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Stabilization of Stochastic Nonlinear Systems Driven
by Noise of Unknown Covariance

Hua Deng, Miroslav Krstic´, and Ruth J. Williams

Abstract—This paper poses and solves a new problem of
stochastic (nonlinear) disturbance attenuation where the task
is to make the system solution bounded (in expectation, with
appropriate nonlinear weighting) by a monotone function of the
supremum of the covariance of the noise. This is a natural sto-
chastic counterpart of the problem of input-to-state stabilization
in the sense of Sontag. Our development starts with a set of new
global stochastic Lyapunov theorems. For an exemplary class of
stochastic strict-feedback systems with vanishing nonlinearities,
where the equilibrium is preserved in the presence of noise, we de-
velop an adaptive stabilization scheme (based on tuning functions)
that requires no a priori knowledge of a bound on the covariance.
Next, we introduce a control Lyapunov function formula for
stochastic disturbance attenuation. Finally, we address optimality
and solve a differential game problem with the control and the
noise covariance as opposing players; for strict-feedback systems
the resulting Isaacs equation has a closed-form solution.

Index Terms—Adaptive backstepping, control Lyapunov func-
tions, input-to-state stability (ISS), inverse optimality, Sontag for-
mula, stability in probability, stochastic disturbance attenuation.

I. INTRODUCTION

A. Prior Work

E VER since the emergence of stochastic stabilization theory
in the 1960s [31], progress has been plagued by a funda-

mental technical obstacle in the Lyapunov analysis—the Itô dif-
ferentiation introduces not only the gradient but also the Hes-
sian of the Lyapunov function. This diverted the attention from
stabilization to optimization, including the risk-sensitive control
problem [3], [12], [13], [25], [34], [38] and other problems [22],
[23], effectively replacing the Lyapunov problem by an even
more difficult problem of solving a Hamilton–Jacobi–Bellman
PDE.

Progress on stabilization ofdeterministic systems was
equally discouraging until the advances in differential geo-
metric theory of the 1980s [24] and the discovery of a simple
constructive formula for Lyapunov stabilization [41], which
have created a flurry of activity in robust, adaptive, and optimal
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nonlinear control [18], [29], [39]. These advances have natu-
rally led to re-examining the stochastic stabilization problem.
It would be fair to say that it was Florchinger [14]–[17], who
revamped the area of stochastic stabilization. However, Pan,
and Bas¸ar [36] were the first to solve the stabilization problem
for the class of strict-feedback systems representative of (robust
and adaptive) stabilization results for deterministic systems
[29]. Even though their starting point was a risk-sensitive cost
criterion, their result guarantees global asymptotic stability in
probability. Deng and Krstic´ [6] developed a simpler (algo-
rithmic) design for strict feedback systems and then extended
the results on inverse optimal stabilization for general systems
to the stochastic case [6]. They also designed the first scheme
for stochastic output-feedback nonlinear systems [7]. Based on
his new concept of “stochastic expISS,” Tsinias [45] developed
both state-feedback and output-feedback backstepping schemes
for systems with unity intensity noise.

B. Motivation

We consider systems of the form

(1.1)

where
standard Wiener process;
time-dependent, nonnegative–definite matrix
valued function;
infinitesimal covariance function of the
driving noise .

In all of the results that guarantee global asymptotic stability in
probability [5]–[7], [15]–[17], [36] it is assumed that
and . The assumption excludes linear sys-
tems where the noise is
additive and nonvanishing. Also, in linear quadratic control, the
assumption is avoided by absorbing the noise covari-
ance into the value function, which allows to be unknown
and the control design to be independent of and . This is
not possible in the nonlinear case and must be accounted
for in the control design to allow arbitrary unknown .

The above discussion leads to the following objective: de-
sign a feedback control law for system (1.1) that makes some
positive–definite, radially unbounded function of the solution

bounded (in expectation) by some monotone function of
. This is a natural objective when no bound on

is known to the designer and/or . This objective
is a stochastic counterpart of the deterministic input-to-state sta-
bility (ISS) [42] where is bounded by a monotone function
of the supremum of the disturbance. Since in the stochastic case
it would make no sense to bound the solutions by the supremum
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of the noise which may be unbounded, we view the bounding by
the supremum of the norm of the covariance as the most natural
disturbance attenuationproblem in the stochastic setting.

