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a b s t r a c t

Unlike ODEs, whose models involve system matrices and whose controllers involve vector or matrix
gains, PDE models involve functions in those roles—functional coefficients, dependent on the spatial
variables, and gain functions dependent on space as well. The designs of gains for controllers and
observers for PDEs, such as PDE backstepping, are mappings of system model functions into gain
functions. These infinite-dimensional nonlinear operators are given in an implicit form through PDEs,
in spatial variables, which need to be solved to determine the gain function for each new functional
coefficient of the PDE. The need for solving such PDEs can be eliminated by learning and approximating
the design mapping in the form of a neural operator. Learning the neural operator requires a sufficient
number of prior solutions for the design PDEs, offline, as well as the training of the operator.
In recent work, we developed the neural operators for PDE backstepping designs for first-order
hyperbolic PDEs. Here we extend this framework to the more complex class of parabolic PDEs. The
key theoretical question is whether the controllers are still stabilizing, and whether the observers are
still convergent, if they employ the approximate functional gains generated by the neural operator. We
provide affirmative answers to these questions, namely, we prove stability in closed loop under gains
produced by neural operators. We illustrate the theoretical results with numerical tests and publish
our code on Github(https://github.com/lukebhan/NeuralOperatorsForAdvectionDiffusionControl). The
neural operators are three orders of magnitude faster in generating gain functions than PDE solvers
for such gain functions. This opens up the opportunity for the use of this neural operator methodology
in adaptive control and in gain scheduling control for nonlinear PDEs.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

ML as a tool for learning PDE control methodologies. In Bhan,
hi, and Krstic (2023a) we introduced a learning-based control
ramework which devises a new role for machine learning (ML):
earn an entire control design methodology, in the form of a
apping from the plant model to the controller gains, or even to

he control inputs. Since the infinite-dimensional state of a PDE is
function of spatial variables, in PDE control the controller gain

is also a function of spatial variables. Finding the gain typically
entails solving a PDE in space (but not in time). It is therefore of
interest, in PDE control, to have a capability where producing the
control gain functions is just an evaluation of a neural mapping
that has already learned the design methodology on a large set

✩ The material in this paper was partially presented at The 62nd IEEE
Conference on Decision and Control (CDC), December 13–15, 2023, Marina Bay
Sands, Singapore. This paper was recommended for publication in revised form
by Associate Editor Thomas Meurer under the direction of Editor Luca Zaccarian.
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yshi@eng.ucsd.edu (Y. Shi).
ttps://doi.org/10.1016/j.automatica.2024.111649
005-1098/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
of previously offline-solved control design problems for a sample
set of PDEs in a certain class.

Neural operators for approximating mappings of functions into func-
tions. Our inspiration for encoding PDE control methodologies
into machine learning comes from recent advances in the math-
ematics of machine learning. Motivated by the tasks of finding
solution/flow maps (from the initial conditions into future states)
for physical PDEs, several machine learning research teams (Li
et al., 2021; Lu, Jin, Pang, Zhang, & Karniadakis, 2021; Seidman,
Kissas, Perdikaris, & Pappas, 2022) have developed neural approx-
imation methods, termed ‘‘neural operators’’. These approaches
are not simply discretizing PDEs and finding solution maps to the
resulting large ODE solution problems. They approximate (non-
discretized) function-to-function nonlinear operators and provide
provable guarantees of the accuracy of approximation in terms
of the required sizes of the training sets and neural networks.
Neural operators have demonstrated impressive computational
speedups in solving complex PDE systems for weather forecast-
ing (Kurth et al., 2023), state estimation and control (Bhan, Shi,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Krstic, 2023b; Shi et al., 2022), and producing numerical solu-
ions to previously unsolvable problems such as high-dimensional
DEs (Han, Jentzen, & Weinan, 2018).
With a rigorous and numerically powerful capability like this,

pecific PDE control methods, for specific classes of PDEs, can be
earned once and encoded as neural operators, ready to produce
he control gain functions for any new functional coefficients of
he same classes of PDEs.

