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Stability Enhancement by Boundary Control in 2-D
Channel Flow

Andras Balogh, Wei-Jiu Liu, and Miroslav Krsti8enior Member, IEEE

Abstract—In this paper, we stabilize the parabolic equilibrium  Controllability-based solutions, while a prerequisite to all other
profile in a two-dimensional (2-D) channel flow using actuators problems, are not robust to changes in the initial data and model
and sensors only at the wall. The control of channel flow was naccyracies. The stabilization objective indirectly addresses

previously considered by Speyer and coworkers, and Bewley and . .
coworkers, who derived feedback laws based on linear optimal the problems of turbulence and drag reduction, which are

ControL and imp|emented by wall-normal actuation. With an eXpIiCit in Optlmal Contr0| or Contl’0||abi|ity Studies. COfOﬂ'S
objective to achieve global Lyapunov stabilization, we arrive at [12] result on stabilization of Euler's equations is the first

a feedback law using tangential actuation (using teamed pairs result that directly addresses flow stabilization. Concerning
of synthetic jets or rotating disks) and only local measurements e nonlinear PDEs with convective nonlinearities, examples

g{e\évtil)lr:gsﬁ;nsiéﬁsss’yggg'sng(,\tAOE&g?eﬂatrzsv;gdbxﬁm& n::greod- of stabilization and controllability studies can be found in [45],

for wiring. This feedback is shown to guarantee global stability [54], [55] for the 1-D Korteweg—de Vries equation.
in at least H? norm, which by Sobolev's embedding theorem  The boundary feedback control we derive in this paper is fun-

implies continuity in space and time of both the flow field and damentally different from those in [14], [38], [39], [4], [5], [7],
the control (as well as their convergence to the desired steadywhich usewall normalblowing and suction. Our analysis mo-

state). The theoretical results are limited to low values of Reynolds tivated by L tabilizati Its fian tialvelocit
number, however, we present simulations that demonstrate the Ivated by Lyapunov stabilization resufts tangentialvelocity

effectiveness of the proposed feedback for values five order of actuation. Tangential actuation is technologically feasible. The
magnitude higher. work on synthetic jets of Glezer [59] shows that a teamed up pair

Index Terms—Boundary feedback, Lyapunov stability, Of synthe.ticjets can achieve an angle of 8m the normql di-
Navier-Stokes equations, tangential velocity actuation, two-di- rection with the same momentum as wall normal actuation. The
mensional (2-D) channel flow. patent of Keefe [43] provides the means for generating tangen-
tial velocity actuation using arrays of rotating disks.

An implementational advantage in our result is that, while it
uses only the measurement of wall shear stress as in the previous
I N THIS PAPER, we address the problem of boundary cogfforts, it employs it in alecentralizedashion. This means that

trol of a viscous incompressible fluid flow in a two-dimen+he feedback law can be embedded into the MEMS hardware
sional (2-D) channel. Great advances have been made on SWﬁhout need for wiring).
topic by Speyer and coworkers [14], [38], [39], Bewley and The most notable contribution of this paper is in the form of
coworkers [4], [5], [7], and others employing optimal controktapility it achieves. Previous studies of the stability problem
techniques in the computational fluid dynamics (CFD) settingyr yncontrolled Navier-Stokes equations were in the case of
Equally impressive progress was made on the topic of contrabmogeneous Dirichlet boundary conditions [53], [61], peri-
lability of Navier—Stokes equations, which is, in a sense, a prgdic boundary conditions [62] or the domain being the whole
requisite to all other problems. - space [32], [40]-[42], [46], [52], [58], [63]-[65]. In the case of

Our objective in this paper is to globallgtabilize the  pounded domains, these stability results were estimated in terms
parabolic equilibrium profile in channel flow. This objectivegf 1.2 or 1. norm and it is rare to sed* stability, especiallyd 2
is different than the efforts on optimal control [2], [3], [16],stability. We obtain globak 2 stability (i.e., for arbitrarily large
[18]-[21], [26], [30], [31], [33], [34], [36], [60] or con- pg2intial data) which, in turn, ensures the continuity of the flow
trollability [10], [11], [13], [17], [22]-[25], [27]-[29], [35] field.
of Navier-Stokes equations. Optimal control of nonlinear The only limitation in our result is that it is guaranteed only
equations such as Navier-Stokes is not solvable in closggl sufficiently low values of the Reynolds number. In simula-
form, forcing the designer to either linearize or use computgions we demonstrate that the control law has a stabilizing effect
tionally expensive finite-horizon model-predictive methodggr peyond the value required in the theorem (five or more or-

ders of magnitude).
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The paper is organized as follows. We formulate our problen I
in Section Il and design boundary feedback laws in Section Il >
In order to state our main results, we first present some matl >
ematical preliminaries in Section IV and then state the resulty. v
in Section V. In order to prove the results, we need technice
lemmas which are presented in Section VI. With these tecl
nical lemmas at hand, we prove our results in Section VII by -
employing Lyapunov techniques and Galerkin’s methods. Fi >

nally, in Section VIII, we give numerical demonstrations that —
strengthen our theoretical results. 0 1

’W

B

.

\} v

Fig. 1. 2-D channel flow.
Il. PROBLEM STATEMENT

The channel flow can be described by the 2-D Navier—Stoke#$ider the boundary conditions (8)—(10), the Stokes equations
equations VAW + (W - V)W + VP =0 (11)

W, —vAW+ (W -V)W +VP =0, divw =0 (12)
O<z<l, O<y<l, t>0, (1)

divw =0, O<z<l, O<y<l, t>0, has a solution

U=U 13
whereW = W(z, y, t) = (U(z, y, t), V(z, y, 1)) repre- _(y) e (13)
sents the velocity vector of a particle @t, ) and at timet, V=V (14)
P = P(x, y, t) is the pressure dtz, y) and at timet, » > 0 P =P) (15)

is the kinematic viscosity and the positive constargpresents
the width of the channel. Our goal is to regulate the flow to thgith an arbitrary constantC. This shows that under the

parabolic equilibrium profile (see Fig. 1) boundary control (8)-(10) our objective of regulation to the
. a equilibrium solution (2)—(3) can not be achieved. In more
Uy) = % y(l —y) (2) precise words, this solution is not asymptotically stable, and it
_ can at best be marginally stable (with an eigenvalue at zero). To
V=0 3) achieveasymptoticstabilization, in the next section we propose
Plz) =—az +b (4) a feedback law which modifies the boundary condition (7).
wherea = P(0) — P(1) > 0 andb = P(0) > 0 are constants. IIl. BOUNDARY FEEDBACK LAWS
This profile is obtained as a fixed point of system (1). In order to prepare for regulating the flow to the parabolic
To motivative our problem, let us consider the vorticity equilibrium profile (2)-(3), we set
w(z, v, 1) = Uy, v, 1) = Valz, u, 1). (5) u=U-U (16)
With (2) and (3), we get the equilibrium vorticity as v=V (17)
p=P—P. (18)
Gy)=U'y) =V = 51— 2y) (6)
w(y) = -V =—(- .
Y Y 2v 4 Then (1) becomes