C. Results of the Paper

Our presentation starts with stochastic Lyapunov theorems
in Section II with proofs that refine those in Kushner [31] and
Khasminskii [28], with an emphasis on theglobalaspects, with
a stochastic version of the convergence result of LaSalle [32]
and Yoshizawa [48], and with an elegant class[21], [27] for-
malism.

In Section III we let in which case the equilibrium
at the origin can be preserved in the presence of noise. We use an
adaptive control technique which estimates
and tunes one control parameter to achieve regulation of
(in probability) in stochastic strict-feedback systems. This class
of systems was dealt with in [5], [36] under the assumption that

. Our design is based on adaptive backstepping with
tuning functions [29].

In Section IV, we develop a control algorithm for stochastic
disturbance attenuation in strict-feedback systems. The re-
sulting system solutions are bounded (in expectation) by a
monotone function of the supremum of the norm of the noise
covariance (plus a decaying effect of initial conditions). This
concept is related to various ergodic concepts in the literature
[9], [28] and is different from Tsinias’ stochastic ISS [45]
where the solution of a stochastic system with two disturbances,
one stochastic and one deterministic, is bounded by a bound on
the deterministic disturbance. Our approach employsquartic
Lyapunov functions introduced in [5]. Nevertheless, when
applied to the linear case, the control law remains linear.

In Section V, we introduce the concept of a noise-to-state
Lyapunov function (ns-lf) which is a stochastic extension of
Sontag’s ISS Lyapunov functions [42]. In Section V we also
define an ns-control Lyapunov function and show that a contin-
uous feedback always exists that makes it an ns-lf. This result is
the stochastic version of Sontag’s “universal formula” [41] and
its several extensions to systems with uncertainties [18], [29],
[43]; it also strengthens the formula of Florchinger [16] which
applies only when and .

In Section VI, we prove that the formula given in Section V
to guarantee the existence of ns-lf for the system (1.1) is optimal
with respect to a differential game of the form

(1.2)

where
;

positive–definite and radially unbounded;
positive–definite;
strictly positive;

and class functions.
This result is a stochastic version of [30], motivated by the in-
verse optimality results in [18], [39]. It is important to com-

pare the differential game problem (1.2) with the risk-sensitive
problems and “stochastic differential games” [3]. The difference
from the risk sensitive problem, in whichis fixed and known,
is obvious. The difference from stochastic differential games is
that, rather than keeping the covariance known/fixed and letting
anotherdeterministicdisturbance be the opposing player,1 we
leave the role of the opposing player to the covariance. This re-
sults in a stochastic form of disturbance attenuation where we
achieve an energy-like bound2

A comparison with the problems is also in order. By
proclaiming as a player in a differential game, we avoid the
anomaly seen in where the controller does not depend
on the noise input matrix .

Example 1.1:This example gives an idea about what type of
stabilization problems are pursued in this paper. Consider the
scalar system

(1.3)

where is a standard Wiener process and is
bounded. Consider the following two control laws:

(1.4)

(1.5)

It can be shown that they guarantee, respectively, that

(1.6)

(1.7)

The controller (1.4) is a disturbance attenuation controller.
The controller (1.5) is an adaptive controller. The stability
types guaranteed by these controllers will become clear in the
subsequent sections of the paper. We return to this example in
Section VI.

D. Notation

The following will be used throughout this paper. For ,
will denote the -dimensional Euclidean space and

. For a vector , will denote the Euclidean norm
. All vectors will be column vectors unless

indicated otherwise. The transpose of a vector or matrix will be
denoted with a superscript of. The space of matrices
with real entries will be denoted by , will denote the
Frobeniusnorm of :

(1.8)

1This disturbance becomes stochastic only in its state-dependent worst-case
form because the state is stochastic, but it is not itself the source of stochasticity.

2For zero initial condition.
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where Tr denotes the trace operator, and will denote
the -dimensional column vector obtained by stacking the
columns of vertically, end-to-end. For a bounded function

(1.9)

A function is said to be if it is -times
continuously differentiable. For a function , will
denote the gradient of (written as arow vector) and for a
function , will denote the Hessian of , the

matrix of second-order partial derivatives of. A function
is said to be positive definite if for all
and .

