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Stabilization of Stochastic Nonlinear Systems Driven
by Noise of Unknown Covariance

Hua Deng, Miroslav Krsticand Ruth J. Williams

Abstract—This paper poses and solves a new problem of nonlinear control [18], [29], [39]. These advances have natu-
stochastic (nonlinear) disturbance attenuation where the task rally led to re-examining the stochastic stabilization problem.
is to make the system solution bounded (in expectation, with y; \yoyid be fair to say that it was Florchinger [14]-[17], who
appropriate nonlinear weighting) by a monotone function of the d th f stochastic stabilizati H ' P
supremum of the covariance of the noise. This is a natural sto- revampe € area 0 S_ ochastic stabiliza |c?n. -owever, an,
chastic counterpart of the problem of input-to-state stabilization and Baar [36] were the first to solve the stabilization problem
in the sense of Sontag. Our development starts with a set of new for the class of strict-feedback systems representative of (robust
global stochastic Lyapunov theorems. For an exemplary class of and adaptive) stabilization results for deterministic systems
stochastic strict-feedback systems with vanishing nonlinearities, [29]. Even though their starting point was a risk-sensitive cost

where the equilibrium is preserved in the presence of noise, we de- iteri thei It ¢ lobal totic stability i
velop an adaptive stabilization scheme (based on tuning functions) critenon, their result guarantees global asymptiotic stabiiity in

that requires no a priori knowledge of a bound on the covariance. Probability. Deng and Krsti¢6] developed a simpler (algo-
Next, we introduce a control Lyapunov function formula for rithmic) design for strict feedback systems and then extended

stochastic disturbance attenuation. Finally, we address optimality the results on inverse optimal stabilization for general systems
and solve a differential game problem with the control and the , {he stochastic case [6]. They also designed the first scheme
nhO'Se Colv-a”alnce as Oppo-s'ngh playerls’ fo(; fStnCt'fe?d-b ack SyStemSfor stochastic output-feedback nonlinear systems [7]. Based on
the resulting Isaacs equation has a closed-form solution. i X a :

his new concept of “stochastic explSS,” Tsinias [45] developed

_Index Terms—Adaptive backstepping, control Lyapunov func- iy state-feedback and output-feedback backstepping schemes
tions, input-to-state stability (ISS), inverse optimality, Sontag for- f t ith unity intensit .
mula, stability in probability, stochastic disturbance attenuation. or systems with unity Intensity noise.

B. Motivation

|. INTRODUCTION We consider systems of the form

A. Prior Work de = f(x)dt + g1(2)X(t) dw + go(z)u dt (1.1)
VER since the emergence of stochastic stabilization the
in the 1960s [31], progress has been plagued by a funda—w
mental technical obstacle in the Lyapunov analysis—the It6 dif- )
ferentiation introduces not only the gradient but also the Hes-
sian of the Lyapunov function. This diverted the attention from $()2()T  infinitesimal covariance function of the
stabilization to optimization, including the risk-sensitive control driving noise(-)duw.

problem [3], [12], [13], [25], [34], [38] and other problems [22],, )| of the results that guarantee global asymptotic stability in
[23], effectively replacing the Lyapunov problem by an eve robability [5]-[7], [15]-[17], [36] it is assumed that (0) = 0
more difficult problem of solving a Hamilton—Jacobi—Bellma nd%(-) = 1. The assumptio, (0) = 0 excludes linear sys-
PDE. temsdzr = Az dt + B1X(t) dw + Byudt where the noise is

Progregs on sFab|I|zat.|on oﬂeterm|n|st!c systems_ Was 4dditive and nonvanishing. Also, in linear quadratic control, the
equally discouraging until the advances_ in dlfferentlal_ge [ssumptiorE(-) = I is avoided by absorbing the noise covari-
metric theory of the 1980s [24] and the discovery of a simp ce into the value function, which allow-) to be unknown

constructive formula for L_ygpl_mov stabilizatiqn [41], Whi_Chandthe control design to be independent6f) andB, . This is
have created a flurry of activity in robust, adaptive, and optlm%t possible in the nonlinear case andx) must be accounted

for in the control design to allow arbitrary unknowi-).
Manuscript received October 6, 2000; revised January 9, 2001. Recom-The above discussion leads to the following objective: de-

mended by Associate Editor Q. Zhang. This work was supported in part g}gn a feedback control law for system (1_1) that makes some
the National Science Foundation under Grants ECS-9624386, DMS-0071408; ... defini diall b ded f . f th uti
and in part by the Air Force Office of Scientific Research under GraiOSItive—definite, radially unbounded tunction of the solution

F496209610223. Finalist for the Student Best Paper Award, 1998 America(t) bounded (in expectation) by some monotone function of
Control Conference. sup, |%(t)%(¢)"]. This is a natural objective when no bound on

H. Deng and M. Krsfiare with the Department of MAE, University of Cali- . . . ..
fornia at San Diego, La Jolla, CA 92093 USA (e-mail: huadeng@mae.ucsd.e@ﬁ') is known to the deS|gner and/gf(O) # 0. This objectlve

krstic@uesd.edu). _ ~isastochastic counterpart of the deterministic input-to-state sta-
R. J. Williams is with the Department of Mathematics, U“'Ve_“oility(ISS) [42]Where|a:(t)|isbounded byamonotonefunction

sity of California at San Diego, La Jolla, CA 92093 USA (e-mail: f . . .
Wimams@math_ucsd_edu)_ 9 ¢ of the supremum of the disturbance. Since in the stochastic case

Publisher Item Identifier S 0018-9286(01)07681-4. it would make no sense to bound the solutions by the supremum

standard Wiener process;
time-dependent, nonnegative—definite matrix
valued function;

0018-9286/01$10.00 © 2001 IEEE



1238 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 8, AUGUST 2001

of the noise which may be unbounded, we view the bounding pgre the differential game problem (1.2) with the risk-sensitive
the supremum of the norm of the covariance as the most natysedblems and “stochastic differential games” [3]. The difference

disturbance attenuatioproblem in the stochastic setting. from the risk sensitive problem, in whichis fixed and known,
is obvious. The difference from stochastic differential games is
C. Results of the Paper that, rather than keeping the covariance known/fixed and letting

Our presentation starts with stochastic Lyapunov theorer@gotherdeterministicdisturbance be the opposing playene
in Section Il with proofs that refine those in Kushner [31] anteave the role of the opposing player to the covariance. This re-
Khasminskii [28], with an emphasis on tgbal aspects, with sults in a stochastic form of disturbance attenuation where we
a stochastic version of the convergence result of LaSalle [3&hieve an energy-like bouhd

and Yoshizawa [48], and with an elegant cl&asg1], [27] for- eo

malism. 4l ’ e /0 E [l(x)—i_w (‘RQ(a:)l/%M dt
In Section Il we letg; (0) = 0 in which case the equilibrium oo

at the origin can be preserved in the presence of noise. We use an < / " (|22T|) dt.

adaptive control technique which estimates, |>(#)2(¢)7] 0

and tunes one control parameter to achieve regulation(©)f A comparison with the. QG /H; problems is also in order. By

(in probability) in stochastic strict-feedback systems. This claB§oclaimingX as a player in a differential game, we avoid the

of systems was dealt with in [5], [36] under the assumption th@homaly seen i )G;/H, where the controller does not depend

¥(-) = I. Our design is based on adaptive backstepping wi@t the noise input matri; .

tuning functions [29]. Example 1.1: This example gives an idea about what type of
In Section 1V, we develop a control algorithm for stochastigtabilization problems are pursued in this paper. Consider the

disturbance attenuation in strict-feedback systems. The f§alar system

sulting system solutions are bounded (in expectation) by a

monotone function of the supremum of the norm of the noise

covariance (plus a decaying effect of initial conditions). Thigherew is a standard Wiener process andR;, — R, is
concept is related to various ergodic concepts in the literaty§gunded. Consider the following two control laws:

de = wdt + zo(t) dw (1.3)