Such an approach is of value if it allows the retention of
he theoretical properties proven for the ‘‘exact design’’. This
s indeed what we show in the paper (Bhan et al., 2023a) in
hich we introduce the framework: approximate neural operator
epresentations of a particular PDE control method – PDE back-
tepping – preserves its stability guarantees in spite of the control
ains not being generated by solving the design PDEs but by the
ains being generated from the learned ‘‘neural model’’ of PDE
ackstepping.

xtension of PDE backstepping neural operators from hyperbolic
Bhan et al., 2023a) to parabolic PDEs. Hyperbolic PDEs involve
nly the first derivatives in space and time. This makes them
all else being equal) the ‘‘simplest’’ PDE class for control. Delay
ystems combine ODEs with delays—the simplest form of a PDE.
hile the simplest among PDEs, hyperbolic PDEs are not neces-

arily easy to control. They can be unstable, with many unstable
igenvalues, and only one input acting at the boundary of a
omain. This mix of simplicity within the PDE family, with the
on-triviality for control, makes hyperbolic PDEs the ideal entry
oint for any new study in PDE control, including the introduction
f a new framework for learning-based control in our (Bhan et al.,
023a).
Control design problems for hyperbolic PDEs are hyperbolic

DEs themselves, namely, equations with only first derivatives in
ultiple spatial variables. Parabolic PDEs, with their first deriva-

ive in time but second derivatives in space, are the natural next
hallenge for learning the PDE backstepping methodology using
eural operators. This is what we undertake in this paper. The
hief difficulty with learning backstepping kernel operators for
arabolic PDEs is that the kernels are governed by second-order
DEs, which raises the difficulty for solving such PDEs and for
roving the sufficient smoothness of their solutions so that the
eural operator (NO) approximations have guarantee of sufficient
ccuracy for preserving stabilization.
We consider parabolic PDE systems of the form

t (x, t) = uxx(x, t) + λ(x)u(x, t), x ∈ (0, 1), (1)
u(0, t) = 0, (2)
u(1, t) = U(t). (3)

Our goal is the design of a PDE backstepping boundary control

U(t) =

∫ 1

0
k(1, y)u(y, t)dy, (4)

as well as an observer with the (collocated) boundary sensing of
ux(1, t). By ‘‘design’’ we mean to find the gain function k in the
control law (4), namely, to find the output k of the function-to-
function mapping K : λ ↦→ k, depicted in Fig. 1. This paper’s
objective is to learn the design operator K with a neural operator
approximation K̂ and to employ the resulting approximate gain
k̂ in the control law.

Since parabolic PDEs in one dimension have two boundary
conditions, and also boundary actuation and boundary sensing
can be employed at either boundary, a total of twelve combi-
nations of boundary actuation, boundary sensing, and boundary
condition on the unactuated boundary are possible. Taking the
symmetry between the boundaries x = 0 and x = 1 into account,
 m

2

Fig. 1. The PDE backstepping design operator K : λ ↦→ k, where λ(x) is
the spatially-varying reaction coefficient of the PDE, whereas k(x, y) is the
kernel function of the backstepping transformation, producing the feedback gain
function k(1, y) in the feedback law U(t) =

∫ 1
0 k(1, y)u(y, t)dy.

Table 1
Six possible combinations of boundary actuation, sensing, and boundary condi-
tion at the opposite end of [0, 1]. We focus on the simplest combination—in the
econd row.
Actuation Opposite boundary Sensing

u(1, t) = U(t) u(0, t) = 0 ux(0, t) anti-col

u(1, t) = U(t)u(1, t) = U(t)u(1, t) = U(t) u(0, t) = 0u(0, t) = 0u(0, t) = 0 uuuxxx(1, t1, t1, t) col
u(1, t) = U(t) ux(0, t) = 0 u(0, t) anti-col

ux(1, t) = U(t) u(0, t) = 0 ux(0, t) anti-col

ux(1, t) = U(t) ux(0, t) = 0 u(0, t) anti-col

ux(1, t) = U(t) ux(0, t) = 0 u(1, t) col

the total number of truly distinct combinations is six. They are
listed in Table 1.

We are able to solve all six problems but, in this paper, pursue
the simplest of the six combinations for pedagogical reasons. The
case with Dirichlet boundary conditions, u(0, t) = 0, u(1, t) =

U(t) is, notationally, the simplest case. It allows the reader to
most quickly grasp the utility and the technical steps in em-
ploying neural operators in the control of parabolic PDEs. We
opt to present in the paper the results for the combination in
the second row of Table 1 because this combination allows us
to ‘‘kill two birds with one stone’’ in our exposition. For this
particular actuator–sensor combination, which is collocated (and
the simplest of the four collocated combinations), the same kernel
is used to obtain the gain functions for both the controller and
the observer. Further, using the blueprint presented here, readers
interested in the other combinations in Table 1 can develop
controllers and observers for any sensing and control application.