II. GLOBAL LYAPUNOV THEOREMS FORSTOCHASTICSYSTEMS

This section reviews some basic notation and stability theory
for stochastic nonlinear systems. Even though an extensive cov-
erage of stochastic Lyapunov theorems already exists in Khas-
minskii [28], Kushner [31], and Mao [33], in this section the
reader will find many refinements and improvements.

1) A rigorous treatment of theglobal case (for example,
compare the estimates in (2.20), (2.25) with [28], [31],
[33]).

2) A presentation based on classfunctions rather than on
the – format in [28], [31], [33] shows a clearer connec-
tion between modern deterministic stability results in the
style of Hahn [21] or Khalil [27] and stochastic stability
results.

3) A stochastic version of the convergence theorem due to
LaSalle [32] and Yoshizawa [48]. This theorem (Theorem
2.1) is the cornerstone of our approach. It is used in the
analysis of the adaptive systems in Section III and also
to obtain Theorem 2.2 for global asymptotic stability in
probability.

Consider the nonlinear stochastic system

(2.1)

where is the state, is an -dimensional standard
Wiener process defined on the complete probability space

, the Borel measurable functions
and are locally bounded and locally
Lipschitz continuous in (uniformly in ) with

for all , and
is Borel measurable and bounded, and the matrix is
nonnegative–definite for each . The above conditions
ensure uniqueness and local existence (up to an explosion time)
of strong solutions to (2.1) [26, Ch. 5]. Since all the issues we
discuss in this paper are uniform in, we do not stress the initial
time, instead, we use 0 and to denote the initial time and
initial state of the system. We also use to denote the initial
value of a Lyapunov function.

Definition 2.1: A function is said to belong to
class if it is continuous, strictly increasing and . It is
said to belong to class if and as .

Definition 2.2: The equilibrium of the system (2.1) is

• globally stable in probability if there exists a class
function such that

(2.2)

• globally asymptotically stable in probabilityif it is glob-
ally stable in probability and

(2.3)

Theorem 2.1:Consider system (2.1) and suppose there exists
a function and class functions and ,
such that for all ,

(2.4)

(2.5)

where is continuous and nonnegative. Then there
is a unique strong solution of (2.6) for each , the equi-
librium is globally stable in probability and

(2.6)

Proof: Since and is radially unbounded, for
each , there exists globally a unique strong solution
to (2.1) [28, p. 84, Th. 4.1] with probability one (that is, the
probability of escape in finite time is zero and the probability
that two solutions starting from the same initial condition are
different is zero).

In the following, (super)martingales will be defined relative
to the usual augmented filtration generated by . Since

and , is a supermartin-
gale. By a supermartingale inequality [37, p. 154, (54.5)], for
any class function , we have

(2.7)
thus,

(2.8)
Denote . Then implies

, and thus

(2.9)

For a given , choose such that

(2.10)

Then we have

(2.11)
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which implies

(2.12)

and the global stability in probability is proved.
By (2.5) and the vanishing of, at , ,

and since a.s. for , we see that (2.6) holds for
. For , to prove the a.s. convergence of

to zero as , we decompose the sample space
into three mutually exclusive events

and

We will show that given ,
and hence which implies the desired result since

for all .
For , let where

. For , let . Since
is bounded on , and because the local martingale term
in Itô’s formula when evaluated at is a martingale in [since

is bounded and and are bounded whenever
is restricted to a compact set], we have

(2.13)

where the last inequality is by (2.5). Thus, since

(2.14)

Since , letting , and applying Fatou’s
lemma yields

(2.15)

Hence

a.s. (2.16)

and it follows immediately that .
Now we turn to proving that . We proceed by

contradiction. Suppose , then there exist
and such that

crosses from below to above and

back infinitely many times (2.17)

For and , let , and define two
functions and by

(2.18)

(2.19)

where we recall that , are locally bounded in
(uniformly in ), is bounded and is the Frobe-
nius norm of . From (2.1) we compute

(2.20)

Applying Doob’s maximal inequality and the Itô isometry, with
simple manipulations applied to the right member of the in-
equality, we have