[9], [28] and is different from Tsinias’ stochastic ISS [45] _ 3 14
where the solution of a stochastic system with two disturbances, w=-rew (1.4)
one stochastic and one deterministic, is bounded by a bound on u=—x—Ex, g =22, (1.5)

the deterministic disturbance. Our approach emplgyartic
Lyapunov functions introduced in [5]. Nevertheless, whe
applied to the linear case, the control law remains linear. E{z(t)*} < e E{2(0)*} + 5 sup o(s)* (1.6)
In Section V, we introduce the concept of a noise-to-state 0=t
Lyapunov function (ns-If) which is a stochastic extension of ¢4 ) lo2 [loo 2 )
Sontag’s ISS Lyapunov functions [42]. In Section V we also g Eqat+ <T - 5) < —2E{z"}. 1.7
define an ns-control Lyapunov function and show that a contin- ) . .
uous feedback always exists that makes it an ns-If. This resulf 3 controller (1.4) is a disturbance attenuation controller.
the stochastic version of Sontag’s “universal formula” [41] anghe controller (1.5) is an adaptive controller. The stat_nllty
its several extensions to systems with uncertainties [18], [Zé‘{,pes guaranteeq by these controllers will becomg clear in thg
[43]; it also strengthens the formula of Florchinger [16] Whicﬁubs.equent sections of the paper. We return to this example in
applies only whemw;(0) = 0 andX(-) = 1. Section V. O
In Section VI, we prove that the formula given in Section \{) Notation
to guarantee the existence of ns-If for the system (1.1) is optimal

Irt1 can be shown that they guarantee, respectively, that

with respect to a differential game of the form The following will be used throughout this paper. Fop 1,
inf sup lim sup E R™ will denote then-d|men5|0ngl Euclidean space aRd =
4y o [0, o0). For avector: € R™, || will denote the Euclidean norm
. || = (325, «2)1/2. All vectors will be column vectors unless
. [S(a}(n)) + / indicated otherwise. The transpose of a vector or matrix will be
0

denoted with a superscript @f. The space ofi x m matrices

12 - with real entries will be denoted Hy**™, | X | will denote the
: (1(37) + 72 (‘R2($) “D -y (B2 |)) dt} (1-2)  Frobeniusnorm of X € R™*™:

where & v 1/2
- — inf{t > 0: |2(t)] > r}: XI= (S x| = (m{x"xpY
S(x) positive—definite and radially unbounded; i=1 j=1
I(x) positive—definite; 12
Ry () strictly positive; = (Tr{XX"}) (1.8)

71() and72(') clas§ICoo fu_nctlons. . . 1This disturbance becomes stochastic only in its state-dependent worst-case
This result is a stochastic version of [30], motivated by the iform because the state is stochastic, but it is not itself the source of stochasticity.

verse optimality results in [18], [39]. It is important to com- 2For zero initial condition.
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where Tr denotes the trace operator, anf{ X) will denote Definition 2.2: The equilibriumz = 0 of the system (2.1) is
then - m-dimensional column vector obtained by stacking the « globally stable in probability i¥/ ¢ > 0 there exists a class
columns of X vertically, end-to-end. For a bounded function K function~(-) such that

. X1
X:Ry — R P{le®)] <(lwol)} > 1—¢

[ Xleo = sup [X(B)]. (1.9) Vi >0, Vo € R\ {0} (2.2)
tCR
’ « globally asymptotically stable in probabiliff/it is glob-
A function V: R®” — R is said to beC* if it is k-times ally stable in probability and
continuously differentiable. For @" function V', aV//dx wil P{ lim |z(t)] = 0} —1 VzeR'.  (2.3)
denote the gradient df (written as aow vector) and for aC? tmoo _
function V, 8V /92 will denote the Hessian of’, the n x Theorem 2.1:Consider system (2.1) and suppose there exists

n matrix of second-order partial derivatives Bt A function aC? functionV: R* — Ry and classC., functionse; andas,
V: R™ — Ris said to be positive definite #(z) > 0 for all such that for al € R™, ¢ > 0

z € R"\ {0} andV(0) = 0. ar(jz]) SV(z) < aalfa]), (2.4)
II. GLOBAL LYAPUNOV THEOREMS FORSTOCHASTIC SYSTEMS LV(z, t)= a—v flz, t)
X
This section reviews some basic notation and stability theory 1 2V
for stochastic nonlinear systems. Even though an extensive cov- + 2 Tr {E(t)Tg(a:, Ht - 9(=, t)E(t)}
erage of stochastic Lyapunov theorems already exists in Khas- .
minskii [28], Kushner [31], and Mao [33], in this section the <-W(x) (2.5)

reader will find many refinements and improvements. whereW: R" — R is continuous and nonnegative. Then there

1) A rigorous treatment of theglobal case (for example, is a unique strong solution of (2.6) for eaeh € R™, the equi-
compare the estimates in (2.20), (2.25) with [28], [31]ibrium = = 0 is globally stable in probability and
(33]). : n

2) A presentation based on classunctions rather than on P {t1l1>g<> W(a(t)) = 0} =1 Vizo € R, (2.6)
thee—6 format in [28], [31], [33] shows a clearer connec- Proof: Since£V < 0 andV is radially unbounded, for
tion between modern deterministic stability results in theachz, € R™, there exists globally a unique strong solution
style of Hahn [21] or Khalil [27] and stochastic stabilityto (2.1) [28, p. 84, Th. 4.1] with probability one (that is, the
results. probability of escape in finite time is zero and the probability

3) A stochastic version of the convergence theorem duettmt two solutions starting from the same initial condition are
LaSalle [32] and Yoshizawa [48]. This theorem (Theoremiifferent is zero).
2.1) is the cornerstone of our approach. It is used in theln the following, (super)martingales will be defined relative
analysis of the adaptive systems in Section Il and also the usual augmented filtratidif; } generated by(-). Since
to obtain Theorem 2.2 for global asymptotic stability inCV(z, ¢) < 0 andV(z) > 0, V; = V(z(¢)) is a supermartin-

probability. gale. By a supermartingale inequality [37, p. 154, (54.5)], for
Consider the nonlinear stochastic system any classc.,, functioné(-), we have
21V,
de = f(x, t)dt + g(z, HE(#) dw,  x(0) =z0 € R® P {Os;;gt Ve 2 6(%)} 5Vo) VE>0, VVo#0
(2.1) (2.7)
thus,

wherexz € R” is the statew is anm-dimensional standard 21V,
Wiener process defined on the complete probability spa@e{ Sugf Vs < 50/0)} 21- 5(Vo) Vt20,VVo #0.

(Q, F, P), the Borel measurable functioffsR™ x Ry — R™ (2.8)
andg: R" x Ry — R"*™ are locally bounded and locally Denotep = a7 0 § 0 . Thensupg<,<; Vs < 6(Vo) implies
Lipschitz continuous inc € R™ (uniformly in¢ € R,) with SUPg<.<; |(s)| < p(|zo]), and thus