All the results in the paper – a full-state controller, an ob-
server, and an output-feedback law (as well as the seven addi-
tional combinations not pursued in the paper) – can be extended
to the more general class of parabolic PDE systems,

vt (x, t) = ε(x)vxx(x, t) + b(x)vx(x, t) + λ(x)v(x, t)

+ g(x)v(0, t) +

∫ x

0
f (x, y)v(y, t)dy, x ∈ (0, L). (5)

PDE backstepping. Even though PDE backstepping was first de-
veloped for parabolic systems (Smyshlyaev & Krstic, 2004), it is
best to begin its study from the easier, hyperbolic case (Krstic
& Smyshlyaev, 2008c). Control of hyperbolic PDEs has grown
into a rich area because, in the hyperbolic case, one can stabi-
lize a coupled system with fewer inputs than PDEs. A pair of
oupled hyperbolic PDEs was stabilized with a single boundary
nput in Coron, Vazquez, Krstic, and Bastin (2013), an extension
o n + 1 hyperbolic PDEs with a single input was introduced
n Di Meglio, Vazquez, and Krstic (2013), an extension to n +
PDEs with boundary actuation on m ‘‘homodirectional’’ PDEs
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n Hu, Di Meglio, Vazquez, and Krstic (2016), Hu, Vazquez, Di
eglio, and Krstic (2019), an extension to cascades with ODEs

n Di Meglio, Argomedo, Hu, and Krstic (2018), and an exten-
ion to ‘‘sandwiched’’ ODE-PDE-ODE systems in Wang and Krstic
2020, 2022). Redesigns robust to delays are provided in Au-
iol, Bribiesca-Argomedo, Saba, Di Loreto, and Di Meglio (2018).
DE backstepping-based output-feedback regulation with distur-
ances is proposed in Deutscher (2015), Deutscher and Gabriel
2018).

For parabolic PDEs, backstepping for full-state feedback sta-
ilization was developed in Smyshlyaev and Krstic (2004) and
or observer design in Smyshlyaev and Krstic (2005). A complex
xtension from linear to nonlinear parabolic PDEs, using infi-
ite Volterra series, was provided in Vazquez and Krstic (2008a,
008b). Backstepping was combined with differential flatness
n Meurer and Kugi (2009). The first solutions to the null-
ontrollability problem for parabolic PDEs were provided, using
ackstepping, in Coron and Nguyen (2017), Espitia, Polyakov, Efi-
ov, and Perruquetti (2019). Sampled-data and event-triggered
ersions of backstepping for parabolic PDEs appeared in Espi-
ia, Karafyllis, and Krstic (2021), Karafyllis, Espitia, and Krstic
2021), Karafyllis and Krstic (2018), Rathnayake, Diagne, Espitia,
nd Karafyllis (2021). Work on cascades of parabolic PDEs with
ther systems has included heat-ODE cascades (Bekiaris-Liberis
Krstic, 2010; Krstic, 2009a), delay-parabolic cascades (Krstic,

009b), and ODE-heat-ODE sandwich systems (Wang & Krstic,
019). A backstepping design for a moving-boundary PDE-ODE
tefan system was presented in Koga, Diagne, and Krstic (2019).
oupled parabolic PDEs introduce special challenges and have
een tackled in Baccoli, Pisano, and Orlov (2015), Orlov, Pisano,
illoni, and Usai (2017), Vazquez and Krstic (2016a). Extensions
rom multiple 1D parabolic PDEs to PDEs in 2D and higher
imensions, such as in the book Meurer (2012) are arguably even
ore challenging and have been pursued for Navier–Stokes and
agnetohydrodynamic systems in Vazquez and Krstic (2007),
azquez, Schuster, and Krstic (2008) on channel domains, as
ell as for reaction–diffusion systems on balls of arbitrary di-
ensions (Vazquez & Krstic, 2016b). Adaptive control designs

or parabolic PDEs were introduced in Krstic and Smyshlyaev
2008b), Smyshlyaev and Krstic (2007a, 2007b), extended in
arafyllis, Krstic, and Chrysafi (2019), and extended to the hy-
erbolic case in Bernard and Krstic (2014). For coupled hyperbolic
DEs with unknown parameters, the parabolic designs in Krstic
nd Smyshlyaev (2008b), Smyshlyaev and Krstic (2007a, 2007b)
nspired a comprehensive collection of adaptive control designs in
he book (Anfinsen & Aamo, 2019). Applications of backstepping
o PDE models of traffic are introduced in Yu and Krstic (2019,
022). Lastly, it is worth mentioning that all of these backstepping
ased approaches follow a late-lumping approach in which the
ontroller is designed for the PDE and then in the implementa-
ion phase it is discretized (Auriol, Morris, & Di Meglio, 2019;
iesmeier & Woittennek, 2022). Further, the advantage of late
umping over early lumping is clearly evident when comparing
he results of Smyshlyaev and Krstic (2004) to Balogh and Krstic
2002).

