
�This paper was not presented at any IFAC meeting. This paper
was recommended for publication in revised form by Associate Editor
C. Canudas de Wit under the direction of Editor Hassan Khalil.

* Corresponding author. Tel.: #858-8221374; fax: #858-8223107.
E-mail address: krstic@ucsd.edu (M. KrsticH ).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Automatica 37 (2001) 2033}2040

Brief Paper

Nonlinear stabilization of a thermal convection loop
by state feedback�

Dejan M. Bos\ kovicH , Miroslav KrsticH *
Department of MAE, University of California at San Diego, La Jolla, CA 92093-0411, USA

Received 3 April 2000; revised 26 April 2001; received in "nal form 13 June 2001

Abstract

A nonlinear feedback control law that achieves global asymptotic stabilization of a 2D thermal convection loop (widely known for
its `Lorenz systema approximation) is presented. The loop consists of viscous Newtonian #uid contained in between two concentric
cylinders standing in a vertical plane. The lower half of the loop is heated while the upper half is cooled, which makes the no-motion
steady state for the uncontrolled case unstable for values of the non-dimensional Rayleigh number R

�
'1. The objective is to stabilize

that steady state using boundary control of velocity and temperature on the outer cylinder. We discretize the original nonlinear PDE
model in space using "nite di!erence method and get a high order system of coupled nonlinear ODEs in 2D. Then, using backstepping
design, we transform the original coupled system into two uncoupled systems that are asymptotically stable in l�-norm with
homogeneous Dirichlet boundary conditions. The resulting boundary controls actuate velocity and temperature in the original
coordinates. The control design is accompanied by an extensive simulation study which shows that the feedback control law designed
on a very coarse grid (using just a few measurements of the #ow and temperature "elds) can successfully stabilize the actual system for
a very wide range of the Rayleigh number. � 2001 Published by Elsevier Science Ltd.
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1. Introduction

A feedback boundary control law that globally stabil-
izes the no-motion steady state is designed for a closed
convection loop that is created by heating the lower half
of the loop and cooling the upper half. The imposed
temperature gradient induces density di!erence between
the lower and upper portions of the loop and acts as
a driving force in this system. This motion is opposed by
the damping e!ects of viscosity and thermal di!usivity.

Natural convection loops have been extensively
studied and used in solar energy heating and cooling
systems, geothermal power production, greenhouses,
permafrost protection, emergency reactor cooling sys-
tems, turbine blade cooling, engine and computer cooling
applications, and in process industries. Their extensive
use is primarily due to the fact that they provide a means

for circulating the #uid without the use of pumps. Some
of the studies of such loops include work of Welander
(1967) who analyzed #ow in a rectangular vertical loop
with point heat source on the bottom, point heat sink on
the top, and two vertical branches. Welander concluded
that under given assumptions the system had one steady
solution, with warm #uid rising in one branch and cold
#uid sinking in the other, that may become unstable in an
oscillatory manner. The work of Creveling, De Paz,
Baladi, and Schoenhals (1975) focused on toroidal loop
heated from below by uniform heat #ux and cooled from
above using concentric cooling jacket with high coolant
#ow rate. They demonstrated, both experimentally and
analytically, that for the heat transfer rates in the range
between low and high the #ow becomes unstable. Bau
and Torrance (1981) also introduced and experimentally
validated a model of an open, symmetrically heated con-
vection loop. Unlike Welander (1967), Creveling, De Paz,
Baladi, and Schoenhals (1975), and Bau and Torrance
(1981) who utilized one-dimensional approach by aver-
aging the governing equations over the cross section of
the loop, Mertol, Greif, and Zvirin (1982) derived two-
dimensional model assuming axial symmetry of the
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Fig. 1. Thermal convection loop description.

model and neglecting axial conduction, viscous dissipa-
tion, and the e!ects of curvature.

One of the ways to suppress instabilities occurring in
convection loops and change the nature of the #ow is
through feedback control. Based on the model from Bau
and Torrance (1981), Singer and Bau (1991) and Wang,
Singer, and Bau (1992) demonstrated, both analytically
and experimentally, that the heat convection in a toroidal
vertical loop can be successfully controlled by sup-
pressing or enhancing disturbance occurring in the #ow.
In their work, Wang et al. (1992) noticed that the model
from Bau and Torrance (1981), that implicitly assumes
the friction and heat transfer laws similar to those of
laminar, fully developed, Poiseuille #ow, is not the most
adequate choice and suggested that a more realistic
model might be used. In fact, they have observed in their
experiments the development of a secondary circulation
that may signi"cantly modify both the friction and heat
transfer laws. Using celebrated Lorenz (1963) equations
as a simpli"ed model of #uid convection Bewley (1999)
examined the application of linear control to a low-order
nonlinear chaotic convection problems. Global stabiliz-
ation of the Lorenz equations has been also investigated
by Wan and Bernstein (1995) and JankovicH (1997) by
means of nonlinear feedback control. More recently,
Burns, King, and Rubio (1999) have designed an LQG
controller, the "rst for a general two-dimensional
model of a circular pipe, that achieves local stability
enhancement.