F(0,t) =0, g(0,t) = 0forall ¢ > 0, andX: R, — Rm*™ T 21Vp
is Borel measurable and bounded, and the malfi{x) is P{ sup |z(s)| < p(|a:0|)} >1-
nonnegative—definite for each > 0. The above conditions O=s<t 6(Vo)

ensure uniqueness and local existence (up to an explosion time) Vt>0,VVy Z£0. (2.9
of strong solutions to (2.1) [26, Ch. 5]. Since all the issues w&), 5 given: > 0, chooses(-) such that

discuss in this paper are uniformtiywe do not stress the initial 21V,

time, instead, we use 0 ang to denote the initial time and 5(Vo) = YV > 0. (2.10)
initial state of the system..We also uBg to denote the initial Then we have
value of a Lyapunov function.
Definition 2.1: A function~: R, — R, is said to belong to P{ sup |z(s)| < p(|xo|)} >1—c¢
0<s<t

classK if it is continuous, strictly increasing and0) = 0. Itis
said to belong to class . if v € K andy(r) — oo asr — <. Vit >0,Vzo € R"\ {0} (2.11)
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which implies Forr > 0ands > 0, lets,, = min{s, 7.}, and define two
PAe] <pllwob} = 1—e, V20, Vag e R\foy  NONSpr andea by
(2.12) p(r) 2 maxsup |f(a, 1), (2.18)
and the global stability in probability is proved. Iel<r £20
By (2.5) and the vanishing of, g atz = 0, W(0) = 0, pa(r) 2 maxsup |g(z, )S(2)] (2.19)
and sincec(-) = 0 a.s. forzg = 0, we see that (2.6) holds for lz|<r ¢>0

xzo = 0. Forzg € R™ \ {0}, to prove the a.s. convergence of )

W (z(t)) to zero ag — oo, we decompose the sample spac¥here we recall thaf(z, t), g(x, ¢) are locally bounded in
into three mutually exclusive events (uniformly in¢), £(-) is bounded anty;(x, t)¥(¢)| is the Frobe-
nius norm ofg(x, ¢)%(¢). From (2.1) we compute

1. A= {w: limsup W (z(t, w)) = 0}

t—oo

E{ sup |$(81) - $(0)|2}
o 0<s<h
2. Ay = {w: liminf W(z(t, w)) > 0} o

Sr S 2
. s 2
limsup W(z(t, w)) > 0} . <2E{ sup / Flw, ©) dt
tmeo - 0<s<h |Jo

We will show that giverng € R™ \ {0}, P{A;} = P{A3} =0
and hence”{A;} = 1 which implies the desired result since n ZE{

/ " (e, () dw
0

sup
0<s<h

W (z(t)) > 0forall .

Forr > 0, letr, = inf{¢t > 0: x(t) ¢ B} whereB = {z €
R™: |x| < r}. Fort > 0, lett,, = min{¢, 7.}. SinceLV (z, s) 9,9
is bounded otB x [0, ), and because the local martingale term = 201(r)"h" + 2E b
in 1td’s formula when evaluated &t is a martingale irt [since T
%(-) is bounded andV/dz andg(z, -) are bounded whenever
x is restricted to a compact set], we have

)

/0 " g, D) dw

]
(2.20)

Applying Doob’s maximal inequality and the 1t6 isometry, with
simple manipulations applied to the right member of the in-

23
E{Vi,}=W+E {/ LV (z, s) ds} equality, we have
0
2}

)

=8E {/0] lg(z, DE@) dt} < 8po(r)?h  (2.21)

/0 " o OB duw

<Vo—E { /0 " Wiats) ds} 213)  2E { sup

0<s<h

where the last inequality is by (2.5). Thus, sif¢é) > 0 ler
quality is by (2.5) &)z < 8E{ / o, () duw
0

E{/Ot W(x(s))ds} < V. (2.14)

SinceW > 0, lettingr — oo, t — oc and applying Fatou’s

lemma yields whereh,. = inf{h, r..}. Combining the above two inequalities,

0o we get
L {/ W(x(s))ds} < V. (2.15)
’ EQ sup |z(sy) —w(O)IQ} < 2p1(r)*h*+8p2(r)*h (2.22)
Hence 0<s<h
oo and by Chebyshev’s inequality, we have for 0,
/ W(z(s))ds < oo a.s. (2.16) y Y quatty any
0
and it follows immediately thaP{A,} = 0. P {Oi‘jgh [#(sr) = 2(0)] > 77}
Now we turn to proving that’{A3;} = 0. We proceed by
contradiction. Suppos€{A4s} > 0, then there exist; > 0 E{ sup |z(s,.) _$(0)|2}
andeg > 0 such that 0<s<h
P{W (z(-)) crosses from below; to above2e; and 3272 2
< 2p1(7) h +8p2(7) h' (223)

back infinitely many timeg > «o. (2.17) = 7
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Givene > 0, let p be as in (2.11). By the uniform continuity =(-) and P(-|F7;_ ) in place of P(-), on {73, < 7.}. Setting

of W on the closed balB of radiusp(r) centered at the origin , — -, /2 there, we obtain the following off%. < 7,.}:
[18, Corollary A.5], there exists a clagsfunction~ such that o

forally, zin B, |y — 2| < ~(u) implies|W(y) — W(z)| < u plri+_ri |£.
for all w > 0. Thus, for|zo| < r ande; > 0, { €1 Zen |7 Taey }
> h*P{ sup W (E(s))— W (#0))| ‘J—" T }
P{ sup |W(z(s)) — W(z(0))| > 52} 0<s<h <1
0<s<h B*
> (2.27)

< P{ sup [z(s) — x(0)| > v(e2) and
0<s<h whereh* = h*(r, 1/2).

sup |a(s)] < p(T)}—l—P{ sup |o(s)] > p(T)} Substituting this into (2.26) yields

0<s<h 0<s<h oo
h* <
x> Vo2 — g PI{Ts. <71} 2.28
< P{ sup |z(spey) — 2(0)] > ’y(sg)} + € 0= ; 4t { 2z } ( )
0<s<h
2 252 18 )2, It then follows from the Borel-Cantelli lemma that
< 201(0(r) (+)2p2<p<7>> . (2.2
[} .
ez P{13. <, forinfinitely many:} = 0. (2.29)

where in the last inequality we have used (2.23) with v(e2)
andp(r) in place ofr. Now, settinge = 1/2, for everyr > 0
ande, > 0, we can find art* = h*(r, e2) > 0, such that, for
all |zo| < r

Thus

P{Tj., < ocforinfinitely manyi andr, = oo} = 0.
(2.30)
Since the set§r,. = oo} are increasing with, if we show that

P{ sup |[W(z(s)) — W(z(0))| < 52} >4 P{r. = o0} — 1 asr — oo, it will follow that:
O\j:f; (0, h*]. (2.25) P {T3., < oo forinfinitely manyi} =0 (2.31)
Now, IetT1 — inf{t > 0: W(x(t)) € B.,} whereB,, = 2?%?;8(3?_“%“3 (2.17). This yields the desired convergence
g;f} S;erlg/lggl S: ?;}eju%?l = (1 )f{i 2>E§1 anlg/(sw(ri)l)ari/, WeBé/blgitinngt — oo in the supermartingale inequality (2.17),

Teil = inf{¢t > Ti;lz W(z(t)) € B}, T”C1 = inf{t >

TZ 0 W(x(t)) ¢ Bs.,} foralli > 2 By the continuity of 21V,
W (x(-)), we have thatl? , T3, — oo a.s.as — oco. From P{i‘ifo’ jo(s)] = T} Sp{igfo’ Ve z al(T)} = o (7)
(2.15), we have B B
Vr > 0. (2.32)
Vo zE{ W(z(s)) ds} Hence
- T " 21V}
=1 P{r, =} 2>2P{sup |z(s)|<rp 21—
>3 E{ ey W(x(s»ds} =) 2P {aup ool < rf 21 28
=t T Vr >0 (2.33)
7+1 7
z Z E{ {T35, <n}51 (72 T2-:1)} which implies that?{r,. = oo} — 1asr — oc. This completes
=1 the proof. O
nd 4 4 Theorem 2.2:Consider system (2.1) and suppose there exists
_ . 741 7
- Z ek {1{T§51 <} {Tl —1I;, }} aC?functionV: R* — R, classK,, functionsa; anda., and
=1 a classk functionaiz, such that for all € R™, ¢ > 0
(2.26)
ar(lz]) <V(z) < aof|z]), (2.34)
Now, by the strong Markov property of solutions of (2.1), on 1%

{T35., < 7}, thelawofi() = z(-+73,, ) under the conditional ~ £V(z, ) =5~ f(x, 1)
d|str|but|onP( | ) is the same as that of a solution of (2.27) 22V
with ¢4+ 7%, in place oft and initial position satisfying(0)| < + = Tr {E(t)Tg(a:, Ht — g(a, t)E(t)}
7. Slncepl, p= are defined by supremums over glland (2.5) t
holds for all¢, the estimate (2.25) applies witH{-) in place of < —as(|z]). (2.35)



1242 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 8, AUGUST 2001

Then the equilibriunx = 0 is globally asymptotically stable in multaneously. The contral and parameter estimatewill be
probability. given byu = o, (T, ), 8 = y7u (T, 6) for somey > 0.