(2.21)

where . Combining the above two inequalities,
we get

(2.22)

and by Chebyshev’s inequality, we have for any ,

(2.23)
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Given , let be as in (2.11). By the uniform continuity
of on the closed ball of radius centered at the origin
[18, Corollary A.5], there exists a classfunction such that
for all in , implies
for all . Thus, for and ,

and

(2.24)

where in the last inequality we have used (2.23) with
and in place of . Now, setting , for every
and , we can find an , such that, for
all

(2.25)

Now, let where
,

where , and, similarly,
,

for all . By the continuity of
, we have that a.s. as . From

(2.15), we have

(2.26)

Now, by the strong Markov property of solutions of (2.1), on
, the law of under the conditional

distribution is the same as that of a solution of (2.27)

with in place of and initial position satisfying
. Since , are defined by supremums over all, and (2.5)

holds for all , the estimate (2.25) applies with in place of

and in place of , on . Setting

there, we obtain the following on :

(2.27)

where .
Substituting this into (2.26) yields

(2.28)

It then follows from the Borel–Cantelli lemma that

for infinitely many (2.29)

Thus

for infinitely many and
(2.30)

Since the sets are increasing with, if we show that
as , it will follow that:

for infinitely many (2.31)

and this contradicts (2.17). This yields the desired convergence
of .

By letting in the supermartingale inequality (2.17),
we obtain

(2.32)

Hence

(2.33)

which implies that as . This completes
the proof.

Theorem 2.2:Consider system (2.1) and suppose there exists
a function , class functions and , and
a class function , such that for all ,

(2.34)

(2.35)
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Then the equilibrium is globally asymptotically stable in
probability.

Proof: This theorem is a direct corollary of Theorem 2.1.
The fact that is strictly positive if im-
plies for all . Combining
this with global stability in probability established in Theorem
2.1, implies the equilibrium is globally asymptotically stable in
probability.

III. A DAPTIVE STABILIZATION OF STRICT-FEEDBACK SYSTEMS

In this section, we address the stabilization problem for the
system

(3.1)

where is a standard Wiener process and , .
For the sake of discussion, let us assume thatis constant. For
deterministic systems with constant parameters, the usual ap-
proach is adaptive control [29], which allows the treatment of
unknown parameters multiplying known nonlinearities. In the
stochastic case here, we have the noise with unknown
covariance multiplying the known nonlinearity . As we
shall see in this section, the presence of noise does not prevent
stabilization as long as , i.e., as long as the equilib-
rium is preserved in the presence of noise. Note that this is a
strong condition which is usually not imposed in the so-called
“stochastic (linear) adaptive control,” where the noise is addi-
tive and nonvanishing (see, e.g., [10] and the reference therein).
However, in the problem pursued here, the additional generality
is that the noise can be of unknown (and, in fact, time-varying)
covariance and it can multiply a nonlinearity.

In this section, we deal with strict-feedback systems given by
nonlinear stochastic differential equations

(3.2)

(3.3)

where
;

-vector valued smooth ( ) functions
with ;

-dimensional standard Wiener process;
bounded Borel measurable function
where is nonnegative definite for
each .

As we shall see in the sequel, to achieve adaptive stabiliza-
tion in the presence of unknown, for this class of systems,
it is not necessary to estimate the entire matrixand, in fact,
it is possible to allow to be time-varying. Instead we will
estimate only one unknown parameter using
the estimate at time . We employ the adaptive backstep-
ping technique with tuning functions [29]. Our presentation is
very concise: instead of introducing the stabilizing functions

and tuning functions for ,
in a step-by-step fashion, we derive these smooth functions si-

multaneously. The control and parameter estimatewill be

given by , for some .
We start with several important preparatory comments. Since

, we will require the ’s to vanish at . Define
the error variables

(3.4)

Let . Then, by the mean value theorem for integrals,
can be expressed as

(3.5)

where are smooth functions. Similarly, we can now
write as

(3.6)

where are smooth functions. Then, according to Itô’s
differentiation rule, the system (3.2), (3.3) can be written as

(3.7)

where . We employ a Lyapunov func-
tion of the form

(3.8)

where is the parameter estimation error, and
we set out to select the functions and to make

nonpositive. Along the solutions of (3.7), we have
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(3.9)

where . Consider the third term

(3.10)

and employing the inequalities in [5, eqs. (3.13) and
(3.15–3.20)], we have for
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(3.11)