In this paper, we use a model of a closed thermal
convection loop consisting of viscous Newtonian #uid
contained in between two concentric cylinders standing
in a vertical plane. The equations governing velocity and
temperature distribution in this system are the same as
those used by Burns et al. (1999). The only assumptions
made in the model are that the system parameters are
constant except for the density in the buoyancy term
(Boussinesq approximation), the gap between the cylin-
ders is narrow compared to the size of the loop, and that
the azimuthal velocity can be neglected. Note that the
narrow gap assumption implies that the axial velocity
depends on radial coordinate only, which in turn implies
absence of the secondary circulation in this model.

Our objective is to stabilize the unstable no-motion
steady state using boundary control of velocity and tem-
perature on the outer cylinder. To achieve that, we "rst
discretize the original PDE model in space using "nite
di!erence method (both in radial and axial directions)
which gives a high order system of coupled nonlinear
ordinary di!erential equations in 2D. Then, using back-
stepping design (KrsticH , Kanellakopoulos, & KokotovicH ,
1995), we obtain a discretized coordinate transformation
that transforms the original coupled system into two
uncoupled systems that are asymptotically stable in
l�-norm with homogeneous Dirichlet boundary condi-
tions. The fact that the discretized coordinate trans-

formation is invertible, for an arbitrary ("nite) grid
choice, implies global asymptotic stability of the
discretized version of the original system. The coordinate
transformation is then used to obtain nonlinear feedback
boundary control laws for velocity and temperature in
the original set of coordinates.

The paper is organized as follows. In Section 2, a
two-dimensional PDE model for the closed thermal con-
vection loop is derived and stability analysis of the no-
motion steady state in terms of the loop Rayleigh number
is presented. A nonlinear feedback control law that
achieves global asymptotic stabilization is presented in
Section 3, followed by the stability proof for the dis-
cretized system in modi"ed coordinates in Section 4.
Finally, the feedback control law designed on a very
coarse grid is shown to successfully stabilize the system
for a wide range of Rayleigh number in a simulation
study presented in Section 5.

2. Mathematical model

In this section, we derive a mathematical model for the
closed thermal convection loop. The loop consists of
viscous Newtonian #uid contained in between two con-
centric cylinders standing in a vertical plane (see Fig. 1).
We assume that the gap between the cylinders is narrow
compared to the size of the loop, i.e. R

�
!R

�
;

R
�
(R

�
. The narrow gap assumption allows us to

assume that the velocity of the #uid inside the loop
depends on time and radial coordinate only. The azi-
muthal velocity, i.e. velocity of the #uid in a direction
perpendicular to the vertical plane, is assumed to be zero.
The properties of the #uid are assumed to be constant
except for the density in the buoyancy term (Boussinesq
approximation). This assumption, in addition, implies
that the continuity equation is the same as for the incom-
pressible #uid.

The thermal convection loop to be analyzed represents
a problem of coupled velocity and temperature "elds.
The lower half of the loop is heated while the upper half is
cooled. Since the #uid in the upper half of the loop is
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cooled it becomes more dense and tends to move down-
wards. Conversely, #uid in the lower half is heated, be-
comes lighter and rises upwards. The imposed average
temperature gradient therefore acts as a driving force in
this system. This motion is opposed by the damping
e!ects of viscosity and thermal di!usivity.