Suppose the vorticity at the walls is kept at its equilibrium values  ( u; — vAw + wu, + vuy, + Uy, + U'v +p, = 0,
O<ze<l, O<y<l, t>0,

vy — VAU +uv, + v, + Uvy, +py, = 0,
O<z<l, O<y<l, t>0,

w(z, 0, 1) =w(0),  wlz, 1, 1) =w(l) ()

and the wall-normal component of the velocity at the walls is
zero Uy + vy =0, O<z<l, O<y<l, t>0,

u(az, Y, 0) = Uo, U(‘Tv Y, 0) = Yo,
V(xvovt):()v V($7l7t):0 (8) \ 0<$<1, 0<y<l.
19)
The objective of these no-feedback boundary conditions mighs avoid dealing with an infinitely long channel, we assume that
be the reduction of near-wall vorticity fluctuations. These, v, v, andp areperiodic in thez-direction i.e.,

boundary conditions imply
w(0, y, t) =u(l, y, t),  v(0,y,t) =v(l, y, 1),
Uy (z, 0, ) =w(, 0, ) + Vo(w, 0, £) = & 9) O<y<l, t>0 (20)

U$(07 y7 t) :UW(17 y7 t)? p(07 y7 t) :p(17 y7 t)?
Uy(xv L t) :w(x, L t) + Vl‘(xv L t) = _E' (10) O<y<l, t>0. (21)
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Fig. 2. Tangential velocity actuation.

Our boundary control is applied via boundary conditions The tilde sign will refer to this periodicity in the case of other

0.4 — & 0. ¢ 0 1 t0 classical function spaces as well.
u(z, 0, 1) = kuy(z, 0, 1), 0<z<1 t>0, We shall often be concerned with 2-D vector function spaces
u(z, I, t) = —kuy(z, 1, t), 0<z<1, t>0, 22) and use the following notation to denote them:
v(z, 0, t) =0, O<z<<l, t>0, i {_EQ(Q)}Q (30)
v(z, I, t) =0, O<z<l, t>0
wherek is a positive constant. The physical implementation of H! = {gl(g)}2 (31)
this boundary condition is
~ ~ 2
H? = { H*(Q 32
U(z, 0,t) =k [Uy(a:, 0,t) — ;—l} (23) { ( )} (32)
14 ~
o v = {o e 0™ (e, ) € G0, 1)
Vi b ) ==k [Uy(x’ Lo+ 5} @) Ve e, 1]} (33)
V(z,0,t) =0 25 . .
(0, (23) V:{(u,v)Eleum—i—vy:OinQ,
Viz, 1, t) =0. (26)
v(z, 0) =wv(z, 1) =0 (34)
This means that we are actuating the flow velocity at the B o }
wall tangentially Only the sensing of the wall shear stress H =the closure oV in L2, (35)
Uy(z, 0, t) and Uy(x, I, t) (at the respective points of ac-

tuation) is needed. The action of this feedback is pictoriallj/® various norms of these spaces are respectively defined by
represented in Fig. 2. The condition (23) and (24) can be also

Wi =(W, w 1/2 36
written as Il = ) 1/2 oo
2 2 2
= = 4 |IVullz, + | Voz, 37
2 2 2
12 — 71 \Y z [T 2 Vu, [.2
Ulz, 1, ) = —k[w(, 1, £) — a()]. 28) Wl = (Wl + 1Vuslifz + |1|/2uy||L
_ _ _ Hlvallfe + 11V liE.) (38)
In the next sections we shall see that this control law achieves
global asymptotic stabilization, whereas, as we saw in Sec- [wlle = ((w, w))*/? (39)
ion Il, th I 7)i icall ilizing. -
tion 11, the control law (7) is not asymptotically stabilizing where(-, -) denotes the inner product bf and((-, -)) denotes
the inner product oV defined by
IV. MATHEMATICAL PRELIMINARIES

I L
LetQ = (0,1) x (0,1). In what follows, H*(£2) denotes the ((w &)) = // T {Vw 'V} drdy
usual Sobolev space (see [1] and [49]) for argy R. Fors > 0, 0J0
H3 () denotes the completion afg°(2) in H*(§2), where 1/t
C§°(R2) denotes the space of all infinitely differentiable func- T /0 (u(z, 0)&(@, 0) +ulw, DE(w, 1)) dz (40)
tions on$2 with compact support if2. We denote byH*(Q2) the .
space of the restrictions foof functions which are itk (R?), forallw = (u. v), & = (£, ) € V. !
i.e.,ulo € H*(S2) for every open bounded st and whichare  Let X be a Banach space. We denote &%([0, 71; X)
periodic in thez-direction the space ofl times continuously differentiable functions

defined on[0, 7'] with values inX, and writeC([0, T7]; X) for
u(z, y) = ulz+ 1, y). (29) C%([o, T]; X).
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Definition 1: A functionw = (u, v) € L3([0, T]; V) is a 2) the regularity statement implies thet(x, y, ¢) is con-

weak solutiorof system (19)—(22) if tinuous in all three arguments. This observation has an
d important practical consequence: the tangential velocity
—(w, @)+ v((w, @)+ ((w-V)w, ) actuation at nearby points on the wall will be in the same
dt direction.

TT. TT/
+(Uwa, @) + (U0, §) =0 (41) Remark 2: If the viscosityry < +/al3/2, the problem of
is satisfied for al® = (¢, ) € V andw(z, y, 0) = wo(z, y) Poundary control remains open. The methods presented in this
for all (z, y) € Q. paper can not be applied to this case and a radically different
method needs to be developed.

V. THE RESULTS
VI. TECHNICAL LEMMAS

Theorem 1: Suppose that ) ) ] ) )
In this section, we establish technical lemmas which are the

al? d key to proving our main results.
veyTg A 0<k<if2 (42) SinceH is a closed subspace Bf, we have the orthogonal
and denote decomposition
/ ]:2 — I:I @ I:IJ_ (47)
2 4v

whereH' denotes the orthogonal complemen¥bfLet P de-

Then there exists a positive constant 0 independent ofv, note the projection frork.? ontoH. We define the linear oper-

such that the following statements are true fortall 0 for the ator A onH as

system (19) with periodic conditions (20)—(21) and boundary

control (22).