Here, is the th component of . Let

(3.12)

(3.13)

where and

(3.14)

Then

(3.15)

Letting

(3.16)

(3.17)

(3.18)

where , the infinitesimal generator of the system (3.7)
becomes negative–definite

(3.19)

Theorem 3.1:The equilibrium , of
the closed-loop system defined by (3.2)–(3.4), (3.12)–(3.14),
and (3.16)–(3.18), is globally stable in probability and for each

,

(3.20)

exists and is finite (3.21)

Proof: By applying Theorem 2.1 to the pair , we
conclude that in these coordinates the equilibrium point
is globally stable in probability and

(3.22)

Furthermore, for , since and
, is a nonnegative supermartin-

gale and so it converges a.s. as . In view of (3.22) and
the definition of , it follows that a.s., converges to a finite
(possibly random) limit as . Now

(3.23)
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(3.24)

... (3.25)

(3.26)

(3.27)

defines a continuous map , where
for all , by the definition of the s. Simi-

larly, is well defined and continuous. By Corollary A.15
of Freeman and Kokotovic´ [18], and are -contin-
uous and it follows that the global stability in probability of

implies the global stability in probability of
in -coordinates. In addition, for

each , a.s., as

(3.28)

which yields (3.20)–(3.21).

IV. STOCHASTIC DISTURBANCE ATTENUATION FOR

STRICT-FEEDBACK SYSTEMS

In this section, we relax the assumption from Section III that
the noise vector field is vanishing at the origin. This prevents
equilibrium stabilization but still allows disturbance attenuation
which we pursue using robust nonlinear control tools.

We first prove a general technical result to be used in ana-
lyzing these systems. For this,and are as in (2.1).

Theorem 4.1:Suppose there exists a function
, a constant , class functions , , and a Borel

measurable, increasing function , such that

(4.1)

for all , and all nonnegative definite matrices
. Then, there is a unique strong solution of (2.1) for

each and it satisfies

(4.2)

Proof: Since is bounded,
for all , , for some

, and it follows from [28, proof of Th. 4.1] that there ex-
ists globally a unique strong solution to (2.1) for each .
Applying Itô’s formula to such a solution yields, for all

(4.3)

If is replaced by in the above, where
, then the stochastic integral (first inte-

gral) in (4.3) defines a martingale (withfixed and varying),
not just a local martingale. Thus, on taking expectations in (4.3)
with in place of and then using (4.1) on the right, we obtain

(4.4)

On letting and using Fatou’s lemma on the left and
monotone convergence on the right, we obtain

(4.5)

The result (4.2) follows immediately from this using the fact that
is an increasing function and simple integration.
We apply the above to strict-feedback systems driven by a

stochastic process with time varying but bounded incremental
covariance with anunknown bound. This class of systems is
given by nonlinear stochastic differential equations

(4.6)

(4.7)

where
;

-vector-valued smooth ( )
functions;

-dimensional standard Wiener
process;
bounded Borel measurable function
where is nonnegative–definite
for each .

To obtain a Lyapunov function, we employ the backstepping
technique [29]. Our presentation here is concise, we derive the
virtual controls , , simultaneously. We
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start with the transformation , and according to
Itô’s differentiation rule, we rewrite the system (4.6), (4.7) as

(4.8)

where . We employ a Lyapunov function
of the form

(4.9)

We stress the difference between the deterministic case [29],
where the Lyapunov function is quadratic, and the stochastic
case here where the Lyapunov function is chosen as quartic to
accommodate the Hessian term . Now we set out to
select the functions to make ,
where and are positive constants. Along the solutions of
(4.8), we have

(4.10)

where . Employing the inequality (3.13) in [5], we
have

(4.11)

where , , and . Letting

(4.12)

(4.13)
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(4.14)

(4.15)

we have

(4.16)

Thus, satisfies the assumptions of Theorem 4.1 within place
of and , and so we have the following theorem.

Theorem 4.2:The system (4.6), (4.7) with feedback (4.14)
satisfies

(4.17)
where the transformation is smoothly invertible and
origin-preserving, and .