The Boussinesq equations governing velocity and tem-
perature in this system are those used by Burns et al.
(1999). The spatial domain, in terms of cylindrical coordi-
nates, is (r, �)3[R

�
, R

�
]�[0, 2�], where r stands for the

radial coordinate, � for the axial, and R
�
'R

�
'0 re-

spectively stand for radii of the outer and inner cylinders.
Representing the system from Burns et al. (1999) in cylin-
drical coordinates and integrating the momentum equa-
tion along the circular path at "xed radius r eliminates
the pressure term and gives the "nal form of the govern-
ing equations in cylindrical coordinates as

v
�
(r, t)"

�
2��

��

�

¹ cos � d�#��!

v

r�
#

v
�
r

#v
���, (1)

¹
�
(r, �, t)"!

v

r
¹�#��

¹��
r�

#

¹
�

r
#¹

���, (2)

with boundary conditions v(R
�

, t)"v(R
�

, t)"0,
¹(R

�
, �, t)"KR

�
sin(�), and ¹(R

�
, �, t)"KR

�
sin(�). In

the above system v denotes velocity vector, ¹ stands for
temperature, � and � are respectively coe$cients of kin-
ematic viscosity and thermal di!usivity, � is the coe$c-
ient of thermal expansion, �"�g��, g being the vector of
gravitational acceleration, K is a constant parameter,
while subscripts denote partial derivatives with respect to
corresponding variables. We should emphasize that we
could have prescribed Neumann instead of Dirichlet
boundary conditions for the steady-state boundary tem-
peratures, and later designed the feedback control in
terms of Neumann boundary conditions. The di!erence
for that case would be in modifying the transformed
temperature system (!cz term added on the RHS of the
z
�

equation, c'1/4R
�

), and then using the Agmon's
instead of PoincareH inequality for proving asymptotic
stability in modi"ed coordinates. The main reason for
choosing Dirichlet boundary conditions is the fact that
the most of the work published on stabilization of con-
vective problems uses Dirichlet boundary conditions for
actuation. Under given conditions, the system consisting
of Eqs. (1) and (2) has a no-motion steady state of the
form (v� ,¹M )"(0, Kr sin �). Introducing a new temperature
variable 	"¹!¹M "¹!Kr sin � we shift the equilib-
rium to (v, 	)"(0, 0), which is open loop unstable for
su$ciently high value of K. The objective is to stabilize
v(r, t) and 	(r,�, t) for that case to zero while keeping
v(R

�
, t),0 and 	(R

�
, �, t),0, and using v(R

�
, t) and

	(R
�

, �, t) for actuation. From a physical point of view,
this implies that the total temperature control on the
outer boundary will consist of steady-state component

KR
�

sin(�) modulated by an unsteady control 	(R
�

, �, t).
Note that, since v(R

�
, t) is a scalar independent of � and

	(R
�

, �, t) is a function of �, this actuation is in"nite-
dimensional. Even though actuation is in"nite-dimen-
sional, this is not a simple problem with distributed
(body-force) actuation because the boundary actuation is
one dimensional, while the spatial domain is 2D. The
local LQG design in Burns et al. (1999) (our objective is
global stabilization) uses only 	(R

�
, �, t) for control, while

keeping v(R
�

, t)"0. The design that we present here uses
also the scalar quantity v(R

�
, t) for control. Physically,

this means that we are not only heating the `outer
boundarya of the #ow domain but also rotating the
boundary.

Before proceeding to stability analysis of the origin,
we nondimensionalize the system by introducing a set
of nondimensional variables as r
"r/d, t
"t/(d�/�),
v
"v/(�/d), and 	
"	/�¹, where d"R

�
!R

�
stands

for the channel width and �¹"!(4/�)K(R
�
#R

�
/2) is

the average temperature di!erence between the upper
and lower half of the loop. Omitting superscripts 
 for
convenience, we "nally obtain the nondimensional form
of Eqs. (1) and (2)

v
�
"

1

�
PR

�
C�

��

�

	 cos � d�#P�!

v

r�
#

v
�
r

#v
���, (3)

	
�
"

d�
2(R

�
#R

�
)
v cos �!

v

r
	�#

	��
r�

#

	
�
r

#	
��

, (4)

where we have introduced dimensionless Prandtl
and Rayleigh numbers respectively as P"�/� and
R

�
"(1/C)��¹d�/2��, C being a nondimensional scaling

factor, to be de"ned later, that is going to be used for
normalization of the stability criterion. To prove that the
origin of the system (3), (4) can become unstable for
su$ciently large values of the non-dimensional Rayleigh
number we start by expanding the temperature in
Fourier series in terms of the angle � as 	(r, �, t)"
��

���
S
�
(r, t)sin(n�)#C

�
(r, t)cos(n�). The stability analy-

sis that we are going to perform goes along the same lines
as the one done by Wang et al. (1992) for the simpli"ed
averaged model. The only signi"cant di!erence is that in
our case the system matrix has di!erential operators at
some of its entries, as opposed to real numbers in the case
of simpli"ed model analyzed by Wang et al. (1992).