From an implementation perspective, approximation of the
ernel PDEs has been explored in Woittennek, Riesmeier, and
cklebe (2017) and in toolboxes such as Fischer, Gabriel, and
erschbaum (2022). Furthermore, for observer problems, Grüne
nd Meurer (2022) decouples the infinite dimensional PDE sys-
em into a finite dimensional slow and infinite dimensional fast
ubsystem for controller implementation. However, a key differ-
nce is that this work learns a kernel, which can be of high value
n adaptive control when the kernel PDE needs to be resolved
epeatedly (or numerically approximated).
3

DeepONet. Using the basic notions and notation for NOs given
in Bhan et al. (2023a), we state next the key technical result
that enables our use of NOs to learn the PDE backstepping kernel
mappings. The result is quoted in its general/abstract form. It is
specialized to the PDE control setting in our Theorem 4.

Theorem 1 (DeepONet Universal Approximation Theorem (Deng,
hin, Lu, Zhang, & Karniadakis, 2022, Theorem 2.1)).
Let X ⊂ Rdx and Y ⊂ Rdy be compact sets of vectors x ∈ X

and y ∈ Y , respectively. Let U : X → U ⊂ Rdu and V :

Y → V ⊂ Rdv be sets of continuous functions u(x) and v(y),
respectively. Let U be also compact. Assume the operator G : U → V
is continuous. Then, for all ϵ > 0, there exist m∗, p∗

∈ N such that
for each m ≥ m∗, p ≥ p∗, there exist θ (k), ϑ (k), neural networks
fN (·; θ (k)), gN (·; ϑ (k)), k = 1, . . . , p, and xj ∈ X, j = 1, . . . ,m,
with corresponding um = (u(x1), u(x2), . . . , u(xm))T, such that

|G(u)(y) − Ĝ(um)(y)| < ϵ (6)

for all functions u ∈ U and all values y ∈ Y of G(u) ∈ V and with
ˆ(um)(y) =

∑p
k=1 g

N (um; Θ (k))fN (y; θ (k)).

2. Basic backstepping for reaction–diffusion PDE

We employ the following backstepping transformation,

w(x, t) = u(x, t) −

∫ x

0
k(x, y)u(y, t)dy, (7)

to convert (1), (2), (3) into the target system

wt = wxx , (8)
w(0, t) = 0 , (9)
w(1, t) = 0 , (10)

with the help of feedback (4). We could as well pursue the target
system wt = wxx−cw, c > 0, but we forego this design flexibility
for the sake of simplicity.

To convert (1), (2), (3) into (8), (9), (10), k needs to satisfy

kxx(x, y) − kyy(x, y) = λ(y)k(x, y), ∀(x, y) ∈ T̆ , (11)

k(x, 0) = 0 , (12)

k(x, x) = −
1
2

∫ x

0
λ(y)dy , (13)

here T̆ = {0 < y ≤ x < 1} and T = {0 ≤ y ≤ x ≤ 1}.

ssumption 2. λ ∈ C1([0, 1]).

. Accuracy of approximation of backstepping kernel operator
ith DeepONet

heorem 3 (Proven in Smyshlyaev and Krstic (2004, 2010)). For
very λ ∈ C1([0, 1]), the PDE system (11), (12), (13) has a unique
C2(T ) solution with the property

|k(x, y)| ≤ λ̄e2λ̄x, (14)

or all x ∈ [0, 1], where λ̄ = supx∈[0,1] |λ(x)|.

Next, denote the set of functions

=
{
k ∈ C2(T )

⏐⏐ k(x, 0) = 0, ∀x ∈ [0, 1]
}

, (15)

nd let the operator K : C1
[0, 1] → K be defined by

k(x, y) =: K(λ)(x, y). (16)

dditionally, let the operator M : C1
[0, 1] → K×C1

[0, 1]×C2(T )
be defined by

k(x, y), κ (x), κ (x, y) =: M(λ)(x, y), (17)
( 1 2 )
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here

κ1(x) = 2
d
dx

(k(x, x)) + λ(x), (18)

2(x, y) = kxx(x, y) − kyy(x, y) − λ(y)k(x, y). (19)

ontinuity of M is proven by following the same chain of esti-
ates with which boundedness is proven for Theorem 3, except

hat pairs (λ1, λ2) and (M(λ1),M(λ2)), as well as their respective
ifferences λ1 − λ2 and M(λ1) − M(λ2), are considered, instead
f considering λ and M(λ). By applying Theorem 1, we get the
ollowing key result for the approximation of a backstepping
ernel by a DeepONet.

heorem 4. For all Bλ, Bλ′ > 0 and ϵ > 0, there exists a neural
perator M̂ such that, for all (x, y) ∈ T ,⏐⏐M(λ)(x, y) − M̂(λ)(x, y)