1) Forarbitrary initial datavo(z) e~ﬂ, there exists a unique with the domainD(A)

weak solutionw € L2([0, oo); V)N C([0, oc); L?) that L
satisfies the following global-exponential stability estiL(4) = {W = (u, v) e HN' Vi u(z, 0) = kuy(z, 0),

mate: u(z, 1) = —kuy(z, l)}. (49)

We first give some basic properties of the subspafed -

2) For arbitrary initial dataw(z) ¢ V, there exists and the operatar. These properties are similar to the classical
a unique weak solutionw € L?([0, co); H2 n results in the cases with homogeneous Dirichlet boundary con-
V) N L>([0, 0); V) that satisfies the following dition (see, e.g., [61, Ch. I, Sec. 1], [9, Ch. 4]) and periodic
global-asymptotic and semiglobal-exponential stabilithoundary condition (see, e.g., [62, Ch. 2]). Thus, their proofs are
estimate: also similar, however, for completeness, we give brief proofs.

The following lemma shows that (47) is in fact the so-called

(45) Helmholtz decomposition df2.

Lemma 1: The subspaced andH~ can be characterized as

Aw=-P - w (48)

W (@)l < llwolle™"". (44)

(@)l < ellwollg explellwolld, )™/,

3) For arbitrary initial datavo(z) € H? NV compatible ¢

follows:
with the control (22), there exists a unique weak solution .. _, -
w € CY[0, >); L?) N C([0,0); H? N V) that satis- H™ = {W ceL:w=Vp,pcH (Q)} (50)
fies the following global-asymptotic and semiglobal-ex- R R
ponential stability estimate: H= {w = (u, v) € L?: divw = 0,
Iw(®llge < elwollge exp(ellwoll)e "% (46) v(x, 0) = v(z, 1) = 0} : (51)
The bound of the form (46) also applies fiev.(t)|], Proof: The proof of (51) is the same as the proof [61, Th.
Vo)l andmax, g |w(z, y, t)]. 1.4, p. 15]. We include the proof of (50) which is based on the

In all of the above cases solutions depend continuously on #@of of [47, Th. 1, p. 27].
initial data in theL2-norm and the existence, uniqueness and Letw = (v, v) belong to the space on the right-hand side of
regularity statements hold for amy> 0 andk > 0 over finite  (50). Then for allz = (¢, £) € V we have, using integration
time intervals. by parts

Remark 1: Weak solutions satisfying the regularity stated in pt 1 !l
parts 2 and 3 of Theorem 1 are called strong solutions in thﬁf/ (upp+v€) da dy = // (Patb+py€) dx dy = 0. (52)
literature. Part 3 of Theorem 1 means, in particular, that 070 070

1) the control inputsi(z, 0, ¢) andu(z, I, ¢) are bounded SinceV is dense ik, we deduce thay € H™.

[ArSt
INote that this condition is equivalent to the requirement that the Reynolds _ _ \/
number be smaller than 1/8. oJo (uz/) + vﬁ) dx dy =0, Vz = (1/)7 5) €V. (53)
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Letw,(z, y) denote a mollifier. Fop € V, we denote by, its we have
average

Jdopl .1 ol
// qua:dySZZ/ u? (e, O)da:+12// uida:dy.
eolan) = [ wlo—sy-rple, )dsdr. (68 Soho : olo T o
R2

. . , Similarly, we h
If p is small enough, theg,, is well-defined orf2, = [0, 1] x imiiarly, we have

[p, I — p], itis periodic in thez-direction and vanishes with its bt 2ot
derivatives on the horizontal lines= p andy = [ — p. Hence /0/0 vidzdy < D) /0/0 vy dz dy. (66)

2= (ppy, —Pps) EV. (55) It therefore follows that:
U rl
Thus, we have // (2 + 0?) da dy
i pl 0J0
0:// WP oy — VP p) AT dy " 1l
0J0 (wery 2 SZZ/ uQ(x,O)da:—i—lQ// (ui—i—vz)da:dy (67)
{ pl 0 0J0
- /0/0 (upipy = Vopw) dr dy which shows that
1
://(%—%wmw (56) Wl < ellwlly- (68)
0J0
where the functions,, andv, are defined orf2, and are the O the other hand, using (64) again, we deduce that
averages of. andv respectively. Since € V is arbitrary and 1 ) 1,1 , ,
Vis dense inL?(12,,), we have / u(x, 0)dx < c// (u” +uy) dv dy. (69)
0 0J0
Vpz = Upy on Q. (57)  Similarly, we have
Take anyyo € [p, | — p] and define 1 1
(=) / (u?(z, 1) dr < c/ / (u? —|—u§) dx dy. (70)
Ty 0 o Jo
z,y) = u, dx + v, dy. 58
2o 9) /(o,yo) ! r (9) It therefore follows that:
Then we have lwllv < ellwl|g:- (71)
w, = (up, vp) = Vp, on Q. (59) 0

It is well known that for any fixed interior subdomai® of ~ Lemma 3: The norm||Aw|| on D(4) is equivalent to the

Q, w, converges tov in L2(2') and thenp, converges to a Mo'M [[w|l induced byH?.
functionp in H(£') and Proof: By the definition of the operatad, we have

w=Vp on(. 60) (Aw®)=((w®)), Vw=(u,v)eD(A),

Since’ is arbitrary, we have e=(neV. (72

As in the proof of regularity of solutions of the Stokes equations
with homogeneous Dirichlet boundary conditions (see, e.g., [9,
Finally, we show thatp is periodic in thez-direction. Let Ch. 3]), we can readily prove that

;%, y) = (¢(y), 0), wherey € C5°([0, {]). Clearlyz € V, D(4) = {W CH Aw e f{} 73)

I pl I pl .. .
0= // w, -z dody = // w,(x, y)(y) dz dy. (62) Hence, by Proposition 9 of [15, p. 370)( A) is a Banach space
0J0 0J0 when provided with the graph norm

w = Vp on €. (61)

Sincey is from a dense subset &f, we obtain Wl = (w2 + || Aw][?)1/2.

1
/ up(z, y)de =0  for ) (63) Inaddition,D(A) with the norm|| - || - is also a Banach space,
0 and the norny| - || - is stronger that - || p4). By the Banach
With this and with definition (58) we obtain thaj,, and hence open mapping theorem (see, e.g., [57, p. 49]), these two norms
p is periodic in ther-direction. O |wllg. and||w||p.4y on D(A) are equivalent. On the other
Lemma 2: The norm||w|| on'V is equivalent to the norm hand, by (67), we have
|w|lg: induced byH!.