Substituting 	(r, �, t) into the governing Eqs. (3), (4) and
requiring that these equations be satis"ed in the sense of
weighted residuals, we obtain an in"nite set of partial
di!erential equations in t and r. Three equations will
decouple from the rest of the set (ones involving S

�
(r, t)

and C
�

(r, t)) and can be solved independently. Lineariz-
ing those three equations in the vicinity of (v, c, s)"
(0,0,0) (we have labeled S

�
(r, t) and C

�
(r, t), respectively as
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s(r, t) and c(r, t) for convenience), we obtain a decoupled
system

�
v
�

c
�
�"�

P�
�

PR
�
CI

d�
2(R

�
#R

�
)
I �

� � �
v

c�, (5)

s
�
"�

�
s, (6)

where the operator �
�

is de"ned as

�
�
"!1/r�#1/r�/�r#��/�r�.

Denoting the eigenvalues of �
�

with homogeneous
Dirichlet boundary conditions by !

�
, we "nd the

eigenvalues �
�

of the system (5) to satisfy the
equation

��
�
#(

�
#P

�
)�

�
#P

�

�
!PR

�
C

d�
2(R

�
#R

�
)
"0. (7)

It can be shown that the eigenvalue problem for �
�

with
homogeneous Dirichlet boundary conditions is a special
case of a regular Sturm}Liouville problem. As shown in
Churchill and Brown (1987), it can be proven that 

�
*0.

In addition, for "0 the corresponding eigenfunction is
of the form C

�
r#C

�
r�� and can satisfy homogeneous

Dirichlet boundary conditions only for the trivial case
C

�
"C

�
,0. Therefore, we have that 

�
'0. Using the

fact, we conclude that under the given assumptions the
system becomes unstable if

R
�
'


�

�

(d�/2(R
�
#R

�
))C

. (8)

Since the function on the RHS of (8) reaches its minimum
for i"j"1, choosing C"(2�

�
/�d)(R

�
#R

�
) will nor-

malize the stability condition (8) into R
�
'1. Numer-

ically "nding the "rst three eigenvalues of the di!erential
operator �

�
to be !1019.77, !4077.75, and !9174.34,

we get that the number of unstable eigenvalues increases
to two, three, and four when the value of the Rayleigh
number becomes greater than 3.999, 8.996, and 15.989
respectively. Note that the higher the Rayleigh number of
the system, the more 

�
, 

�
combinations will potentially

satisfy (8), and each of those combinations satisfying (8)
corresponds to an additional unstable root �

�
(

�
, 

�
)

of (7).

3. Control law

To discretize the problem, let us start by denoting
h"(R

�
!R

�
)/N and g"2�/M, where N and M are

integers. Then, with v
�

and t
��

respectively de"ned as
v
�
(t)"v(R

�
#ih, t) and 	

��
(t)"	(R

�
#ih, jg, t), i"0,2, N

and j"0,2, M!1, we represent the non-dimensional

system (3) and (4) as

v�
�
"

g
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�
C

���
�
���

	
���

cos( jg)
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v
�
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�
#ih)�

#
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���
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#

v
�	�

!2v
�
#v

���
h� �, (9)

	�
���

"
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�
#R

�
)
v
�

cos(jg)!
v
�

R
�
#ih

	
���	�
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�����

2g

#

	
���	�

!2	
���
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g�(R
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#ih)�

#
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�����
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#ih)

#
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!2	
���
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h�
(10)

with v
�
"0 and 	

���
"0 for j"0,2, M!1. Since

v(R
�

, t) and 	(R
�

, �, t) are the controls in the PDE, the
control inputs to the discretized system are v



and

	

��

for j"0,2, M!1. We now suggest a backstepping
controller which transforms the original system into
the discretization of the system �

�
"P(!�/r�#

�
�
/r#�

��
), z

�
"z��/r�#z

�
/r#z

��
with boundary con-

ditions �(t, R
�

),�(t, R
�

),0, z(t, R
�

,�),z(t, R
�

,�),0,
which is asymptotically stable in ¸�-norm. We should
stress that the choice of the target system is one of the key
issues. When transforming the original system, we should
try to keep its parabolic character, i.e., keep the second
spatial derivative in the transformed coordinates. Even
when applied for linear parabolic PDEs, the control laws
obtained using standard backstepping would have gains
that grow unbounded as nPR. The problem with
standard backstepping is that it would not only attempt
to stabilize the equation, but also place all of its poles,
and thus as nPR, change its parabolic character. The
coordinate transformation is sought in the form

�
�
"v

�
!�

���
(v

�
,2, v

���
,	
������2����

,	
��������2����

);

(11)

z
���

"	
���

!�
�����

(v
�

,2, v
���

,	
������2����

,	
��������2����

),

(12)

where �
�
(t)"�(R

�
#ih, t), z

��
(t)"z(R

�
#ih, jg, t), and

�
�
"�



"z

������2����
"z


�����2����
"0. The dis-

cretized form of the target system is

��
�
"P�!

