) df - Zk[nx],juj <e¢
j=1

Vx € [0,1], Vn> N.
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For an arbitrary x €0, 1] we now fix an n> N(¢/2)
and choose a §>0 such that [nx]=[n(x+6)]. We
obtain

‘ / ', €yule) de - / i + 8, 0u0 ds\

Inx)
<| [k euie)de - > ks

[nx] [n(x+6 ]
+ D kg = D kol
j=1 =1
[r(x+8)] x+6
+| D Kuten)t = /0 k(x + 6, &)u(€) d§
j=1
<e/2+0+4¢/2=¢ (4.21)
which proves the weak continuity, i.e.
k € C,([0,1]; Lo (0,1)). (4.22)

The following lemma shows how norms change
under the above transformation.

Lemma 4. Suppose that two functions w(x) € L,.(0, 1)
and u(x) € L,(0, 1) satisfy the relationship

w(x) = u(x) - /0 T ou(e)de, vxe (0.1
(4.23)

where

k € Cu([0,1]; Loo(0,1)).

Then, there exist positive constants m and M, whose
sizes depend only on &, such that

< Mi|wll

(4.24)

mwllo < llull o
and

milwll < |lu|l < M]lwl.

Proof. Clearly

vl < (14 Rl )l (4.25)
Let us choose a positive constant
§ =min{1,1/(2[1k ,,)} (4.26)

so that 8||k||, < 1/2, and let us denote

1
Il =ess sup  |u(x)l, ":"""H
’ xe[(i—1)6,i8) )

(4.27)
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and for Ns=[1/6]+1

|u(x)] (4.28)

4l n,6 = €88 sup
xe|(Ns=1)8.1]

which is zero in the special case when 1/6 is an integer.
We have that

Ns
]l <> Ntllogss < Nsllull (4.29)
=1
We have, from (4.23)
||u||oc<16 < ||W“oc,ll5 + 5“””9@16”/5”00 (4.30)
and then
1
u < —||w 431
L AL (431)
Similarly,

2%
il 25 < (19125 + / (e, E)u(e, 1) de

< Wlloo,25 + 1ellootll oo 15+ Gl oo l14loo 25 (4-32)

and from here

| Bl
Ul 25 L ———— | |IW|l +—— o
lloall o 26 1 5||k“oc (” l 26 11— 6“1{”00 Iwli 16
1 6|k
= g W+ 2 ol
* (1-8l4l..)
(4.33)
Similarly
ol 5

36

< [l iz + /0 V(. €)ule, 1) de
6 -~

Wz + /0 (e (e, 1) de

+ /é ? |k (x, €)u(€, 1) dE + /2 :6 |k (x, E)u(€, )] de

<wlleas + 5||l€“oc”u“oc,l§ + 5||1€||oc||u”oo,26

+ 8]l 124 o 35 (4.34)
resulting in
ll2tlloc 35
< (Il s + 1l
(1= 6llkllo) '
+ 8]l oo 14l 25)
1 6|k
< ]—_annm,w + R —|ESIIIIIEOITOC)2 W]l sc,16
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8|1kl (6l1%]l..)>
B oS L FY ST
(1= 6ll&ll.) (1= 6[lkll,.)
1 S|kl
=Wl 35 + = Wl
L= 8llkll, % (1= okl
SIIKl
mlg—”‘“?llvv“w,zfs (4.35)
oC
and by induction
1 -
UWlis £ Wllwis + 6 k| o
ll4ll oo s T Wil .5 + Oll&ll

i—1 1
o (4.36
2 s e (439

fori=1,..., Nswith the convention that {|wl| o; = 0.
Using the definition of é, we obtain from inequality
(4.36) that

Ne
llull o < Z [[4l] o 5

Z 1o i5 + 81Kl

o i=1

: 1
X ZZ 1% ”ochSW

i=1 j=0

5|Ikll

< 2N5||W” + Z ”W“oc,]zi Z 2

i=j+1
Ng—1 ]
= 2N5“wl|oo + Z |IW||00J6(2N5_]+} - 2)
Jj=1

< 2M Ngllwll o (4.37)

Inequality (4.25) together with (4.37) results in the
relationship

———— Wl < llullo < 27 NollWlle. (4.38)
Ilkll
For the Ly-norms the inequality
”k” [lwll < flull < 2%/ Ng|lwl (4.39)
can be proven in a similar way. Taking
1
=— (4.40)
Ut kel oo
and
M =2V N (4.41)
we obtain the statement of the lemma. O
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Proof of Theorem 1. We now complete the proof of
Theorem 1 by combining the results of Lemmas 1-4.
In Lemma 1, we derived a coordinate transformation
that transforms the finite dimensional system (2.1)-
(2.3) into the finite dimensional system (2.7)—(2.9).
As a result of the uniform boundedness of the trans-
formation (shown in Lemma 2), we obtained the
coordinate transformation (4.23) that transforms the
unstable heat equation (1.1) with zero Dirichlet
boundary conditions into the stable heat equation
{(2.10)--(2.12). Due to the weak continuity proven in
Lemma 3, the infinite dimensional coordinate trans-
formation results in the specific boundary condition

1
u(1,1) = o) = /0 k(€)u(e, 1) e, (4.42)
where
k(€) =k(1,8), €€0,1] (4.43)

with k€ L, (0,1).