⏐⏐ < ϵ, (20)

holds for all Lipschitz λ with the properties that ∥λ∥∞ ≤ Bλ,
∥λ′

∥∞ ≤ Bλ′ , namely, there exists a neural operator K̂ such that
K̂(λ)(x, 0) ≡ 0 and⏐⏐K(λ)(x, y) − K̂(λ)(x, y)

⏐⏐
+

⏐⏐⏐⏐2 d
dx

(
K(λ)(x, x) − K̂(λ)(x, x)

)⏐⏐⏐⏐
+

⏐⏐(∂xx − ∂yy
) (

K(λ)(x, y) − K̂(λ)(x, y)
)

−λ(y)
(
K(λ)(x, y) − K̂(λ)(x, y)

)⏐⏐ < ϵ. (21)

Note, we refer to the error ϵ between the operator and the
neural operator as the approximation accuracy throughout the
remainder of this paper.

4. Stabilization under DeepONet gain feedback

The following theorem establishes the properties of the feed-
back system with the approximated kernel.

Theorem 5. Let Bλ, Bλ′ > 0 be arbitrarily large and consider the
system (1), (2), (3) with any λ ∈ C1([0, 1]) whose derivative λ′ is
Lipschitz and which satisfies ∥λ∥∞ ≤ Bλ and ∥λ′

∥∞ ≤ Bλ′ . There
exists a sufficiently small ϵ∗(Bλ, Bλ′ ) > 0 such that the feedback
law

U(t) =

∫ 1

0
k̂(1, y)u(y, t)dy, (22)

with all NO gain kernels k̂ = K̂(λ) of approximation accuracy
ϵ ∈ (0, ϵ∗) in relation to the exact backstepping kernel k = K(λ)
ensures that the closed-loop system satisfies the exponential stability
bound

∥u(t)∥ ≤ Me−(t−t0)/2∥u0∥, ∀t ≥ t0, (23)

where

M(ϵ, λ̄) =

(
1 + λ̄e2λ̄

)(
1 + λ̄e2λ̄ + ϵ

)
eλ̄e2λ̄+ϵ . (24)

Proof. Approximate backstepping transform and perturbed target
system. Take the backstepping transformation

ŵ(x, t) = u(x, t) −

∫ x

0
k̂(x, y)u(y, t)dy, (25)

where k̂ = K̂(λ). With the control law (22), the target system
becomes

ŵt (x, t) = ŵxx(x, t) + δk0(x)u(x, t)

+

∫ x

δk1(x, y)u(y, t)dy, (26)

0

4

ŵ(0, t) = 0, (27)
ŵ(1, t) = 0, (28)

with

δk0(x) = 2
d
dx

(
k̂(x, x)

)
+ λ(x)

= −2
d
dx

(
k̃(x, x)

)
, (29)

k1(x, y) = ∂xxk̂(x, y) − ∂yyk̂(x, y) − λ(y)k̂(x, y)
= −∂xxk̃(x, y) + ∂yyk̃(x, y) + λ(y)k̃(x, y), (30)

here

˜ = k − k̂ = K(λ) − K̂(λ). (31)

ith (21), we get

δk0∥∞ ≤ ϵ, (32)
δk1∥∞ ≤ ϵ. (33)

nverse approximate backstepping transformation. Since the state u
ppears under the integral in the ŵ-system (26), in the Lyapunov
nalysis we need the inverse backstepping transformation

(x, t) = ŵ(x, t) +

∫ x

0
l̂(x, y)ŵ(y, t)dy. (34)

t is shown in Krstic and Smyshlyaev (2008a) that the direct and
nverse backstepping kernels satisfy in general the relationship

(x, y) = k̂(x, y) +

∫ x

y
k̂(x, ξ )l̂(ξ, y)dy. (35)

he inverse kernel satisfies the following conservative bound

l̂∥∞ ≤ ∥k̂∥∞e∥k̂∥∞ . (36)

ince ∥k − k̂∥∞ < ϵ, we have that ∥k̂∥∞ ≤ ∥k∥∞ + ϵ. With (14)
e get

k̂∥∞ ≤ k̄ + ϵ, (37)
k̄(λ̄) := λ̄e2λ̄, (38)

nd hence

l̂∥∞ ≤

(
λ̄e2λ̄ + ϵ

)
eλ̄e2λ̄+ϵ . (39)

yapunov analysis. The Lyapunov functional

=
1
2
∥ŵ∥

2, (40)

has a derivative

V̇ = −∥ŵx∥
2
+ ∆0 + ∆1, (41)

here

0(t) =

∫ 1

0
ŵ(x, t)δk0(x)u(x, t)dx, (42)

1(t) =

∫ 1

0
ŵ(x, t)