�
�

(R
�
#ih)�

#

�
�	�
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���

2(R
�
#ih)h

#

�
�	�

!2�
�
#�

���
h� �, (13)
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���

"
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���
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�����
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#
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#
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h�
. (14)

2036 D. M. Bos\ kovic& , M. Krstic& / Automatica 37 (2001) 2033}2040



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

By combining the above expressions, namely subtracting
(13) from (9), expressing the obtained equation in terms of
v
�
!�

�
, k"i!1, i, i#1, and applying (11) (analog-

ously (14) from (10) for the temperature subsystem, and
then using (12)) we obtain
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starting with �
�
"�

���
,0. The controls are de"ned as

v



"�

��

and 	

��

"�

����

. By inspection of the recur-
sive control design algorithm, one can verify that the
coordinate transformation is invertible (which implies
global asymptotic stability of the discretized system) and
that the control law is smooth.

4. Asymptotic stability of the discretized system in
modi5ed coordinates

In this section, we prove global asymptotic stability for
(13) and (14) in l�-norm with zero Dirichlet boundary
conditions �

�
"�



"z

������2����
"z


�����2����
"

0. Note that by de"nition �
�
,0 and z

���
,0 if k'N or

k(0, and that due to the periodicity in the axial direction
z
���	�

"z
���

for any l"!(M!1),2,0,2, M!1. To
prove the stability of (13), we start with Lyapunov func-
tion <

�
"(1/2P)�


���
��

�
, and "nd its derivative with

respect to time, along the trajectories of the system (13),
to be
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Applying discretized version of the PoincareH inequality
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and substituting h in terms of N in (17) will "nally give
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, (19)

which implies that the system (13) is asymptotically
stable in l�-norm. Following an analogous approach
for system (14), we take Lyapunov function candidate
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Fig. 2. Temperatures 	(r
�
,�, t) in 3F at "xed radius r

�
"R

�
#id/5 (i"1, 2, 3, 4) for R

�
"11.394 with controller designed for N

�
"3 and M

�
"6.

<
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and "nd its derivative to satisfy
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�

)!�
4
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�
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.

This implies global asymptotic stability of (14) in l�-norm
since 4R�

�
!(R

�
!R

�
)�'R�

�
!(R

�
!R

�
)�'0 due to

the narrow gap assumption. We therefore conclude that
the equilibrium (�

�
, z

���
)"(0,0), i"1,2, N!1 and

j"0,2, M!1, of the system (13), (14) with boundary
conditions �

�
"�



"z

������2����
"z


�����2����
"

0 is globally asymptotically stable in l�-norm.

5. Simulation study

In this section, we present simulation results for the
narrow gap convection loop consisting of water con"ned
in between two long cylinders standing in a vertical
plane. The simulation setup is the same as one used
by Burns et al. (1999) (water at 603F), with system
parameters given as R

�
"1.1975 ft, R

�
"1.2959 ft,

�"8�10�	1/3F, �"1.514�10�
 ft�/s, and
�"1.22�10�	 ft�/s. All simulations are run with the
same initial distribution in velocity and temperature
v(r,0)"0, 	(r,�,0)"0.01(sin �#cos �!sin 2�!cos 2�#
sin 3�#cos 3�), in ft/s and 3F respectively, using BTCS
"nite di!erence method for N"30, M"180 and the
time step equal to 0.1 s. As shown in Section 3, control
laws for velocity (15) and temperature (16) are given in
a recursive form that can be easily applied using symbolic
tools available. Once the "nal expressions for velocity
and temperature control are obtained, for some particu-

lar choice of N and M, one would have to use full state
feedback to stabilize the system, i.e. the complete know-
ledge of velocity and temperature "elds is necessary.
Instead, we show that controllers of relatively low order
(designed on a much coarser grid) can successfully stabil-
ize the system for a wide range of nondimensional
Rayleigh number. In general, simulation results suggest
that to accommodate the #ows with higher Rayleigh
number one would have to increase the order of control-
ler by applying recursive expressions (15) and (16) for
higher N

�
and M

�
, where the subscripts `ca stand for

controller. From now on we will use N
�

and M
�

to refer
to a coarse grid discretization used in controller design,
and N and M to refer to a "ne grid used to simulate the
behavior of the system described by Eqs. (9) and (10).