Proof: Using the identity [wll < cl|Awl]. (74)

B y Hence, the normj Aw/|| is equivalent tothe noriw/|| p.4), and
u(x, y) = u(z, 0) +/0 uy (%, y) dy (64) " then equivalent to the norm induced Bi. |
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The following inequality is a special 2-D extension of a clasand
sical inequality (see, e.g., [48 2
qualiy (see, e.9., [48] IV < 1TVl 46 (5 + 3 ) Il (8)

lellze < BIVellTllellz (75) , B .
_ . Inequality (79) and (80) are trivial consequences of definition
which holds for anyy € W7, (Q2), m > 2, > 1, where (77). In order to see the validity of (81) one has to estimate the

QCR:Lr<g<oo different pieces oV, One of these estimates, for example is
<1 1) <1 1 1) 1 the following:
a=|—-—-- e 20 p2k 5
r o q 2 m T _ f _Y¥ _ _
and /l /k ‘V (2 (2 k) o2l — z, 2k y))‘ dzx dy
_ q. _ . 20 2k
§= max i 1+ (m—Lmr}. -1 (;(2__ o 2%y
HereI/(I)/}n denotes the subspaceldf (£2) functions whose gra- T 2
dient is also inL™(£2) and in which the sef§°() is dense. (2 - 7) (2 - —) (20 — =, 2k — y)) dx dy
Lemma 4: For any rectangular regiol = [0, {] x [0, k] C o ok
R2, wherek, I > 0, and for anyy € H(£2) and2 < ¢ < / / < 2 — Y o2l -z, 2k — )
the following inequality holds:
2
lellze < mllell + 2l Vel *llellt (76) +(2_7) (2_ %) 0, (2l — z, 2k—y)> dz dy
wherea = 1 —2/q and~, 2 are positive constants depending 9 9
only on the size of2 and ong. < l—2||<P||2 +2lla* + ﬁ||<ﬂ||2 + 2/l |17
Proof: Consider an arbitrary € H!(£2) and its extension 9 9
( o(z, ) if (z, ) € [0, 7] x [0, k], <l_2+ﬁ> lpll® + 2/ Vel (82)
(1 + %) o(—z, y) Combining inequalities (78)—(81), we obtain
if (2, y) € [=1, 0] x [0, K], 2 /2
) (e LXK ooy < (1119l + 6 (5 + 2 ) )
2—— 20 —
( l) o x v) % 9(lfa)/2||¢||l a
if (z,y) €[, 2] x]0, k],
. L1212\
(1+ ) ole - <4 (17 AIvel+ (3 + ) ||<P||>
it (2, y) € [0, 1] [k, 0], T
(2 — E) (p(.’L' 2k — y) @ l—«
k =mllell + Vel *llell™ . (83)
Bz, ) = it (2, ) € [0, 1] x [k, 2K], .
X
(D) (e
if (x, ) € [, 0] x [k, 0], VIl. PROOF OFTHEOREM
1125 (o Y o We first establish oua priori stability estimates and then deal
( T 7) ( B E) o=, 2k —y) with questions of existence, uniqueness and regularity.
if (x, y) € [-1, 0] x [k, 2], Letw = (u, v). We define the energi(w) of (19)—(22) as
2- Y (1+ D
(2-7) (1 }) e - -w) B(w) = |[wl” = // ) dedy  (84)
if (‘7;7 y) € [lv 21] X [_kv 0]7
and the high order energl(w) of (19)—(22) as
(2—§)(2—g>¢(2l—x,2k—y) 9 9iw) of (19)~(22)
l k/ J(w) = w3
L if (z, y)€[0,]] x [k, 2k].
(77) // u? —|—u + 032 —|—v)dxdy
Inequality (75) applies tg witha = 1—-2/gandr =2 < ¢ <
0, sincep € HY(Q) and@(z, y) = 0 for (z, y) € 8Q, where E / (u?(x, 0) +u*(z, 1)) de. (85)
Q = [, 2] x [k, 2k]. We have o o _
Part 1: Multiplying the first equation of (19) by: and the
”‘PHT‘I(Q) < ﬁnv‘P”Lz(Q)”‘P| Lz(Q) (78)  second equation of (19) by and integrating ovef? by parts,
we obtain
We have the following relationships between the norms afid i
o :—21/// u? +u + 02 —i—v)da:du
el zocy < N8l ocey (79) 3
U'ww dx dy—/ dy
181122y <9l (80) / / o,
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y=0
1 1
dy—/ V3
=0 0 :
L !
dy—2/ U
=0 0
1 l {
—/ pU da:+21// UpUh
0 y=0 0
1 i
—|—21// Uy
0

1 1
+2 / Uy v
0 y=0

d ol
:—21/// (ui—i—uz—i—vi—l—vz)dxdy
0

=l

=0

{
dx —|—21// VpU
0 0 o

dz

y=

l

[N 1
—2/ U’uvda:dy+2u/ Uyt
0Jo 0

Here, we have used the relations

ue(0, 4, 1) =uz(1, 4, 1),  uy(0,9,1) =
and

Uy(ov y7 t) :Uy(lv y7 t)

dz. (86)

y=0

(87)
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Multiplying (89) by ¢°t, we obtain

4 (7' E(w)) + ce”tJ(w) < o’ E(w) < o E(wo)e 7",

dt (91)
Integrating from O ta gives
ot

e E(w(t)) —i—c/o e”*J(w(s))ds < E(wo)(2—¢ 7" (92)
which implies
c/t e”* J(w(s))ds < 2F(wy), Ve>0. (93)
0

In order to obtain further estimates on we multiply the first
equation of (19) bydx and the second equation of (19) Hy
and integrate ove2 by parts. This gives

11
// (ur Au + vy Av) da dy
oJo
= 1// / (AvAu + AvAv) de dy
0
- // (uugC + vy +Tu, +U'v +px) Audx dy
0

_ // (wvs + vvy + Uy + py) Avdz dy. (94)
0

Since there exists € H such that
Aw = PAw +z (95)

we have (noting thafolf(;L w; - zdzdy = 0)

which follow from the periodic conditions (20)—(21) and the
divergence free condition. It therefore follows from (67) that // (upAu + v Av) dx dy
0J0

E‘(W)<_%E(w)+@/1 2(z, 0, t)da:—i—l—aE( )