Proof: This theorem is a direct corollary of Theorem 2.1. e start with several important preparatory comments. Since
The fact thatV'(z) = as(|z|) is strictly positive ifz # 0im-  ;(0) = 0, we will require then,’s to vanish atz; = 0. Define
plieSP{limt_)oo |.’L’(t)| = 0} =1 forall zg € R™. Combining the error variables
this with global stability in probability established in Theorem
2.1, implies the equilibrium is globally asymptotically stable in =T — 1 (@_1, é) , i=1,...,n. (3.4)
probability. O

Let ap = 0. Then, by the mean value theorem for integrals,

[l. ADAPTIVE STABILIZATION OF STRICT-FEEDBACK SYSTEMS (T, ) can be expressed as

In this section, we address the stabilization problem for the

system i(Ti, 0 Z xihi (wz, )

dr = f(z) dt + g1 (2)2(t) dw + g2(z)udt  (3.1) = i: (21 + oy (fl—lv 9)) i (Ei’ é)
=1

wherew is a standard Wiener process gf{@) = 0, g; (0) = 0.

For the sake of discussion, let us assume Yhatconstant. For i
deterministic systems with constant parameters, the usual ap- = Z 21001 (Ei, é) (3.5
proach is adaptive control [29], which allows the treatment of —

unknown parameters multiplying known nonlinearities. In the R

stochastic case here, we have the naige dw with unknown Wherea;(z;, #) are smooth functions. Similarly, we can now
covariance multiplying the known nonlinearity (z). As we Write ¢;(Z;) as
shall see in this section, the presence of noise does not prevent
stabilization as long ag; (0) = 0, i.e., as long as the equilib-

rium is preserved in the presence of noise. Note that this is a

strong condition which is usually not imposed in the so-called

“stochastic (linear) adaptive control,” where the noise is addjsherey;, (z;, §) are smooth functions. Then, according to Itd's

tive and nonvanishing (see, e.g., [10] and the reference therefijferentiation rule, the system (3.2), (3.3) can be written as
However, in the problem pursued here, the additional generality

is that the noise can be of unknown (and, in fact, time-varying)z; =d(x; — a;_1)
covariance and it can multiply a nonlinearity. i1
In this section, we deal with strict-feedback systems given by _ < day;
= | Ti+1 — $l+1
=1

0i(T;) = Z 2k (Ti, 0) (3.6)

k=1

nonlinear stochastic differential equations p 8351
_\T . i—1 a Sau: .
dr; =iy dt + @i(7i) " X(t) duw, i=1,...,n-1 1 Z Q-1 EZT)(t)gaq— 14\
(3.2) pa dry 0, 99
de, =udt + ¢, (7,) " 2(t) dw (3.3) =1 9
T i—1 T _
+ o, — ; 02, ¥ Et)dw, i=1,...,n
where -
T; = [.’L'l, ey .’L'7]T, (37)
vi(Ti) m-vector valugd SMOoth({>) functions wherez, 11 = u = a,(Z,, §). We employ a Lyapunov func-
with ;(0) = 0; _ tion of the form
w m-dimensional standard Wiener process;
3: Ry — R™*™ pounded Borel measurable function "1
where %(¢) is nonnegative definite for Z Z (3.8)
eacht. =1

As we shall see in the sequel, to achieve adaptive stabili%ﬁﬁereé
tion in the presence of unknown, for this class of systems
it is not necessary to estimate the entire malttiand, in fact,

it is possible to allow}: to be time-varying. Instead we will

|27 || — §is the parameter estimation error, and
' we set out to select the functiong(z;, §) andr;(z;, 6) to make
LV (z, 6, t) nonpositive. Along the solutions of (3.7), we have

estimate only one unknown parameter= |27, using =1 a5,

the estlmate9( ) at timet. We employ the adaptive backstep-£V = Z Z; <a:z+1 Z — Ty41
ping technique with tuning functions [29]. Our presentation is i=1 1=

very concise: instead of introducing the stabilizing functions ie1

(%, §) and tuning functions;(z;, §) fori = 0,1, ..., n, _Z Z Patiy TyyT, _ 9%-1 é)

) . k . . Pq— A
in a step-by-step fashion, we derive these smooth functions si- poa=1 8a:paa:q 06
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n i—1 T =0, eg =00, €11 > 0, €00 = €1k
3 9 da;_1 T €n ) €0 = 00, €kl y Gkl = €ilk
+ 5 Z Z; <<Pi Z ) 2 3
=1 =1
< = 8ai_1 ) éé
VPP Y] —— n i—1
dzy 5 3 Oy Jai—1 ;
=1 LV < 2| oy — Ti41 — — 0
n 1—1 9 ) B zzz:l =1 axl N o6
Q1 ;1 )
< Z 2 <az - 41— ——— 0 n
= dxy a0 3 4/3 4 1 o4
i=1 =1 + 1 Z €'z + Z 46?_1 2
n 1 n i—1 (92@‘ L =1 =1
3 3 i—l  TyT
23 2 - — 4 3 n i—1
Ly 2T 2 e, 1y S (R
B B e 4 £ Ox,0x
T i=1  p,q=1 k=1 I=1 P
n 1—1
3 5 a1 T T
DI DDl v),,kwpwaqunzz [
i=1 =1
t—1 x A 1 T
doi_y +s Z = (k= )IIEE" loo
P — S oo — — 3.9 i
EeE A @9 :
- n i—1
2 3” + 273 2k 31 .
wherez, ;1 = 0. Consider the third term 2 ; < P P ; ik
1 3 n m 1—1 i—1 1
Ly S Poc g Sy a(E S Lo
—_ o - - »% “t 2 wkjiily
2 Z %i Z Oz, 0z, TP Ya 4 V=1 k=1 1=1 Gkt
=1 p,g=1 p q
n i—1 p 3 n—1 n k—1 R . éé
1 ? oy m 4 2
<5 2k Ypi + % < Z €kil (9 +9> -—
2 ; p%gl Dz ; ’ gl S Ve K
q n =1 g, 1 -1 p
i—1
|32 v 257 o [ Y Gty 2
=1 i=1 =1 prg=1 k=1 I=1
n i—1 P q 2 82 n
1 [5 ale TR < &1
<z Z Z : 9707 ) Yook gyt + g% Z
2 i=1 p,g=1 k=1 I=1 axpaxq R k=it1l
1
|1/)pk||1/)ql||7z| |2k || |EZT| -k(k—1)(k —L)9+—64/3 z+464 Z
n 7—1 P q i1
<1
t Pt kzzl ; + < 2B Bii + 3 Z 2k Pik
P 1>2 2 T i—1 i—1
|pn [l 76+ s DX 3 Kem 1
{ <8a7paxq ? ! | | + 17 Z 3 BiijﬁleJ
j=1 k=1 I=1 Cikt
1 n 7—1 P q 8206‘ L 2
EPIED IDII| Z) S -
% 3m ~ Oay_q »
4 i=1 p,q=1 k=1 I=1 Ipdz, + Z Z Fiil) 6 — = 9]
T T k=i+1 I=1 e
Ppptph gt | 257 | A -1 p 4 2
n 72— 2
—t o alf iy zz(aai—l)
+13 DT k- Dk —i) |TnT (3.10) voA i 2T \ 9l
i=1  k=it+l
Ppr¥Pprqtbq
and employing the inequalities in [5, egs. (3.13) and s, &
(3.15-3.20)], we have for — 3 Z Z; Z k(k — 1)(k — 1)
i=1  k=it+l
i—1 Sevs n i—1
Bir =i — Sl P, € >0:1=1, ,n—1 -2 2B B + 223 8% 21 Bk
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n m 1—1 2—1
3 1
S DI DD DD DtV
i=1 j=1 k=1 1=1 ikl
3m n—1 n k—1
i=1 k=it1 I=1
Here, 3,1, is thejth component of3;;,. Let
6 =~7, (3.12)
Ty =Ti—1 +wizf’, t=1,...,n (3.13)
wherery = 0 and
1—1 P q 2
1 9%y
Wi = Z Zig Z Z Z <a$ : ) wpkwpkwawa
p,q=1 k=1 I=1 »0
+iz > k(k—1)(k—1i)
k=i+1
i—1
@iffis i + 305 D #xin
k=1
m t—1 2—1
3 1
+ 17 2 ﬁz‘ijﬁiQIj
j=1 k=1 1=1 kI
Im n k—1
+o Z > G (3.14)
k=i+1 (=1
Then