Although we have designed and tested controllers for
both N

�
"2 and N

�
"3, and general M

�
, we only pres-

ent results for the latter case and go brie#y over the
results for N

�
"2. The controller designed for N

�
"2

was capable of stabilizing the system with one unstable
eigenvalue with M

�
"2, and the system with two unsta-

ble eigenvalues with M
�
"4. For the case of three unsta-

ble eigenvalues we could not stabilize the system even
with M

�
"M"180.

We now proceed to deriving control laws for N
�
"3

and general M
�

by introducing h
�
"(R

�
!R

�
)/N

�
and

g
�
"2�/M

�
. Starting with �

�
"�

���
,0 and using (15)

and (16) we "nd expressions for �
�

, �
�

, �
���

, and �
���

,
where �

�
and �

���
are used as controls. The control

signals are dependent on v
�
(t)"v(R

�
#ih

�
, t), and

	
��

(t)"	(R
�
#ih

�
, jg

�
, t) for i"1,2 and j"0,2, M

�
!1

only, which means that we use only two velocity
measurements inside the channel (v

�
at R

�
#d/3 and
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Fig. 3. Temperature boundary control 	(R
�

,�, t) and velocity v(r, t) for R
�
"11.394 with controller designed for N

�
"3 and M

�
"6.

v
�

at R
�
#2d/3) and corresponding 2M

�
temperature

measurements (	
������2�����

and 	
������2�����

) to
compute control laws. The temperature control law is
computed directly for M

�
equidistant points along the

circumference of the outer cylinder, and using cubic
spline interpolation for the remaining points.

As expected, by re"ning the grid in controller design
from N

�
"2 to N

�
"3 we were able to extend the range

of the nondimensional Rayleigh number for which we
can stabilize the system. We are now able to stabilize the
system with three unstable eigenvalues (R

�
"11.394)

with M
�
"6. The temperature evolution in time at

"xed distance r
�

from the center of the loop
(r
�
"R

�
#id/5, i"1, 2, 3, 4) is shown in Fig. 2. The velo-

city v(r, t) and temperature control 	(R
�

,�, t) are shown in
Fig. 3. The corresponding temperature and velocity re-
sponses for the uncontrolled case are respectively of the
order of 0.33F and 0.01 ft/s even after 10 000 s. Although
we do not show those simulation results, the proposed
control law was capable of stabilizing the `less criticala
cases with one and two unstable eigenvalues with smaller
control e!ort in less than 5000 s with M

�
"6.

If we try to further increase the Rayleigh number to
R

�
"19.43, which corresponds to four unstable eigen-

values, we see that the controller designed with N
�
"3

cannot stabilize the origin even with M
�
"M"180.

However, the controller does reduce the state error, espe-
cially in the middle of the loop.

To summarize, controller designed for N
�
"2 was

able to stabilize up to two unstable eigenvalues, and the
one designed for N

�
"3 up to three unstable eigenvalues.

Without any intention to state it as a `provena fact, we
notice that a pattern of a certain kind is repeating for
both N

�
"2 and N

�
"3 cases.

6. Conclusions

A nonlinear feedback controller based on Lyapunov
backstepping design that achieves global asymptotic sta-
bilization of the unstable no-motion steady state for a 2D
thermal convection loop has been derived. The result
holds for any "nite discretization in space of the original
PDE model.

The simulation study indicates that the feedback con-
trol laws designed on a very coarse grid can be success-
fully used to sustain the no-motion steady state well
beyond the critical Rayleigh number associated with the
onset of instability in the uncontrolled system.

Several key questions present a challenge for future
research. It would be of interest to extend this result from
the case of an arbitrary "nite discretization of the model
in space to the continuous model itself. This would,
among other things, involve the proof that the proposed
coordinate transformation remains bounded in the limit
when the spatial grid becomes in"nitely "ne, i.e. when
N and M tend to in"nity. Another key question regard-
ing the applicability of the proposed approach is how one
would measure the velocity/temperature "eld in a #ow
domain. In a CFD setting this would, of course, not be
a problem. However, in experimental application, one
would typically have access only to quantities near the
wall. This would make it necessary to develop observers
and output-feedback control design for these #ow models.
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