∫ x

0
δk1(x, y)u(y, t)dydx. (43)

ith several straightforward majorizations, we get

0 ≤ ∥δk0∥∞

(
1 + ∥l̂∥∞

)
∥ŵ∥

2

= ∥δk0∥∞

(
1 + ∥l̂∥∞

)
2V , (44)

nd

1 =

∫ 1

0
ŵ(x)

∫ y

0
ŵ(y)

∫ x

y
δk(x, σ )l̂(σ , y)dσdydx

+

∫ 1

ŵ(x)
∫ x

δ(x, y)ŵ(y)dydx

0 0
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Fig. 2. The PDE backstepping observer (51), (52), (53) uses boundary mea-
surement of the flux ux(1, t). The gain k̂(1, t) is produced with the DeepONet
ˆ .

≤ ∥δk1∥∞

(
1 + ∥l̂∥∞

)
∥ŵ∥

2

= ∥δk1∥∞

(
1 + ∥l̂∥∞

)
2V . (45)

rom (41), (44), (45), (39), and Poincare’s inequality, we get

˙ ≤ −
1
2
(1 − δ∗)V , (46)

where

δ∗(ϵ, λ̄) = 2ϵ
(
1 + λ̄e2λ̄ + ϵ

)
eλ̄e2λ̄+ϵ, (47)

is an increasing function of ϵ, λ̄, with the property that δ∗(0, λ̄) =

0. Hence, there exists ϵ∗(λ̄) such that, for all ϵ ∈ [0, ϵ∗
],

V̇ ≤ −
1
4
V , (48)

amely, V (t) ≤ V0e−(t−t0)/4. From the direct and inverse back-
stepping transformations it follows that

1

1 + ∥l̂∥∞

∥u∥ ≤
√
2V ≤

(
1 + ∥k̂∥∞

)
∥u∥. (49)

In conclusion,

∥u(t)∥ ≤

(
1 + ∥l̂∥∞

)(
1 + ∥k̂∥∞

)
e−(t−t0)/2∥u0∥. (50)

With (37), (38), (39), the proof is completed. □

5. Observer design

State estimators (observers) with boundary measurements can
be formulated with four measurement choices on the interval
[0, 1]: the measured quantities can be u(0, t), ux(0, t), u(1, t),
ux(1, t). That leads to many possible problem formulations. Since
our goals with observers are twofold – to estimate the unmea-
sured state but also to use it in output-feedback control for
stabilization – our choice of measurement needs to be consistent
with the actuation choice we have already pursued in this note,
namely, Dirichlet actuation of u(1, t) = U(t). So, we cannot use
u(1, t) for measurement but we can use u(0, t), ux(0, t), ux(1, t).
We let the output ux(1, t) be measured. Our choice of ux(1, t) for
measurement, as indicated in the observer diagram in Fig. 2, is
motivated by the pedagogical fact that, with this measurement,
an observer can be built using the same kernel k(x, y) as for the
control law.

Theorem 6. Let Bλ, Bλ′ > 0 be arbitrarily large and consider the
system (1), (2), (3) with any λ ∈ C1([0, 1]) whose derivative λ′ is
5

Lipschitz and which satisfies ∥λ∥∞ ≤ Bλ and ∥λ′
∥∞ ≤ Bλ′ . There

exists a sufficiently small ϵ∗(Bλ, Bλ′ ) > 0 such that the observer

ût (x, t) = ûxx(x, t) + λ(x)û(x, t)
+k̂(1, x)

[
ux(1, t) − ûx(1, t)

]
, (51)

û(0, t) = 0, (52)
û(1, t) = U(t), (53)

ith all NO gain kernels k̂ = K̂(λ) of approximation accuracy ϵ ∈

0, ϵ∗) in relation to the exact backstepping kernel k = K(λ) ensure
hat the observer error system, for all u0, û0 ∈ L2[0, 1], satisfies the
xponential stability bound

u(t) − û(t)∥ ≤ Me−(t−t0)/2∥u0 − û0∥, ∀t ≥ t0, (54)

here M(ϵ, λ̄) is defined in (24).

roof. We start by postulating a PDE backstepping observer in
he form

ˆ t (x, t) = ûxx(x, t) + λ(x)û(x, t)
+ p1(x)

[
ux(1, t) − ûx(1, t)

]
, (55)

û(0, t) = 0, (56)
û(1, t) = U(t). (57)

he observer error ũ(x, t) = u(x, t) − û(x, t) is governed by the
ystem

˜ t (x, t) = ũxx(x, t) + λ(x)ũ(x, t)
− p1(x)ũx(1, t), (58)