i=1 =1
n
1—1 3
+a— 2wl — - E Y Wj
4er 4 —
; =
n t—1
3 Oo_q 3 43
= E z5 | g B xl_H—i—Zei 2
i=1 =1
i
1—1 3
+a— 2wl — - E Y Wj
dej_y —1
; =
n—1 n
3 9ai 1 3
— E z; E Y Wj
o0
i=1 j=i+1
n 7—1
_ s Oo; 1 +§ 4/3_
= Z; ; 3 Li4+1 46i Zi
=1 =1
~ 804‘_1 :
+ 2+ w§ — —2 ’yz,?»’w
et 377
ie1 a0 =
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n i—1
Jaj_
Sy fut s,
1=2 j=1 e
n i—1 dax /s
_ 3 i i—1 4
= ‘ z5 | g Z 9 X 1+4 i %
=1 =1
A 1—1 3
j=1
t—1
804,»_1
—Z (;A fyzj’wz (3.15)
j=1
Letting
—Ci % +Z Ooti lx —§r4/37<
) +1 4 Co <t
1 A (9047 1 '
1—1 j=1
= da
1 3
+ Z L V2 Wi, i=1,....,n,  (3.17)
=
U =q, (3.18)

wheree; > 0, the infinitesimal generator of the system (3.7)
becomes negative—definite

n

0) <= aiz. (3.19)
7=1
Theorem 3.1:The equilibriumz = 0, 6 = [|Z27T]|oe, Of

the closed-loop system defined by (3.2)—(3.4), (3.12)—(3.14),
and (3.16)—(3.18), is globally stable in probability and for each
(w0, 6o) € R™,

P {tlggo |2(t)] = o} = (3.20)
P {tlim f(t) exists and is finit% =1 (3.21)

Proof: By applying Theorem 2.1 to the pafr, 6), we
conclude that in these coordinates the equilibrium pginD)
is globally stable in probability and

Rn—l—l

Y (20, o) € (3.22)

{01 =0} =1,
Furthermore, fofzo, 6o) € R*t!, sinceLV(z, 6, t) < 0 and

V(z, 6) >0,V, = V(z(t), 6(t)) is a nonnegative supermartin-
gale and so it converges a.s.tas- oo. In view of (3.22) and
the definition ofV/, it follows that a.s.f(t) converges to a finite
(possibly random) limifl., ast — co. Now

= (3.23)

21,
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2 = 2+ an(x, 6) (3.24) C > 0, and it follows from [28, proof of Th. 4.1] that there ex-
ists globally a unigue strong solution to (2.1) for eaghe R™.
(3.25) Applying Itd’s formula to such a solution yields, for &lf> 0

A~

Ln = Zn+t Oénfl(fnflv 9) (326)

- X V(a(t)e
b = ||E5T|oo — 6 (3.27)

t
| | V(o) + [ e I @ls))g(a(s). 5)2(s) duls)
defines a continuous mdp (x, 6) = I'(z, 6), wherel'(0, §) = ) 0
0, ||IZXT||. — ) for all 4, by the definition of they;s. Simi- s

I(arl)|/|, F—1||is Well)defined and continuous. By Corollary A.15 +/0 7 (LV(a(s), 5, T(s)) + V(2(s))) .

of Freeman and KokotoVi§18], I and'~* are CK-contin- (4.3)
uous and it follows that the global stability in probability of

(2, 9) = (0, 0) implies the global stability in probability of
(z, 6) = (0, |[ZXT||o0) in (z, 6)-coordinates. In addition, for
each(zg, fy) € R**!, a.s., ag — oo

If ¢ is replaced by,. = min{¢, 7.} in the above, where,. =
inf{s > 0: |z(s)| > r}, then the stochastic integral (first inte-
gral) in (4.3) defines a martingale (withfixed and¢ varying),

not just a local martingale. Thus, on taking expectations in (4.3)

(g;(t)7 é(t)) =T (z(t), é(t)) =T (07 éoo) with ¢, in place oft and then using (4.1) on the right, we obtain
t,
which yields (3.20)~(3.21). O <V(zo)+E [ / oy (|5()S(s)T]) ds| . (4.4)
0
IV. STOCHASTIC DISTURBANCE ATTENUATION FOR On lettingr — oo and using Fatou’s lemma on the left and
STRICT-FEEDBACK SYSTEMS monotone convergence on the right, we obtain

In this section, we relax the assumption from Section Il that

the noise vector field is vanishing at the origin. This prevents E I:V(x(t))GCt]

equilibrium stabilization but still allows disturbance attenuation .

which we pursue using robust nonlinear control tools. < V(o) +E [/ <y (|E(S)E(S)T|) ds| . (4.5)
We first prove a general technical result to be used in ana- 0

lyzing these systems. For thig,andg are as in (2.1).

Theorem 4.1:Suppose there exists@ functionV: R” —  The result (4.2) follows immediately from this using the fact that

R, aconstant > 0, classKo, functionsa,, g, and a Borel - js an increasing function and simple integration. O
measurable, increasing functignR; — R, such that We apply the above to strict-feedback systems driven by a
stochastic process with time varying but bounded incremental
ar(lz]) < V(e) < as(|z]) covariance with arunknown boundThis class of systems is
- oV - given by nonlinear stochastic differential equations
[’V(xv tv E) éa_ f(xv t)
X
1 52V da; =xip dt + 0 (Z)T2(F) dw, i=1,....,n—-1
+5n{i%uxﬁgﬁg@¢m} 4.6)
<—cV(x) + 7 (|I=57)) (a1) B =wdtton(@) R0 dw 47
forall z € R™, ¢ > 0 and all nonnegative definite matricesWh_e‘re — 1 ‘]T_
3} € R™*™ Then, there is a unique strong solution of (2.1) for ti = T e Tl .
eachzy € R™ and it satisfies ilTi) m-vector-valued ~ smooth ((*)
functions;
w m-dimensional standard Wiener
EV(z(t)] <e™V(zg) + ¢t <Su ESEST> process, .
V)] = (o) i og,f; [2(5)2(s)"] 3: Ry — Rm>m bounded Borel measurable function
ViSO 4.2) whereX(¢) is nonnegative—definite
= ' for eacht.