It is important to note that the function k(x) is not
necessarily smooth, not even continuous. This non-
smoothness can be seen numerically in Fig. 5 and
analytically when we consider k(x) as the limit of its
finite difference approximation {(n + 1)ku;}i;  u>1-
For example, for the case A(x)= >0 we have from
(2.18):

(A+c¢)

which is a negative constant, while (2.17) provides us
with
lim (n + Dky 1 = 0.

H—oC

(4.45)

The convergence in Sobolev spaces Wg’l (see, e.g.
[1]) of the finite difference approximations obtained
from (2.1)-(2.2) and (2.7)—(2.9) to the solutions of
(1.1)-(1.3) and (2.10)-(2.12) respectively is obtained
using interpolation techniques (see, e.g. [5].) Using
Green’s function and fixed point method as it was
done in [24], we see that solutions to (1.1)—(1.3), (4.42)
are, in fact, classical solutions. The well known (see,
e.g. [10]) stability properties of solution w to the heat
equation (2.10)-(2.12) along with Lemma 4 proves
the stability statements of Theorem 1. O

5. Numerical Demonstration

In accordance with the derivation of our control, we
use a second-order finite difference scheme in our
numerical simulations. In space, the discretization
is exactly the one used in Section 4. The time
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discretization is based on a low-storage, three time
step, third-order Runge—Kutta/Crank-Nicolson
scheme (see [29]). Consider system (1.1)-(1.3) with
Mx)=A=17, €¢=0.1 and with initial condition
up(x) = —0.01e%7~ sin 87x. In this case, the number of
unstable eigenvalues is 4 and the growth bound of
the open-loop system is wg = 16 (see Fig. 3). Using the
method developed in Lemma 1, we obtain for c=1,
n=400 a kernel function k(x)=k,(x) displayed
in Fig. 4. For a smaller value of ¢ Figs 1 and 2 of
Section 2 already showed the oscillation of the func-
tion k,(x). This tells us that the limiting kernel func-
tion k(x) is not continuous. Due to the high growth
bound (wy = 16) of the open-loop system in the present
case the gain values are quite high and hence similar
oscillation can be seen only after enlarging some part

x10*

0 0.2 0.4 0.6 0.8 1
x

Fig. 4. Kernel function k,(x) for n=400.



174

-100r

-200F

kggo(x)

-300F

—400}

~500 . . . . .
0.94 0.95 0.96 0.97 0.98 0.99 1

X

Fig. 5. Oscillation of the approximating kernel function.

Fig. 6. Approximation of controlled system for n =400.

of function k,(x) in Fig. 5. As Figs 6 and 7 show, the
obtained control effectively stabilizes system (1.1)—
(1.3). Next, we keep the high resolution (n=400)
in the discretization of (1.1) but reduce the number of
points n; used in the feedback control (1.3) with still
uniformly distributed observation points x,=
k/(n.+1), k=1,...,n. As Fig. 8 shows, the case
n, = 100 virtually agrees with the “full” observation
case n; = 400. By increasing the resolution in the finite
difference approximation of the system to n=1000
and dr = 10 ~° we were able to decrease the number of
observation points down to n;, =5 before losing the
stabilizing effect.

Remark 5

1. By increasing » further above 1000 it should be
possible to reduce n, to 4.

A. Balogh and M. Krstic

3 7 T Y T T
251 b
Uncontrolled
2+ p
5
Zz 1.5 ]
)
1F |
0.5 J
Controlled
0 . T "
0 0.05 0.1 0.15 0.2 0.25

t

Fig. 7. Comparison of L,-norms.

R

0 0.5 | 1.5 2

1
n=1000

Fig. 8. Approximation of controlled system using reduced
controllers.

2. Another possible way to reduce the number of
measurements even below the very low s, =5 is
to use a low-dimensional observer based on
Galerkin’s method as in [12].

3. We use equispaced observation points in the
derivation of the kernel function k(x). Even
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though numerically this is not necessarily the most
optimal choice, it is a choice that allows to establish
regularity of the kernel and of the closed-loop PDE
system.
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