ũ(0, t) = 0, (59)
ũ(1, t) = 0. (60)

he backstepping transformation

˜(x, t) = w̃(x, t) −

∫ 1

x
p(x, y)w̃(y, t)dy, (61)

onverts (58), (59), (60) into

˜ t (x, t) = w̃xx(x, t), (62)
w̃(0, t) = 0, (63)
w̃(1, t) = 0, (64)

rovided p(x, y) satisfies

(x, y) = k(y, x), (65)

ith k that is governed by (11), (12), (13), and with the observer
ain

1(x) = +k(1, x). (66)

t is crucial to note in (65) that the arguments x and y have been
ommuted in k(·, ·). The commuting of the spatial arguments
f the backstepping kernel is akin to transposing matrices in
oing between designs for controllers and observers in finite-
imensional LTI systems. The commuted order of the arguments
and y continues in the rest of the proof. The observer (55), (56),
57) is next rewritten as

ˆ t (x, t) = ûxx(x, t) + λ(x)û(x, t)
+k(1, x)

[
ux(1, t) − ûx(1, t)

]
, (67)

û(0, t) = 0, (68)
û(1, t) = U(t), (69)

nd the transformation (61) as

˜(x, t) = w̃(x, t) −

∫ 1

k(y, x)w̃(y, t)dy. (70)

x
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Fig. 3. Open-loop instability (top) for the two respective reaction coefficients λ(x) with γ = 5 on the left and γ = 8 on the right. The top row shows the open loop
tability with the coefficient and bottom row shows the function λ(x) with corresponding γ value.
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6

a

U

t

a

heorem 4 applies to the kernel k(y, x) of the observer backstep-
ping transformation and the observer gains −k(1, x). The observer
67), (68), (69) is henceforth implemented with the approxi-
ate kernel k̂ as in (51), (52), (53) whereas the backstepping

ransformation (70) is applied with k̂ as

˜(x, t) = ω(x, t) −

∫ 1

x
k̂(y, x)ω(y, t)dy. (71)

he target system under the approximate kernel k̂ becomes

t (x, t) = ωxx(x, t) + Ω0(x, t) + Ω1(x, t), (72)
ω(0, t) = 0, (73)
ω(1, t) = 0, (74)

where

Ω0(x, t) = δk0(x)ω(x, t) +

∫ 1

x
l̂(y, x)δk0(y)ω(y, t)dy, (75)

Ω1(x, t) =

∫ 1

x
(δk1(y, x)ω(y, t)

+l̂(y, x)
∫ 1

y
δk1(s, y)ω(s, t)ds

)
dy, (76)

and δk0, δk1 are defined in (29), (30), with bounds (32), (33). Note
that the arguments in δk1 have been commuted in the integral
in (72). Similar as in the proof of Theorem 5, the Lyapunov
functional

V =
1
∥ω∥

2, (77)

2 u

6

has a derivative

V̇ ≤ −
1
4
V , (78)

amely, V (t) ≤ V0e−(t−t0)/4, provided ϵ ∈ [0, ϵ∗
], with ϵ∗ obtained

rom (47). The result (51) follows from (77), (71), (37), and the
nverse backstepping transformation

(x, t) = ũ(x, t) +

∫ 1

x
l̂(y, x)ũ(y, t)dy, (79)

hose kernel l̂ satisfies the bound (39). □

. Collocated output-feedback stabilization

In this section we put together the observer (51), (52), (53),
long with the observer-based controller

(t) =

∫ 1

0
k̂(1, x)û(x, t)dx, (80)

o stabilize the system (1), (2), (3) by output feedback.
Furthermore, consider the Neumann-actuated controller with

measured Dirichlet output u(1, t)

ut (x, t) = uxx(x, t) + λ(x)u(x, t), x ∈ [0, 1), (81)
u(0, t) = 0, (82)
x(1, t) = U(t). (83)
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λ(x) values correspond to the same respective values as in Fig. 3 with γ = 5 on the top row and γ = 8 on the bottom row respectively.
a
s
t
D
e
m
s
p
i
p
d
a
c
c
c

8

i
w
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hen, for the plant (81), (82), (83), we suggest the observer-based
ompensator

ût (x, t) = ûxx(x, t) + λ(x)û(x, t)

+ k̂ξ (ξ, x)
⏐⏐⏐
ξ=1

[
u(1, t) − û(1, t)

]
, (84)

û(0, t) = 0, (85)
ˆx(1, t) = U(t) − k̂(1, 1)

(
u(1, t) − û(1, t)

)
, (86)

U(t) = k̂(1, 1)u(1, t) +

∫ 1

0
κ(x)û(x, t)dx, (87)

o achieve stability. More details are available on arXiv (Krstic,
han, & Shi, 2023).