To obtain a Lyapunov function, we employ the backstepping
Proof: Since ¥: Ry — R™*™ is bounded, technique [29]. Our presentation here is concise, we derive the
LV (z,t, %) < Cforallz € R", t > 0, for some virtual controlse;(Z;), ¢ = 0, 1, ..., n, simultaneously. We
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start with the transformation, = x; — «;—1, and according to wherez,; = 0. Employing the inequality (3.13) in [5], we
It6’s differentiation rule, we rewrite the system (4.6), (4.7) ashave

= Oa_
3 1—1
LV < ; Z; <oeZ — o7 $l+1>

dz =d(x; — ;1)

1 3 — / ~ 1
i— 4/3 4 4
Ja 1 + - e a4+ Z
= <$i+1 a;l Ti4+1 4 — ® T ; 46?_1 7
=1
_ 1 n 1—1 8206 . 2
1 i—1 9 _ += VG T
- [a 75 T( T)(t)(p dt 4 Z 2 8a:p8xq 90]) 90])()0(1 Pq
2 ~ a.’L'pa.’L'q p 4 =1 p,q=1
4 n i—1 5 n
i—1 1 T 3 4
Jda —1 + 3 b)Y + 3 z,
" <¢ZT - 8;1 ¢IT> E(t) dw7 =1 " ! z§=:l p,g=1 | | ! ; '
=1

(4.8) i1 g0 T i-1 5,
1—1 1—1
- <%—z o w) <%—z o w)

wherez, 11 = u = «,(Z,). We employ a Lyapunov function

of the form . 2
+§ >
=1
V(z) = Z 1At (4.9) . -1
We stress the difference between the deterministic case [29], =1 =1
where the Lyapunov function is quadratic, and the stochastic i1 ) 5
case here where the Lyapunov function is chosen as quartic to + 1 2+ 123 Z <3 Q—1 )
accommodate the Hessian tetfl/9z2. Now we set out to 4t 47 it Orpdz,
select the functions;(z;) to makelV < —cV + kX272, . .
wherec and k are positive constants. Along the solutions of “Pp PpPq Pq T T A
(4.8), we have T
8067 1
<% S )
n 1—1 80«,1
LV = Z Z? Li4l — a—z Li+1 ) 2
X X i—1
=1 =1 aai—l
L : <<Pi - oy <Pz>
= g [a 7} =1
P> gz, o0 EZT%)
P a=1 (n—1n(2n-1) 3 T2
L 1 - +< 51 +n [T (4.11)
2 2, _ i1 wheree; > 0,i=1,...,n—1,¢, = 0 andey = co. Letting
1 ap =0 (4.12)

Ja; 3 4
672+Z & le—l 4 z“z

n t—1 n
< Z 22| oy — iy T + Z 22z i—1 2
< 27 | Bz, 41 27 Zit1 a;_,

2
= = P e 7 > < T ) O PpPq Pa
n i1 g2 " P, =1 P
1 3N Q1
+5 | Z | l¢nl el |EZT| i—1 T
2 a 8 8067 1
i=1 p,q=1 — Z
—1 8351

3 n 1—1 9 T
(73
+—sz Yi — 1<Pl 1 2
2 83:1 ? aai—l
BRZ —Z oz 12
=1

i=1,...,n—1 (4.13)

- 8%_
: <<m -3 axll w;) =2 (4.10)
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U= (4.14) where
n—Dn(2n—1 3 w andX asin (5.1);
k= ( )251 ) i (4.15) «w p-dimensional control input;
we have R = R" continuous;
) g1: R* — R™*™  continuous;
LV < —cV +k[S8T". (4.16)  g»: R* — R™P®  continuous.

- . . We study the problem of finding continuous feedback that guar-

Thus,V satisfies tth assumptions of Theorem 4.1 withplace ;1005 that the system has an ns-If. The case without any distur-

of z andy(v) = kv*, and so we have the following theorem. o o5 was solved by Sontag [41] who derived the “universal
Theorem 4.2:The system (4.6), (4.7) with feedback (4.14}, 13" used in most of the subsequent work. The formulas for

satisfies e systems with deterministic affine disturbances were derived by
E{]2(t)|i} < e M2(0)|i+ — sup [Z(s)X(s)T. Freeman and Kokoto¥id.8], Krstic et al.[29], and Sontag and
€ aclod] Wang [43]. A formula for the stochastic case with unity intensity

(4.17) noise and vanishing; (x) was given by Florchinger [16]. Our
where the transformation — z(x) is smoothly invertible and result here (Theorem 5.1) is for the case where the incremental
origin-preserving, angk|y = (3, z)'/*. covariancezxT is time-varying, unknown, and bounded with

When we set the nonlinearitigs (;) in (4.6), (4.7) to con- an unknown bound, and whegg(x) may be nonvanishing at
stant values, we get a linear system in the controllable canonig# origin.
(chain of integrators) form. In this case, the above procedure acDefinition 5.2: A C? functionV: R* — R, is called an
tually results in a linear control law. This is easy to see by noting-control Lyapunov functiofns-clf) for system (5.4), if there
thata; (1) is linear, which inductively implies that the first par-exist classC., functionseay, s andp such that (5.2) holds for
tial derivatives ofc; are constant and that the second partiall = ¢ R™ and the following implication holds for al: €
derivatives are zero. The linearity of the control law comes @& \ {0} and nonnegative—definité € R™*™:
somewhat of a surprise because of the quartic form of the Lya-

T
punov function. o 2 p (|Z27])
\
V. NOISE-TO-STATE L YAPUNOV FUNCTIONS FORGENERAL ) 1 LA
SYSTEMS inf ¢ LiV(z)+ - TeqE g (2) —5 g1(2)X (5.5)
uCRP 2 ox
This section extends the disturbance attenuation ideas from
Section IV to general stochastic nonlinear systems. Consider +La2V($)“} <0
first the uncontrolled system h
de = f(z)dt + g(z)Z dw (5.1) where
av av
where LiV=""f L,V=>="yg.
zeR? state; O dw
w m-dimensional standard Wiener | emma5.1:A4-tuple(V, a1, as, p) satisfies Definition 5.2
process; if and only if (5.2) holds for all: € R™ and whenever # 0
b)) takes values in the: x m non-
negative—definite matrices; (Lg,V)(2) =0= L;V(z)
f: R — R™ and Borel measurable and locally 1 92V
T —1
g: R* — Rxm bounded. T35 gz ()p™(Jz]) < 0. (5.6)
Definition 5.1: The system (5.1) is said to have an ns-If if _ o _
there exists @2 functionV: R* — R, classK, functions Proof: (Necessity) By Definition 5.2, ifz # 0 and
o1, az andp, and a positive definite functiol’, such that for Lg. V(x) = 0, then for any nonnegative—definite x m matrix
eachz € R™ and nonnegative—definite x m matrix by
T
an(Jz]) < Viz) < as(|]) (5.2) o = p (|227])
el 2 p (|57)) o 57)
rvie sy = 2V (5.3) , , , :
(z, ) = O f(z) Consider the incremental covariance given by the feedback law
~ Ty - < —
+2 Tr {E g(x) oy g(x)X p < —Wi(a). T o

ST = o7 o) (5.8)

Remark 5.1: A function V' (z) satisfying the conditions of T
9 ) g1

Theorem 4.1 is an ns-If. The converse is not true. O
Now we turn our attention to the system

where the quotient is defined to Bg\/m times them x m
dz = f(x)dt + g1 ()X dw + g2()udt (5.4) identity matrix if the denominator is zero, alids a nonnegative
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definite square root cEXT. This then satisfies the condition inwhere, according to Lemma 5.1 (z) is positive definite. [We

(5.6)
o (|Z2T)) = |al. (5.9)
So, using (5.8)
1| 0%V 1
LfV+§ 9 G2 | P (=)
1 T O*V T

1 r 1 0%V

(Sufficiency) Forz # 0, |z| > p(|ZXT))

inf LV+1T ETTaQ—V Y+ L,V

B A A B R R AR
. r 02V
S 'u,légp gl 8 2 gl

LV
s

|z +ngvu}

*V
91T el a1

IN

inf
uwERP

p—%uw—%Lﬂvu}-<o
(5.11)

1
LyV+2
s

where to show the last inequality, one choosesccording to
the expression given in (5.12) below. O

havelV(0) = 0 becausd’ has a minimum at = 0 and hence
dV/dz = 0 there.] By Definition 5.1V () is an ns-If. O

In addition to the continuity away from the origin, the formula
(5.12) will be continuous at the origin provided the nsi¢lfx)
satisfies amall control propertythere exists a continuous con-
trol law » = «.(z) which guarantees th&t(x) is an ns-If. The
proof of this fact directly follows from [41].