When we set the nonlinearities in (4.6), (4.7) to con-
stant values, we get a linear system in the controllable canonical
(chain of integrators) form. In this case, the above procedure ac-
tually results in a linear control law. This is easy to see by noting
that is linear, which inductively implies that the first par-
tial derivatives of are constant and that the second partial
derivatives are zero. The linearity of the control law comes as
somewhat of a surprise because of the quartic form of the Lya-
punov function.

V. NOISE-TO-STATE LYAPUNOV FUNCTIONS FORGENERAL

SYSTEMS

This section extends the disturbance attenuation ideas from
Section IV to general stochastic nonlinear systems. Consider
first the uncontrolled system

(5.1)
where

state;
-dimensional standard Wiener

process;
takes values in the non-
negative–definite matrices;

and Borel measurable and locally
bounded.

Definition 5.1: The system (5.1) is said to have an ns-lf if
there exists a function , class functions

, and , and a positive definite function , such that for
each and nonnegative–definite matrix

(5.2)

(5.3)

Remark 5.1:A function satisfying the conditions of
Theorem 4.1 is an ns-lf. The converse is not true.

Now we turn our attention to the system

(5.4)

where
and as in (5.1);

-dimensional control input;
continuous;
continuous;
continuous.

We study the problem of finding continuous feedback that guar-
antees that the system has an ns-lf. The case without any distur-
bances was solved by Sontag [41] who derived the “universal
formula” used in most of the subsequent work. The formulas for
systems with deterministic affine disturbances were derived by
Freeman and Kokotovic´ [18], Krstić et al. [29], and Sontag and
Wang [43]. A formula for the stochastic case with unity intensity
noise and vanishing was given by Florchinger [16]. Our
result here (Theorem 5.1) is for the case where the incremental
covariance is time-varying, unknown, and bounded with
an unknown bound, and where may be nonvanishing at
the origin.

Definition 5.2: A function is called an
ns-control Lyapunov function(ns-clf) for system (5.4), if there
exist class functions , and such that (5.2) holds for
all and the following implication holds for all

and nonnegative–definite :

(5.5)

where

Lemma 5.1:A 4-tuple satisfies Definition 5.2
if and only if (5.2) holds for all and whenever

(5.6)

Proof: (Necessity) By Definition 5.2, if and
, then for any nonnegative–definite matrix

(5.7)

Consider the incremental covariance given by the feedback law

(5.8)

where the quotient is defined to be times the
identity matrix if the denominator is zero, andis a nonnegative
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definite square root of . This then satisfies the condition in
(5.6)

(5.9)

So, using (5.8)

(5.10)

(Sufficiency) For ,

(5.11)

where to show the last inequality, one choosesaccording to
the expression given in (5.12) below.

Theorem 5.1:If there exists an ns-clf for system (5.4), then
there exists a feedback law continuous away from the origin that
guarantees that the ns-clf is an ns-lf.

Proof: Consider the Sontag-type control law [41]

(5.12)

where

(5.13)

From the results in [41], it follows that is continuous away
from , so it remains to prove that it makes an ns-lf.
Substituting (5.12) into , we have

(5.14)

If , we have

(5.15)

where, according to Lemma 5.1, is positive definite. [We
have because has a minimum at and hence

there.] By Definition 5.1, is an ns-lf.
In addition to the continuity away from the origin, the formula

(5.12) will be continuous at the origin provided the ns-clf
satisfies asmall control property: there exists a continuous con-
trol law which guarantees that is an ns-lf. The
proof of this fact directly follows from [41].

VI. ns-clfs AS INVERSEOPTIMAL VALUE FUNCTIONS FOR

GENERAL SYSTEMS

In contrast to most of the work in stochastic nonlinear con-
trol where the starting point is an optimal (risk-sensitive) con-
trol problem [3], [12], [13], [25], [34], [36], [38], our approach
in the previous sections was directed toward stability. In this
section, we establish connections with optimality. For general
stochastic nonlinear systems (affine in control and noise) that
have an ns-clf, we design controllers that solve a meaningful op-
timal control problem. This “inverse optimal” approach where
the cost functional is not givena priori, and thus the task of
solving Hamilton–Jacobi PDE’s is avoided, has recently soared
in popularity in therobust nonlinear controlliterature [18], [30],
[39].