. Numerical results

In Fig. 3, we show that the system (1), (2), (3) is open-loop
nstable for the reaction term λ(x) = 50 cos(γ cos−1(x)) for γ =

, 8. The increased oscillation in larger γ yields a lower rate of
nstability as shown on the right. We simulate the PDE and its
ontrol using the finite difference scheme in the Appendix.
In Fig. 4, we demonstrate both the analytical and learned

eepONet kernels for the two γ values corresponding to Fig. 3.
o learn the mapping K : λ(x) ↦→ k(x, y), we construct a

dataset of 1000 different λ(x) as the Chebyshev polynomials
defined in λ(x) above with γ ∼ uniform (4, 9) and a 90/10
train test split. We choose λ of this form due to the rich set of
kernel functions generated by varying only a single parameter.
To effectively utilize the DeepONet without modifying the grid,
we stack λ(x) repeatedly ny times over the y axis to make a 2D
input to the network. Then, we capitalize on the 2D mapping
by implementing a CNN for the DeepONet branch network. In
the future, one can explore neural operators on irregular girds
along the direction of Li, Huang, Liu, and Anandkumar (2022).
For training, the relative L error is 3.5e − 2 and the testing
2

7

error is 3.6e − 2. With the learned neural operator, we achieve
speedups on the magnitude of 103 compared to an efficient finite
difference implementation. In Fig. 5, we demonstrate closed-loop
stability with the neural operator approximated gain function
for the control feedback law. Additionally, we see the error is
largest at the beginning achieving a maximum in both cases of
approximately 10%.

In Fig. 6, we test the observer (52), (52), (53) with a DeepONet-
approximated kernel trained as above using λ(x) = 20 cos(5
cos−1(x)) with γ ∼ uniform (4, 9). Additionally, we apply a
boundary signal of U(t) = 7 sin(16π t) + 10 cos(2π t) to gener-
te a challenging and rich PDE motion for estimation. The true
ystem state begins with initial conditions u(x, 0) = 10 while
he DeepONet observer has initial conditions of ûNO(x, 0) = 20.
espite this, the observer approximates the PDE well with a peak
rror of less than 5% compared to the analytical observer while
aintaining the same 103x speedup over the finite difference
cheme. Lastly, although we chose λ(x) to be the Chebyshev
olynomials, we emphasize one could chose any set of functions
n C2

[0, 1] such as polynomials, random Fourier basis, Legendre
olynomials, etc. as long as those functions create a sufficiently
iverse set of kernels for the neural network to satisfy the ϵ∗. For
n exact size of neural network to satisfy ϵ∗, one can utilize the
onservative estimates in Deng et al. (2022) although, in many
ases, they are practically infeasible due to the extremely difficult
hallenge of operator approximation.

. Conclusions

We extend the NO-powered PDE backstepping introduced
n Bhan et al. (2023a) from the hyperbolic to parabolic PDEs,
hich poses additional challenges in advancing from first-order
o second-order Goursat PDEs for the kernels, and advancing from
he Lyapunov study of hyperbolic target PDEs with relatively
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Fig. 5. For the two respective λ(x) values as in Fig. 3, the top row showcases closed-loop solutions with the learned kernel k̂(x, y), whereas the bottom row shows
the closed-loop PDE error between applying the original kernel k(x, y) and the learned kernel k̂(x, y).
Fig. 6. Left: PDE solution with λ(x) = 20 cos(5 cos−1(x)) and U(t) = 7 sin(16π t) + 10 cos(2π t). Right: the observer with the neural operator-learned kernel. Note the
difference between the plant initial condition u(x, 0) = 10 and the twice as large initial condition of the exact and neural operator observers, ûNO(x, 0) = û(0, x) = 20.
The peak error between the analytical observer (not shown) and the neural operator observer is around 0.3.
simple perturbations to parabolic target PDEs with more com-
plex perturbations. Additionally, we present the first extension
of DeepONet-backstepping from full-state feedback to observer
design.
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Appendix. FD scheme for goursat-form kernel PDE

The N-step discretization of (1)–(3) is (Smyshlyaev & Krstic,
2010)

ki+1
j = −ki−1

j + kij+1 + kij−1 + h2λj
kij+1 + kij−1

2
, (A.1)

ki+1
= ki +

h
λi, (A.2)
i i 2
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k

w
λ

R

A
A

A

B

i+1
i+1 = kii −

h
4
(λi + λi+1), kj+1

1 = 0, (A.3)

ith kji = k((i − 1)h, (j − 1)h), i = 2, . . . ,N, j = 2, . . . , i − 1, λi =

¯ ((i − 1)h), h = 1/N .
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