R l

1
:// (ueAu + v Av — wy - z) de dy
0J0

) 1
- (@t + (@, 0, 8) da l 1 : l
2/€ 0 , = / (uptty + V1v) dy+/ (upuy + vivy) dz
=2 B(w) + o B(w) ’ #=0 ’ v
1 Ugp Uy + Uyt Uy + Vat Uz + Uyevy) d dy
_/ <2V<%_%) (@, 0, 1) (@, 1 t)) d // s e e
0 = —= J( ) (96)
2v al £ 88
="\ 2 (w) (88)  and (noting tha}‘,folfo1 Aw -z dx dy = 0)

This implies (44).
Part 2: By (67) and (86), we have

el
E(W)S—Ql//()/o (W2 +ul + vl 4+ vl) dw dy

< —cJ(w)
where, by (42)

+ 2 Bw) - 2”/ (W2(z, 1, ) +u2(, 0, 1)) do

al®
<— (2 -5 (u2 +up + v +vy)dody
2/ alQ 2 2v 2
‘/0 <<r7) e 0 Dt pele | t)) d”“"

(89) +2// ((Uuw —i—ﬁ’v) Au—i—ﬁvav) dx dy.
0J0

S !l
// (AvAu+ AvAv)de dy = // || Aw||? dx dy. (97)
0Jo 0Jo

Moreover, sincedw € H andVp € H-, we have

!l
// Vp - Awdx dy = 0. (98)
0Jo

It therefore follows that:

Jw) = =2 Awl +2 [ /

X ((wie + vuy ) Au + (wu, + vuy) Av) do dy

(99)

By Lemma 4, Young's inequality and Lemma 3, we deduce that

(90) (the following¢’s denoting various positive constants that may



BALOGH et al: STABILITY ENHANCEMENT BY BOUNDARY CONTROL IN 2-D CHANNEL FLOW 1703

vary from line to line and being a positive constant that will Slnce

be chosen small enough later)

1
/ / ity A s dy < [[u o |4 | o | A
0J0

< eIVl lul[*? + Jlul))
X (V|2 e 12 + [l )] A

<cai(E, J)+¢||Aw]|? (100)
where
(B, J) = E(w)J(w) + EX(w)J(w)
+ 3 2(W)EY?(w) + J2(w)E(w). (101)

In the same way, we can estimate other integrals and obtain

// ((vng + vuy) Au + (wvg + vuy) Av) dz dy

< coy(E, J)+e||Aw|*. (102)
Further, we have
I pl
// ((UU,T + U’v) Au + UU,TAU) dx dy
0/0
< c(e)(J(w) + E(w)) +¢||Aw||®>.  (103)
Takinge small enough, we deduce that
J(w) < «(E(w) + J(w) + i (E, 1)) — v||Aw|*. (104)

Hence, using (93) and applying [51, Lemma 4.1] with
g=c(EJ + JY2EY?),

h=c(J+E+EJ+ E*)), y=J  (105)
and
Cy = c(BE(wo) + E*(wo))
Cy = c(E(wo) + E*(wo) + E°(wy))
Cs =cE(wo) (106)
we deduce that
J(w(t)) < Bu(wo)e™ ™, Vt20 (107)
where
Pi(wo) = c(E(wo) + E*(wo) + E*(wo)
+J(wo) exp(c(E(wo) + E*(wy)))). (108)

Sincer? < ¢e”

E(wp) < c||W0|| we have

HL’
1\Wo) = 0l €X Ollgge/-
Pr(wo) < cl|wollF, exp(c]lwollg.)

Hence, by Lemma 2 and (107), we deduce (45).

(109)

Part 3: We differentiate the first equation of (19) with respect

to £ and multiply it by, and integrate ove®. This gives

i pl
// Upp Uy dx dy
0J0
1 p1
:1/// ur Ay dz dy
0J0

— // (U Ug sy + Wlhgrthy + VeUyly + Viytty) da dy
0J0

—// (U + U'vguy + prau) dz dy. (110)
0

" < ce™ for T >0and: =0,1, 2,3 and

// u Ay dzx dy
=/ Uy Uy da:—// u,,,—i-uﬁ)da:dy
0 y=0

1
:—1/ (u(z, 0, t) +u2(x, 1, t)) do

// um—i—uyt dz dy

(uumut + vy ) do dy

(111)

040
1 l
dx

l 1
z% / uuf dy+ / vu?
0 y=0
// (uz + vy utda:du—()
l
// umufda:dy
0J0
1 L 11
:/uut2 dy—2// Uz dz dy
0 0 0J0
i pl
:—2// Wz Uy dx dy
0J0
[ p1
// Uy Uy Uy d dy
0J0
. l
:/ VU Uy

(112)

(113)

dy — // Wyt + Wty ) dit dy
=0

// (Wlprtisy — ULy ) da dy (114)
// Uumutda:dy——/ Uu, dy=20 (115)
0 z=0
[N
Dattiy dx dy
0
! ! [
:/ pruy dy—// Prge dz dy
0 _ 0J0
z=0
11
[ pdedy (116)
0J0

we deduce that

§dt <// utdxdu>
———‘/ (W2(z, 0, ) +12(z, 1, 1)) do
// m—i—uyt Ydx dy
—|—// (utgrtr + wvpttye ) da dy
o . 11
—// U’vtutda:dy—i—// Prugr do dy.  (117)
0Jo 0Jo
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Differentiating the second equation of (19) with respect,to we deduce that

multiplying it by »; and integrating ovef2, we obtain

1 p1
// vy A dy
0J0
i pl
:1/// v Avy dx dy
0J0

— // (Ut Up Ut 4 WU U + V0, U + VU0 ) dz dy
0Jo

1,1
—// (Uvmvt —|—pytvt) dx dy. (118)
0Jo
Since
// v Avy dz dy
:/ Uy Uy da:—// v,,,—l—vﬁ)da:dy
y=0
// v,,,—i—vﬁ dx dy (119)
// (v + Vo) de dy
0Jo
1 ! 1 !
:%/uvf dy—i—%/ vl dz
0 =0 0 y=0
11
—%/0/0 (uy +vy)vi dody = 0 (120)
1,1
// vyvfda:dy
0Jo
1 l 1,1
:/ vvf da:—2// VU d dy
0 y=0 oJo
11
=—2// VU d dy (121)
0Jo

1 1
// UV vy dx dy
0J0
. 1
:/ U VU

du // VUt Ut + ViUt ) d dy

// VUV — ViU ) A dy (122)
// Uvgpvp dedy = 1 / th dr =20 (123)
=0
1 p1
// Dy dz dy
0J0
1
= / pﬂ/f d37 - // Dy dx dy
// DV dz dy (124)