Consider the general nonlinear stochastic system affine in the
noise and control :

(6.1)

where
-dimensional standard Wiener

process;
takes values in the nonneg-
ative–definite matrices;
-dimensional control;

continuous;
continuous;
continuous.

Definition 6.1: The inverse optimal stochastic gain assign-
mentproblem for system (6.1) is solvable if there exist class

functions and whose derivatives and are also
class functions, a matrix-valued function such that

for all , a positive definite function
, a positive–definite radially unbounded function , and

a feedback control law continuous away from the
origin with , which minimizes the cost functional

(6.2)

where is the set of locally bounded functions of taking
values in the nonnegative–definite matrices, is a
solution of (6.1) with , there, and

.
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Remark 6.1:The class includes functions of to cover the
case where , .

This optimal control problem looks different than other prob-
lems considered in the literature. First, in the jargon of the risk-
sensitive theory, (6.2) is a risk-neutral problem. Second, to see
the main difference, consider the problem

(6.3)

which appears as a direct nonlinear extension of the standard
linear stochastic control problem [2] (a division by timewould
lead to the optimal problem [19]). This problem would be
appropriate if were constant and known. In that case, the term

would be included in the value function. How-
ever, when is unknown and/or time varying, it is more reason-
able to pose the problem as a differential game (6.2). (Further
clarification is given in Remark 6.2). Note that this differential
game is very different from stochastic differential games [3, Sec.
4.7.2] where the player opposed to control is anotherdetermin-
istic disturbance (see footnote 1 in Section I). In our case the
opposing player is the stochastic disturbance through its
incremental covariance .

The next theorem allows a solution to the inverse optimal sto-
chastic gain assignment problem provided a solution to a cer-
tain Hamilton–Jacobi–Isaacs equation is available. Before we
state the theorem, we introduce the so-called Legendre–Fenchel
transform which is the key tool for the results in this section. Let

be a class function whose derivative is also a class
function, then denotes the Legendre–Fenchel transform

(6.4)

where stands for the inverse function of .
The reader is referred to the Appendix for some useful facts on
the Legendre–Fenchel transform.

Theorem 6.1:Consider the control law

(6.5)

where is a function such that (5.2) holds for
two class functions , , and are class func-
tions whose derivatives are also class functions, and
is a matrix-valued function such that . If
the control law (6.5), when used for the system

(6.6)

where is a standard -dimensional Wiener process and
is nonnegative definite satisfying

(6.7)

is such that

(6.8)

for all and a positive–definite function ,
then the control law

(6.9)

solves the problem of inverse optimal stochastic gain assign-
ment for the system (6.1) by minimizing the cost functional

(6.10)

where and

(6.11)

Remark 6.2:Even though not explicit in the statement of
Theorem 6.1, solves the following family of Hamilton–Ja-
cobi–Isaacs equations parameterized by and

(6.12)

This equation, which depends only on known quantities, helps
explain why we are pursuing a differential game problem with
as a player. If we set (6.3) as the cost, the resulting HJB equation
is

(6.13)



1250 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 8, AUGUST 2001

If is unknown (and allowed to take any value), it is clear
that this equation cannot be solved. There is only one ex-
ception—linear systems. In the linear case would be
constant and would be quadratic, which would make

constant. For a constant , even if it is
unknown, one would absorb the term

into the value function. It is obvious that this can not be done
when depends on and/or is nonquadratic. Thus, we
pursue a differential game problem in whichis a player and
its actions are penalized.

Proof of Theorem 6.1:From (6.8), under the control (6.5)
for (6.6) and (6.7)

(6.14)

Then we have

(6.15)

Since is positive–definite, , and
and are class functions (Lemma A.1), is bounded
below by a positive definite function. Therefore, is a mean-
ingful cost functional.

Now we prove optimality. According to Dynkin’s formula
and by substituting into , we have

(6.16)

Using Lemma A.2 we have

(6.17)

col col

(6.18)

and the equalities hold when

(6.19)

and

(6.20)

So the “worst case” unknown covariance is given by (6.20), the
minimum of (6.16) is reached with , and

(6.21)

To satisfy the requirements of Definition 6.1, it only remains
to prove that is continuous away from the origin and

. This is proved in [6,proof of Th. 3.1].
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The next theorem is the main result of this section. It con-
structs a controller that solves the problem posed in Definition
6.1.