VI. ns-clfs AS INVERSE OPTIMAL VALUE FUNCTIONS FOR
GENERAL SYSTEMS

In contrast to most of the work in stochastic nonlinear con-
trol where the starting point is an optimal (risk-sensitive) con-
trol problem [3], [12], [13], [25], [34], [36], [38], our approach
in the previous sections was directed toward stability. In this
section, we establish connections with optimality. For general
stochastic nonlinear systems (affine in control and noise) that
have an ns-clf, we design controllers that solve a meaningful op-
timal control problem. This “inverse optimal” approach where
the cost functional is not givea priori, and thus the task of
solving Hamilton—Jacobi PDE’s is avoided, has recently soared
in popularity in therobust nonlinear contrditerature [18], [30],

[39].

Consider the general nonlinear stochastic system affine in the

noiseX dw and controh:

Theorem 5.1:1f there exists an ns-clf for system (5.4), then
there exists a feedback law continuous away from the origin thalere

guarantees that the ns-clf is an ns-If.
Proof: Consider the Sontag-type control law [41]

w+\/w2 + (Lg, V(Lg, V)T)?

Oég(.’lj) — ngv(ng V)
(LQZV)T LQZV # 0
Oa ngV = 0
(5.12)
where
82
w=LV A g lof Sl p el (513)

From the results in [41], it follows that, () is continuous away

from z = 0, so it remains to prove that it mak&3«) an ns-If.
Substituting (5.12) intaCV, we have

1 9?
LV:LfV+§Tr{ET L o

)
2m2}+LWVaA>

s—vbﬂ+@WV@WVFf

o 02V ™)
—5 g 5z 0 (p () — |ZET]) . (5.14)
If |z| > p(JZXT]), we have
LV < \/w2 (L, V(L V)T 2 -W(z)  (5.15)

de = f(z)dt + g1(2)Z dw + go(z)udt (6.1)

w m-~dimensional standard Wiener
process;

b)) takes values in thex x m nonneg-
ative—definite matrices;

U p-dimensional control;

f:R" = R continuous;

gi: R — Rm>m™ continuous;

go: R — R"XP continuous.

Definition 6.1: Theinverse optimal stochastic gain assign-
mentproblem for system (6.1) is solvable if there exist class
Ko functionsy; and~, whose derivatives; and~} are also
classK., functions, a matrix-valued functioRz(x) such that
Ry(z) = Ra(x)T > 0 for all z, a positive definite function
l(z), a positive—definite radially unbounded functitz), and
a feedback control law. = «(z) continuous away from the
origin with «(0) = 0, which minimizes the cost functional

[S(x(n)) + /0 "

(1) + 72 (1Ra(2) 2l

(7)) ]}

(6.2)

J(u) = sup {lim sup B

>eD r—00

whereD is the set of locally bounded functions @f, ¢) taking
values in the nonnegative—definite x m matricesz(-) is a
solution of (6.1) with = X(x(+), -), u = a(z(-)) there, and
7. = inf{t > 0: |z(¢t)| > r}.
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Remark 6.1: The clas® includes functions of to cover the is such that
case wher& = %(¢), ¢t > 0. O _ 1 o 92V _
This optimal control problem looks different than other prob- LV (z)|e.5y =LV (z) + 5 Tr 4 X" g1(2) 55 g1(2)X
. ) ) o i : 2 oz?
lems considered in the literature. First, in the jargon of the risk-
sensitive theory, (6.2) is a risk-neutral problem. Second, to see + Ly, Va(z) < —W(x) (6.8)

the main difference, consider the problem . o )
for all x € R™ and a positive—definite functio’: R — R,

t
I(w) = lim E {S(a:(t)) +/ then the control law
0

t—oo

. (l(a:) + 2 (‘Rg(x)l/QuD) ds} (6.3) (7))~ (

which appears as a direct nonlinear extension of the standard L, VRQ_I/Q‘
linear stochastic control problem [2] (a division by tifmeould (6.9)

lead to the optimal, problem [19]). This problem would be

appropriate i were constant and known. In that case, the teraolves the problem of inverse optimal stochastic gain assign-
fot 71(]2%"]) ds would be included in the value function. How-ment for the system (6.1) by minimizing the cost functional
ever, wher¥: is unknown and/or time varying, it is more reason- {

Ly, VR
Y R2_1(Lﬂ2 V)T - )

. Bz2

T

able to pose the problem as a differential game (6.2). (Furthgﬁu) — sup
clarification is given in Remark 6.2). Note that this differential oD
game is very different from stochastic differential games [3, Sec.

. . _ 2
4.7.2] where the player opposed to control is anotiegermin ) <l(x)+/3272 </_3 ‘R2($)1/2u‘>

limsup £

T—00

28V (x(7,.)) +/

0

istic disturbance (see footnote 1 in Section ). In our case the
opposing player is the stochastic disturbabegyr through its

. . T uyt
incremental covarianceX " . — A <| |>> dt] }

The next theorem allows a solution to the inverse optimal sto- A
chastic gain assignment problem provided a solution to a cer- (6.10)
tain Hamilton—Jacobi—Isaacs equation is available. Before we
state the theorem, we introduce the so-called Legendre—Fenchieére A € (0, 2] and
transform which is the key tool for the results in this section. Let

v be a clas¥C., function whose derivative’ is also a clas&o I(z) =28 |:g,y? ( L, VRQ—U?D LV
function, then¢y denotes the Legendre—Fenchel transform
r T QV
mm:A<w*@m3 (6.4) 4w<m5;mﬂ
where(y")~1(r) stands for the inverse function dfy(r)/dr. + (8 — 2)ly2 (‘ng VRQ_I/QD
The reader is referred to the Appendix for some useful facts on 02V
the Legendre—Fenchel transform. + B(2 — NV < T ) ' 6.11
Theorem 6.1:Consider the control law A Yo { Jou 0x2 7 ( )
v (|L VR—1/2|) Remark 6.2: Even though not explicit in the statement of
w=a(z) = —Ry (L, V)" ez . (6.5) Theorem 6.1} (x) solves the following family of Hamilton-Ja-
L, VR;I/Q‘ cobi-Isaacs equations parameterizedsby¢ [2, o) and A €

(0. 2]
whereV: R* — R, is aC? function such that (5.2) holds for

2
two classkK,, functionsay, as, v1 and-~. are classC., func- LV + %Z’yl < gt Z—Z 0 ) — gﬁw ( L, VRQ—1/2D
tions whose derivatives are also class, functions, and?s(x) *
is a matrix-valued function such th&% (z) = Ry(z)* > 0. If lx) 0 (6.12)
the control law (6.5), when used for the system 28 '

dr = f(z)dt + g1(2)S dw + go(z)udt (6.6) This equation, which depends only on known quantities, helps
. explain why we are pursuing a differential game problem with
wherew is a standardn-dimensional Wiener process ahde  as a player. If we set (6.3) as the cost, the resulting HIB equation
R™>™ is nonnegative definite satisfying is

2 1 RV 3 _
2V K’h(f}? =z gl> LfV+§Tr{ET91T 97 912}—5572(%2‘/321/2‘)
==T T Ox x
YT =2 o (6.7)
L g2 2 2
v T IV I(x)
9 5z o + 55 =0 (6.13)
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that this equation cannot be solved. There is only one ex- — 3ID ZﬁE{V(”C(O))}JFHﬁS’;p E .
ception—linear systems. In the linear cag€x) would be
constant andV’(x) would be quadratic, which would make ) 12