2dt <// vtdxdy>
—1/// (v3, +vyy) da dy
0Jo

d ol
+ / / (VU + VU ) dz dy
0Jo

I pl
+ // DUyt dx dy.
0J0

It therefore follows from (67), (117), and (125) that

(125)

E (we)

el
:—21/// (uit—i—uzt—l—vit—i—vgt) dzx dy
0Jo

2v

1
- ? (th('Tv 07 t) +ut2($7 lv t)) dx
0

+2 // (Wltarter + W0y + VUGV + VUUze ) d dy
0

11
—2// U'vyuy de dy
0Jo

9y 1
< —I/J(Wt)+<§—l—l/l_2> E(“’t)"‘%/ ul(z, 0, t) dx
174 0

124

1
v | 0,0+ i 1) de
0

+2 // (Wlzptr + WO Uy + VUV + VU UL ) da dy.
0
(126)
By Lemma 4 and Young’s inequality, we deduce that (the fol-
lowing ¢'s denoting various positive constants that may vary

from line to line ands being a positive constant that will be
determined later)

l
/ Uty A dy
0
< el s fluwe] [ s [l |
< IVl 2 [ul 2+ [l (e [ (e 2 4 e ) e |
< IV w)EYH(w) + BV (w))

x (Y w)EY*(wy) + EY? (wy)J Y (wy))
< coo(E, JYE(wy) + eJ(wy) (127)
where
w(E, J) = E(w)J(w) + E*(w) + J(w) + E(w). (128)
Similarly, we have
// Uiy vy dac dy < con(E, JHYE(wy) +eJ(wy)  (129)
0Jo
/I/l vugy de dy < cao(E, J)E(wy) +eJ(wy)  (130)
0Jo
//1 vUgts do dy < cas(E, J)E(w;) +eJ(w;).  (131)
0J0
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It therefore follows from (126) that Hence, by (138) and Lemma 3, we deduce (46) and inequalities
] (134) and (141) show the stated bound|ef.(¢)||.
E(wy) < (e—v)J(wy) — 0 E(wy)+cao(E, J)E(wy) (132) Multiplying the first equation of (19) by, and the second
equation of (19) by, integrating ovef? and using (102) and

which implies (103) with Aw replaced byVp, we obtain
2
- (' E(wy)) < cax(E, J)et E(w,) @33y  [IVe@ll
\% Aw -V
whereo is given by (43). Therefore, by (93) and Gronwall's // Wi VP raws Ve
inequality (see, e.g., [44, p. 63]), we deduce that + (utty + vy )pe + (wv, + vuy)) de dy
E(wy (1)) < E(w(0)) exp(cE(wo)(E(wo) + 1))e™ 7", - // (Uug +U'v) pe + Uvapy) dady
0J0
Ve 0 39 <eBw) + AW + as(B, ) +| Vol (143)
On the other hand, by (94), (97) and (98), we have From this last inequality the stated bound |f¥ip|| follows by
, (44)—(46).
V]| Aw| Existence and RegularityWe use the Galerkin method to
prove existence of solutions. We look for an approximate solu-
= w; - Aw + (uu, +vuy, ) Au .
/0/0 (ws ( ) tion in the form
+ (uv, + vuy)Av) dx dy n
Lpl . . w'(z, y, t) = cin(6)Pi(z, ¥), n=1,... (144)
+ // ((Uuw + U'v) Au + vaAv) dx dy. (135) i—1
0J0
) _ where the sef®; };>; forms a Riesz basis i(A). We require
Using (102) and (103) we obtain thatw” satisfies (41), i.e.,

V||AW||2 < C(E(Wt) + a?:(Ev ])) +E||AW||2 (136) //1 (Wn P, + VTI‘{VW"V@} + (Wn . V)W
t 7 7
0J0

where +TW!®, +U'0"g;) dody
1
calBy )= Bw) I+ ealB ) @3 [ 1 06, ) + e 0, 06, 0) de

0

Hence, by (44), (107) and (134), we deduce that (145)
lAw||? < Ba(wo)e 7, V>0 (138) forall ®; = (&,m), i = 1,..., n. Expanding the defini-
tion of w™, (145) provides us with a system of first order or-

where dinary differential equations for the time dependent coefficients

. . {ein(t) }i>1, Wwhere we choose the set of initial conditions
Ba(wo) = c | E(w(0)) + E'(wo) + JH(w l
2wo) ( () 2_; (o) 2_; ( °)> cm<0>=/ wo(z, y) - ®i(e, y)dedy  1=1,...,n.

x exp(cE(w(0))(E(w(0)) + 1)) (139) 0 (146)

N o ) This system depends dr;,, };>1 analytically, hence, in order
In addition, multiplying (19) byw, as in the proof of (136), we o show the existence of a unique solution forak [0, 77,
can prove that it is sufficient to verify the boundedness Pf:i,, ()| }i>1. This
is equivalent to the boundedness of the nofie™ (¢)|| }.>1
as a consequence of the syst¢i; },>, being a Riesz basis.
Replacing®; by w” in (145) we deduce estimates (44) and (93)
for w™. Namely

E(wy) < c (|Aw|]> 4+ as(E, J)) + eE(w:) (140)

which implies that

4
. . n < n —ot < —ot
B(wi(0)) < ¢ (nwOH%p + 3 (Ei(wo) + JZ(wO») . It O e < liwolle (47
=1
(141) 2and
Thus, as in (109), we deduce that e .
| et @l e < Ml < Miwoll - (148)
0
Pa(wo) < <||W0||H2 + Z E'(wo) + Z J'(wo ) for some constantd/ ando and for a.az € [0, 77. In these
i=1 calculations the steps are justified using the regularity®f
X eXP(CE(WO)(E(WO) +1)) The next step in Galerkin’s method is to show that a sub-

< cllwollZ. exp (cllwollZ, ) - (142) sequence of approximating solutiofis”},~, converges to
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a limiting functionw asn — oc. The convergence is ob- T 1 ! , 1/2
tained using compactness arguments. In our case, by the uni- < M||€||L°°/ C(t)/ / [u™ — ul* dy dx dt
0 0 0

form boundedness of the sequefiee* },,>1 in L2([0, T]; V)N

L*>([0, T]; H) a subsequencew”},>1 converges to some el- T 1/ 1/4
ementw € L*([0, T]; V) n L>([0, T]; H). The convergence + M{[¢]| L~ / C(t)/ </ |uy — Uy|2dy>

is weak inL2([0, T]; V), weak-star in.>°([0, 7]; H) and, due 0

to compactness ([61, pp. 285-287]) strongLi#([0, 77]; V). /4

These convergence properties enable us to prove, as a fmal step X </ u — uf? dy) da dt (152)

of Galerkin’s method, that the limiting functiow is in fact a

weak solution of (41). We have to show that each term of equgnere we used the 1-D equivalent of inequality (76). We further
tion estimate expressions from (152)