Theorem 6.2:If the system (6.1) has an ns-clf such
that vanishes at the origin, then the problem of
inverse optimal stochastic gain assignment is solvable.

Proof: To solve the problem of inverse optimal stochastic
gain assignment, we should find the functions , ,

, , that solve the Hamilton–Jacobi–Isaacs equa-
tion (6.12) for some and . Then the
inverse optimal controller would be given by (6.9). Since the
system has an ns-clf, in particular, there exist that satisfy
(5.6), consider the choice

any positive number
(6.22)

where is given by (5.13) and . In addition,
let , then , and after some computation
we get

(6.23)

Since vanishes at the origin, there exists a class
function such that

Let be a class function, whose derivative is also
in , and such that . Denoting

, since , we have

(6.24)

so

(6.25)

Choose

(6.26)

which is positive definite by Lemma 5.1 and (6.23). This com-
pletes the selection of , , , , that solve
the HJI equation (6.12).

Remark 6.3:The condition in Theorem 6.2 that
be vanishing at the origin excludes the

possibility of a linear system ( const) with a quadratic
ns-clf . This condition can be eliminated by modifying
the cost functional (6.2) but then other issues arise, like radial
unboundedness of . It is our opinion,
supported by the results in Section IV, that, for stochastic sys-
tems, Lyapunov functions that are higher order at the origin are
superior to quadratic Lyapunov functions. The peculiarity of
the linear case [the fact that
can be absorbed into the value function, making the controller
independent of the noise vector field!] has prevented the in-
adequacy of quadratic Lyapunov functions from being exposed
for several decades now.

VII. EXAMPLE

In this brief section, we return to Example 1.1. From the re-
sults of the paper it is clear that (1.4) guarantees that system
(1.3) has an ns-clf and (1.5) achieves stability of
and regulation of (in probability). The time responses in
Fig. 1 reveal the difference between the achieved stability prop-
erties. The simulations are performed for . While
the adaptive controller on the right achieves regulation of, the
nonadaptive controller on the left only forcesto converge to
an interval around zero proportional to. As is evident from
the figure, the nonadaptive controller results in a residual error,
whereas the adaptive controller does not. The variableis the
estimate of . We see that converges to about
2.5 and does not reach the true value 4. This is not unexpected
as in adaptive regulation problems we seldom see convergence
to the true parameter.

VIII. C ONCLUSION

We solved the problem of state-feedback attenuation of
stochastic disturbances withunknown covariance. Our results
are given for exemplary, rather than for the most general
possible, classes of stochastic nonlinear systems. For example,
it is straightforward to add known nonlinearities and determin-
istic disturbances, as well as zero dynamics with appropriate
input-to-state properties. The output-feedback problem for the
class of systems in [7] should also be straightforward.

A major difficulty specific to the stochastic case is that
in Section VI cannot be guaranteed to be radially unbounded
as in the deterministic case [30]. The reason for this obstacle
is the term which prevents easy modifications of the
Lyapunov function (in many cases this term acts to make
less negative).

As we stated in Sections I and VI, this design cures the
anomaly in the design where the controller does not
depend on the noise input matrix . A linear design that does
take into account iscovariance control[40], however, in
covariance control, a bound onneeds to be known.

When applied to linear systems, the design in Section III
solves the stabilization problem with multiplicative noise. A
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Fig. 1. The time responses with the nonadaptive and the adaptive controller.

sizeable body of literature on this problem was reviewed in [4].
All of the previous results assume either restrictive geometric
conditions as, e.g., in [46] (their conditions are not satisfied by
linear strict-feedback systems) or require the knowledge of a
bound on the noise covariance [11], [47]. Our adaptive design
requires noa priori knowledge of a bound on the covariance.

APPENDIX

Lemma A.1 (Krstic´ and Li [30]): If and its derivative
are class functions, then the Legendre–Fenchel transform
satisfies the following properties:

(A.1)

(A.2)

is a class function (A.3)

(A.4)

Lemma A.2 (Young’s Inequality [20, Theorem 156]):For any
two vectors and , the following holds:

(A.5)

and the equality is achieved if and only if

that is, for (A.6)
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