B2 < ‘R D

If 32 is unknown (and allowed to take any value), it is clear { T

gt (0*V/9z?)g; constant. For a constar¥, even if it is
unknown, one would absorb the term

+ 8% (

§TI“{ET91T o 3 912}

()
+28Lg, Vu — BAy, 1

into the value function. It is obvious that this can not be done

wheng; depends on: and/orV (z) is nonquadratic. Thus, we — BNy, <ng 82_Vgl )
pursue a differential game problem in whikhis a player and dz?
its actions are penalized. O 2V
Proof of Theorem 6.1:From (6.8), under the control (6.5) +3Tr {ETgl — 912} dt} .
for (6.6) and (6.7) Iz
(6.16)
— T OV
LV =LV < I g2 9 ) Using Lemma A.2 we have

— v ( LQQVR;UQD <SSWo 61
g2
T
Then we have =2 Ré/Q (—RQI/Q(ng V)T)
3
_ —1/2
W(z) >28W (x) + B(3 — 2)lvs ( 2 D < B2, </3 ‘RI/Q D 4 324 ( ‘2—1/2‘) (6.17)
g
+ B2 = Nfn <91 a2 ) (6.15)
/3Tr{ g a a3 91 }

SinceW(x) is positive—definites > 2, A € (0, 2] and v, 7 T
and/~; are classC., functions (Lemma A.1)|(x) is bounded = A (col(Zx col { g 8 Fre) 91

below by a positive definite function. Therefor&y) is a mean- | |
ingful cost functional. < xyt

Now we prove optimality. According to Dynkin’s formula SPn| | H A
and by substituting(z) into J(u), we have

9*v
T
91 (9372 g1

) (6.18)

and the equalities hold when

J(u) = sup {limsup E |28V (x(1,.)) —|—/ ' 1/2
2CD T—00 0 x /3 —1/2, 4 —1/2 (L V)T
W=y B (L VR, D——w‘
(e (5l 69
| T| and
2% o2V
—BAm1 < )) dt] } 2 9 =0
A ™* 1 T a°Vv 1 a 2
=) a0 (| Gro|) = 25— 620
Tr g9i Fgl
= sup < limsup F 2/3V(x(0))+/ *
>eD r—00 0
So the “worst case” unknown covariance is given by (6.20), the
) <2/3/$V|(6.1) +l(x) minimum of (6.16) is reached with = »*, and

s min J(u) = 28E{V(2(0))}. (6.21)
+ 827 </3‘R/ D *

To satisfy the requirements of Definition 6.1, it only remains

— Byt 2T dt to prove thato*(z) is continuous away from the origin and
A «*(0) = 0. This is proved in [6,proof of Th. 3.1]. O



DENG et al: STABILIZATION OF STOCHASTIC NONLINEAR SYSTEMS 1251

The next theorem is the main result of this section. It convhich is positive definite by Lemma 5.1 and (6.23). This com-
structs a controller that solves the problem posed in Definitignietes the selection &f (x), Rz(x), I(z), v1(-), v2(+) that solve
6.1. the HJI equation (6.12). O

Theorem 6.2:1f the system (6.1) has an ns-dff(z) such Remark 6.3:The condition in Theorem 6.2 that
thatg! (6°V/9x?)g; vanishes at the origin, then the problem 0§ (9?V/9z?)g, be vanishing at the origin excludes the
inverse optimal stochastic gain assignment is solvable. possibility of a linear systemg( = const) with a quadratic

Proof: To solve the problem of inverse optimal stochastins-clf V(z). This condition can be eliminated by modifying
gain assignment, we should find the functiorigz), Ro(z), the cost functional (6.2) but then other issues arise, like radial
[(z), y1(-), 72(-) that solve the Hamilton—Jacobi-Isaacs equanboundedness qf/w? + (L,, V(L4 V)T)2. It is our opinion,
tion (6.12) for some? € [2, c0) and A € (0, 2]. Then the supported by the results in Section 1V, that, for stochastic sys-
inverse optimal controller would be given by (6.9). Since thiems, Lyapunov functions that are higher order at the origin are
system has an ns-clf, in particular, there ekist p) that satisfy superior to quadratic Lyapunov functions. The peculiarity of
(5.6), consider the choice the linear case [the fact that /2)Tr {XTgT (92V/0x2)g, 2}

can be absorbed into the value function, making the controller

2Ly, V(LgV)* L,V #0  independent of the noise vector figjd] has prevented the in-
Ro(x) = w+\/w2 (Lg, V(Ly, V)T )? T adequacy of quadratic Lyapunov functions from being exposed
for several decades now. O
any positive number L,V =0.
(6.22)
wherew is given by (5.13) and»(r) = (1/4)72. In addition, VIl ExamPLE
let 3 = X = 2, thenfy(r) = 72, and after some computation In this brief section, we return to Example 1.1. From the re-
we get sults of the paper it is clear that (1.4) guarantees that system
L OV (1.3) has an ns-clf and (1.5) achieves stabilityrof= £ = 0

LV + %E’h < Ly, VRQ—U?D and regulation of (in probability). Thex(¢) time responses in

)4

a 922 7! Fig. 1 reveal the difference between the achieved stability prop-
erties. The simulations are performed foft) = 2+/2. While
=-3 [ w+ \/W2 (Lg,V(Lg,V)) } the adaptive controller on the right achieves regulation, dhe
nonadaptive controller on the left only forcego converge to
1] 1 9%V oL p) T OV an interval around zero proportional 40 As is evident from
2 9 92 N (2) + £ | |91 92 N the figure, the nonadaptive controller results in a residual error,

(6.23) whereas the adaptive controller does not. The variglidethe
estimate of|o?||../2 = 4. We see thaf(t) converges to about
Sinceg (9°V/dx?)g) vanishes at the origin, there exists a class 5 and does not reach the true value 4. This is not unexpected
Koo function(|z[) such that as in adaptive regulation problems we seldom see convergence
LV to the true parameter.

oF S 01| < ().

VIIl. CONCLUSION

Let ¢(r) be a classCo, function, whose derivative’ is also we solved the problem of state-feedback attenuation of
in Koo, and such that(r) < (1/2)rp~" (7~ (r)). Denoting stochastic disturbances witmknown covarianceOur results

Y1 = L¢, sincel = ¢, we have are given for exemplary, rather than for the most general
N N 1 11 possible, classes of stochastic nonlinear systems. For example,

ta(r) =) < 5rp () (6-24) it is straightforward to add known nonlinearities and determin-

so istic disturbances, as well as zero dynamics with appropriate

input-to-state properties. The output-feedback problem for the

07V 1] ¢ 0V ! class of systems in [7] should also be straightforward.
n <gl g2 I ) =3 9; 922 I (=) (6:28) =4 major difficulty specific to the stochastic case is tht)
in Section VI cannot be guaranteed to be radially unbounded
Choose as in the deterministic case [30]. The reason for this obstacle
L 5 is the termd?V/dx? which prevents easy modifications of the
l(z) =4 {5 [_w + \/WQ + (Lg, V(Lg,V)T) } Lyapunov function (in many cases this term acts to mékée
less negative).
+} ng(?Q_Vgl p71(|x|) As we stated in Sections | and VI, this design cures the
2 ox? anomaly in theL.QG/H, design where the controller does not
92V depend on the noise input matrik . A linear design that does
T . . . .
iy < gi F g1 )} take By into account iscovariance contro[40], however, in
covariance control, a bound ahneeds to be known.

When applied to linear systems, the design in Section Il

_ 2 T2
z2 [ W+ \/w +(Lg. V(L V)T) } » (6:26) 4ves the stabilization problem with multiplicative noise. A
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t
Fig. 1. The time responses with the nonadaptive and the adaptive controller.
sizeable body of literature on this problem was reviewed in [4]. REFERENCES
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APPENDIX 4l
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@ ) = ()~ (), g
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