I rl I rl
4 // w" - ®drdy+ 1/// Te{Vw'IV®} dx dy T 1 ! 1/2
dt JoJo 0J0 / c(t)/ </ |u™ — u)? dy) dx dt
0 0 0

1ol
".V)w" - ®drd
+// (w w x dy . . 12
S/ e(t) // | — u|? dz dy dt
// UW"{Jda:du—i—// U7 dz dy 0 0J0

T 1/2 T 1/2
__E/o (u"(z, I, )¢(z, ) + u"(z, 0, t)¢(z, 0)) dx < </0 CQ(t)dt> </0 ||W"—W||2dt> . (153)

(149)
Heref0 |lw™ — w||? dt converges to zero as— oo according
to the strong convergence I ([0, 77]; H). The last expression

d [t Ll in (152) can be estimated the following way:
—// W-‘I)da:dy—i—l/// Te{Vw! V®} dx dy

T 1 l 1/4
n 2
// w - V)w - ®dz dy /0 C(t)/o </0 |y = uy] dy)

1/4

l
// Uwr@da:dy—i—// U'vé dr dy ><</ |u"—u|2dy> dx dt
0

124

:‘E/ (u(z, 1, DE(e, )+ ulz, 0, DE(z, 0)) do </T o[V — w2 — w2 dt

converges to the corresponding term of

0 =
(150)

T 1/2
forall ® = (¢, 1) € V. This is a standard step in the theory < sup (Iw”ly +Iwllg)'? </ *(t) dt)
of Navier—Stokes equations for all the terms except the ones on +el0, 7] 0

the right-hand side of (149) and (150). These terms are present T 1/2
due to our special boundary conditions (22). We prove here the X </ [w™ —w]| dt)

convergence of the first term on the right. The convergence of

the second term can be proved in the same way. We have to show T 1/2
< n 1/2 2
that < sup ([w"lly +lIwlly) (1) dt
L L tc[0, T
n n—oo 1/4
w(z, |, O)¢(x, ) de == w(zx, 1, t)¢(x, ) dx T
/0 0 x VT W™ —wl|dt | . (154)
(151) 0

forall ® = (¢£,7) € V. We take the difference of the two sides
in (151) and take thé.?[0, 7']-inner product of the result by a Here the last factor converges to zero while the other factors are

functionc(t) € L?(0, T"). We obtain bounded as — oc. Sincec(t) € L*(0, T') was arbitrary, we
- L obtain the desired convergence result.
/ </ Wz, 1 eV, 1) d It follows from the Helmholtz decomposition (50)—(51) that,
0 0 once the existence of weak solutiongs established, we obtain

1 the existence of pressuge so that (19)—(22) are satisfied in a
—/0 u(z, 1, t)e(t)é(z, 1) dx) dt distributional sense.
T The rest of the regularity statements in Theorem 1 follows
< €l nee / o(t) from estimates (107), (45), (134), (138), (46), and from embed-
. 0 ding theorems.
% / sup Wz, y, ) — ule, y, t)| de dt Continuous DependeTnce on Initial DataT and Unique-
0 ¥c(0,D) ness: Letw; = (ug, v1)", andws = (uz, v2)*, p2 be two
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solutions of (19)—(22) corresponding to initial datd and L? Norms
w9, respectively. Their differencer = (u, v)7 = wi — wa, 2.5 ; ; ; ' ! ! !
p = p1 — po satisfies : uncoritrolled?
Uy — VAU 4 UL Uy + U2z + V1Uy + VUoy b : :
+Uuy +U"v+p, =0 (155)
vy — VAU + U1V + W2, + V10, + VU2 1.5F\~
+Uvy +py, =0 (156)
Uy + vy =0 (157) 1
with boundary condition (20)—(22). Taking the scalar product of
(155) with« we obtain 0.5

controlled

! pl S
// utuda:dy—l/// Auu dx dy
0J0 0J0 0

0 500 1000 1500 2000 2500 3000 3500 4000

lrl lrl
+// ulumuda:dy—i-// o1 dx dy t—axis
0J0 0J0

Fig. 3. Energy comparison.

11 S
—|—// vluyudxdy—i—// ViU dx dy

Ol 01 Ol 01 The estimation of the terms is similar to (158). We obtain from
+// Vg ds dy + // U vuda dy (158) and (161), after choosing appropriate

0J0 0J0

d
Lt %IIW(t)II2 < M(IVw (@)D Iw@)I?. (162)
+// peudrdy = 0. (158)
00 Gronwall’s inequality applied to (162) implies that
Here .
U rl
/ / it dy IO < [[w(O)]* exp ( / M(||Vwm<v>||>dv> (163)
0J0
L, ' Lt y forallt € [0, T]. SinceM (||Vw.,,(t)]) is integrable over every
=3 /0 wrt dy — 3 /0/0 u1eu” dr dy finite interval[0, 77, (163) proves the continuous dependence of
L * 20 solutions on the initial data in the* norm.
< sIVwil w7
< M||Vwo||([w] + || Vw22 w||/2)2 VIII. N UMERICAL SIMULATION
= M||Vw | [w]* + M| Vw2V | [|w]]*/ The simulation example in this section is performed in
+ M||Vwl| ||[Vwy]l [|w]] a channel of lengthir and height 2 for Reynolds number
5 6 5 Re = 15000 (e = 2/15000, » = 1/15000), which is five
< M[Vw | {lw][ + §||VW|| orders of magnitude greater than required in Theorem 1, and

43 5, 6 ) ) , s three times the critical value (5772, corresponding to loss
+ MV P w4+ SIVWIE + MIVWLEIwI™ of jinear stability) for 2-D channel flow. The validity of the
< §||Vw|2 + M(||[Vw,.|)|[w])? (159) stabilization result beyond the assumptions of Theorem 1 is not
ompletely surprising since our Lyapunov analysis is based on
onservative energy estimate$he control gain used is = 1.
A hybrid Fourier pseudospectral-finite difference discretiza-
M{|[Vwan (@B =c 1§?x2(||Vw,¢|| +|Vwi||*2 + ||wi(t)]|?).  tion and the fractional step technique based on a hybrid
7’_’ (160) Runge—Kutta/Crank-Nicolson time discretization was used to

Terms 4, 5, and 6 in (158) can be estimated the same way. fsnerate the results. The code originally has been adapted from
rest of the terms are estimated as in obtaining (44). Taking tRe-ourier—Chebyshev pseudospectral code of T. Bewley [6],

where we used Young's inequality twice in the fourth step wit
6 > 0 arbitrary and

scalar product of (156) wita we obtain changing the wall-normal discretization to second-order finite
differences (P. Blossey, private communication). The nonlinear

I rl I rl
/0/0 vy da dy — v /0/0 Avv dz dy 2The effect of boundary control law (22) can be seen mathematically in in-

equality (88) in the context of the? perturbation energy. The boundary integral

lrl lrl
+ /0/0 U Vv de dy + /0/0 UV, U dT dy /01 (2V (% _ %) uz(uv, 0,t)— 21/% w?(a, 1, t)) da (164)

1 pl 1 pl
+ vivyv da dy + vva,v dz dy is negative even for large Reynolds numbers (small kinematic viscosity) if
oJo v 0Jo Y is sufficiently small. Hence, it improves the stability properties in general. The

trace theorem however does not allow us to compare this term and the total en-

1,1 1,1
77 _ ergy and to prove the stability results of Theorem 1 for large Reynolds numbers.
- /0/0 Uvgv dz dy + /0/0 pyvdedy = 0. (161) This shows the need for numerical simulation.
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Uncontrolled

Controlled

Fig. 4. \Vorticity maps at = 700.

Uncontrolled

Fig. 5. Recirculation in the flow at = 120, in a rectangle of dimension 1.3¢ 0.31 zoomed out of a channel of dimensibn x 2. The shaded region (upper
right corner) is magnified in Fig. 6.

terms in the Navier—Stokes equations are integrated explicitiyth notationl; = U(y;), 7 = 0, 1, 2 and with appropriate
using a fourth-order, low storage Runge—Kutta method firsbnstantsly, d; andds. We can write control law (23) now as
devised by Carpenter and Kennedy [8]. The viscous terms

are treated implicitly using the Crank—Nicolson method. The Uptt =k [dOUgH +d U + dpUg — “_l} (166)
numerical method uses “constant volume flux per unit span” in- 2v

stead of the “constant average pressure gradient” assumptioOvF]%re superscripts andn + 1 refer to values at time stepand
speed up computations. The differences between the two cases

are discussed in, for example, [56]. The number of grid poin7tlsJr L respectively. Equation (166) results in the update law
used in our computations was 128 120 and the (adaptive) _— . ., a
time step was in the range of 0.05-0.07. The grid points had U™ =k <d1U1 +d2lUs — 5)/(1 —kdo)  (167)
hyperbolic tangenty; = 1+ tanh(s(2(j/NY)—1))/tanh(s)
j =0, ..., NY) distribution with stretching factos = 1.75 at the boundary. The boundary condition at the top wall is up-
in the vertical direction in order to achieve high resolutiofated in a similar way. The numerical results show very good
in the critical boundary layer. In order to obtain the flow aggreement with results obtained from a finite volume code used
the walls in the controlled case the quadratic Three-Poiatearly stages of simulations. As initial data we consider a sta-
Endpoint Formula was used to approximate the derivativestigtically steady state flow field obtained from a random pertur-
the boundaryU,(x, 0,t), U,(x, 2, t)). This formula is applied bation of the parabolic profile over a large time period using the
in a semi-implicit way in order to avoid numerical instabilitiesuncontrolled system.
Namely, the Three-Point Endpoint Formula at the bottom wall Fig. 3 shows that our controller achieves stabilization. This
has the form is expressed in terms of the?-norm of the error between the
steady state and the actual velocity field, the so called perturba-
Uy(0) = doUy + d1U1 + doUs (165) tion energy, which corresponds to system (19)—(22) Wwith 0
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Uncontrolled
—— ——— -~ ]
Controlled
— e ——- ——
————— —— —— —_——
— —— 3 e

Fig. 6. Velocity field in a rectangle of dimension 0.3230.012 zoomed out of a channel of dimensionx 2, at timet = 120. The control (thick arrows) acts
both downstreanandupstream The control maintains the value of shear near the desired (laminar) steady-state value.

o0

(zero Dirichlet boundary conditions on the walls) in the uncon- ! ! -
trolled case. The initially fast perturbation energy decay some- 7 1 . uncontrolled
what slows down for larger time. What we see here is an in- : : I
teresting example of interaction between linear and nonlinear G} i
behavior in a dynamical system. Initially, when the velocity per- : ' '
turbations are large, and the flow is highly nonlinear (exhibiting
Tollmien—Schlichting waves with recirculation, see the uncon-
trolled flow in Figs. 4 and 5). The strong convective (quadratic) ;
nonlinearity dominates over the linear dynamics and the energy 3} B g
decay is fast. Later, at abotit= 500, the recirculation disap- ' :

W
L

on : : :

pears, the controlled flow becomes close to laminar, and linear 2 ; :
behavior dominates, along with its exponential energy decay | . . - controlled 1
(with small decay rate).
In the vorticity map, depicted in Fig. 4 it is striking how uni- 0 i ' :
form the vorticity field becomes for the controlled case, while 0 500 tl‘;?(?s 1500 2000

we observe quasiperiodic bursting (cf. [37]) in the uncontrolled
case. We obtained similar vorticity maps of the uncontrolledg. 7. Instantaneous drag.
flow for other (lower) Reynolds numbers, that show agreement

qualitatively with the vorticity maps obtained by Jimenez [37}; fiow and eventually agrees with it up to two decimal places.
His paper explains the generation of vortex blobs at the wilis striking that even though drag reduction was not an explicit
along with their ejection into the channel and their final disSiontro| objective (as in most of the works in this field), the sta-
pation by viscosity in the uncontrolied case. bilization objective results in a controller that reacts to the wall

The uniformity of the wall shear stre¢g/, |van) in the con- gpear stress error, and leads to an almost instantaneous reduc-
trolled flow can be also observed in Fig. 6. Our boundary feeg f drag to the laminar level.

back control (tangential actuation) adjusts the flow field near
the upper boundary such that the controlled wall shear stress al-
most matches that of the steady state profile. The region is at the ACKNOWLEDGMENT
edge of a small recirculation bubble (Fig. 5) of the uncontrolled
flow, hence there are some flow vectors pointing in the upstre
dgecltlonhwrylte_ot;];;s afrte otrrl]en_tetd d dow?stree;rtnﬁ The t;m;’-z IS ;%6ntinuous exchange of ideas, and they would also like to thank
atively snor (f = 120) after the Introduction otthe controland j;anez for his helpful comments.
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