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Inverse Optimal Safety Filters
Miroslav Krstic , Fellow, IEEE

Abstract—Control barrier function quadratic programs
(QP) safety filters are pointwise minimizers of the control
effort at a given state, i.e., myopically optimal at each time.
But are they optimal over the entire infinite time horizon?
What does it mean for a controlled system to be “optimally
safe” as opposed to, conventionally “optimally stable?”
When disturbances, deterministic and stochastic, have un-
known upper bounds, how should safety be defined to al-
low a graceful degradation under disturbances? Can safety
filters be designed to guarantee such weaker safety proper-
ties as well as the optimality of safety over the infinite time
horizon? We pose and answer these questions for general
systems affine in control and disturbances and illustrate
the answers using several examples. In the process, us-
ing the existing QP safety filters, as well as more general
safety-ensuring feedbacks, we generate entire families of
safety filters that are optimal over the infinite horizon al-
though they are conservative (favoring safety over “live-
ness”) relative to the standard QP.

Index Terms—Control barrier functions, inverse optimal-
ity, safety filters.

I. INTRODUCTION

A. Control Barrier Functions (CBFs): A Few Highlights

I T WAS in two ways that the 2014 paper [4], along with its
later journal version [5], marked a watershed in the study of

nonlinear control systems under state constraints.
First, by advancing the notion of control barrier functions

(CBF) proposed in [50], it laid the foundation for a Lyapunov-
like alternative to constraint-handling control design method-
ssuch as classical optimal control, model predictive control
(MPC) [40], or barrier Lyapunov functions (BLFs) [48]. While
similar in name to CBFs, BLFs represent a more conservative
approach in which the system is actively repelled from the
boundary, as opposed to being just slowed down in its approach
to the boundary. Furthermore, neither MPC nor BLFs entail
the notion of a nominal control, as the primary purpose for
the application of the input, from which the constraint-handling
design should deviate only when a safety violation is imminent.
Second, the authors in [4] and [5] proposed, following inspi-
ration from [17], that the conflict between safety and the said
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nominal control (equilibrium stabilization, trajectory tracking,
or mere open-loop forcing of the system) be “mediated” using
a quadratic program (QP), in which the deviation of the actual
control input from the nominal input is penalized quadratically,
whereas the linear inequality constraint comes from the linearity
in control of the nonnegative sum of the derivative of the CBF
with an appropriate decay margin that limits the rate of approach
to the barrier. This approach to imparting safety on a controlled
system, while also obeying the system operator’s intent, has
been the most influential legacy of [4] and [5]. Virtually all the
work on CBF-based safety maintenance employs some form of
QP-based redesigns of the nominal control, often referred to as
“safety filters.”

CBFs have since been used in a range of domains, including
multiagent robotics [18], [43], [49], automotive systems [4],
[39], [55], robust safety [23], [25], [53], delay systems [1], [22],
[34], [37], and stochastic systems [13], [38], [44].

Since CBFs define constraints and, as such, represent system
outputs, when paired with system inputs they have relative
degrees. For example, a position constraint, such as a relative
distance between cars on the road, is of relative degree two
in reference to an idealized accelerator input on a car but of
relative degree three or higher in reference to the actual en-
gine throttle input. CBFs of high relative degree, under that
name, were first studied in the 2015 articles [20], [51] with
progress following in [10], [35], [54], [52], and continuing.
However, control designs for specific CBF of arbitrarily high
relative degree already appear in the 2006 article [28], which
presents backstepping designs for the regulation to the boundary
of the safe set, referred to, at that time, as “nonovershooting
control.”

B. Lgh “Safety Filters”

QP-based safety filters are reminiscent of the 1980’s-era pa-
rameter projection used in adaptive control [29, Appendix E],
which defines the safe set through a “zeroing CBF.” Between
parameter projection and QP-based safety filters, there are two
differences and one key similarity. One difference is that, in
parameter estimation, the plant is simply a vector integrator
(of the update law), as opposed to being a general nonlinear
system affine in control. The other difference is that parameter
projection is an extreme (discontinuous) form of a QP-based
safety filter: projection lets the nominal update proceed unaltered
up to the boundary of the safe set and then tangentially projects
the update, allowing the trajectory to slide along the boundary if
the nominal update directs the estimates outward. As for the key
similarity between parameter projection and QP safety filters,
projection also employs a CBF, as well as a QP. As a result,
it has an Lgh factor, a hallmark of CBF-QP. More on this in
Section X.

A factor of Lgh is a tell-tale sign of potential optimality—not
mere pointwise optimality, at a given point x in the state space,
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but optimality over the infinite time horizon. The so-called “LgV
controllers” have a storied history in nonlinear stabilization.
Sontag [47] “universal formula” was the first generally appli-
cable LgV controller and is both pointwise and infinite-horizon
optimal. Sepulchre et al. [45] produced a collection of results
with such “damping controllers” and showed that every LgV
controller—not just Sontag’s formula—is optimal with respect
to a meaningful cost functional if multiplied by a factor of
two or more, which, in particular, indicates the controller’s
infinite gain margin. They also proved a nonlinear version
of a 60° phase margin: an LgV controller remains stabiliz-
ing when applied through any dynamical system of the form
Id + P , where Id denotes identity and P denotes any strictly
passive nonlinear system, which need not be input-to-state
stable.

Such properties of LgV controllers inspired their further
development under uncertainties. In [27], for systems affine
in control and disturbances, inverse optimal controllers were
designed that solve a zero-sum game problem, in which the
disturbance maximizes and the control minimizes a meaningful
cost. In [21] and [36], global inverse optimality was augmented
with local direct optimality. In [15] and [16], stochastic inverse
optimal designs were introduced: LgV controllers for inverse
optimal stabilization in probability in [16] and controllers that
are inverse optimal for a zero-sum game relative to the un-
known covariance acting as the opposing player in [15]. Finally,
in [31], adaptive LgV controllers were designed that minimize
a penalty not only on the plant’s state and the input, but also
on the parameter estimation error—thus far the only pairings of
controllers and parameter estimators that are not merely optimal
“asymptotically” but over the entire time horizon. In each of [15],
[16], [27], and [31], LgV controllers are designed not only for
some classes of systems but for all suitably stabilizable systems,
using Sontag-type formulae.

Given the Lgh form of the CBF-QP safety filters [4], [5], it
is imperative to ask the following questions. Are the CBF-QP
safety filters inverse optimal? If not, can they be made optimal
with respect to some meaningful cost functionals? What is mean-
ingful to penalize when “mediating” safety and the execution of
the user’s nominal control design?

To answer these questions, let us consult intuition. First, let
us note that CLFs and CBFs are not the opposites of each other:
CLF is an energy-like, or norm-like function, whereas a CBF
is a system output. However, for both CLFs and CBFs, we are
interested in their decays and growths. While the decay of a CLF
indicates convergence to an equilibrium, i.e., an improvement in
desired performance, the increase of a CBF indicates movement
away from the dangerous boundary of the safe set, i.e., an
improvement in safety. Hence, optimization should reward an
increase in safety. Another hint comes from terminology: if
the LgV controllers got nicknamed the “damping controllers”
because they enhance the negativity of V̇ , the CBF-QP safety
filters, which reduce the negativity of ḣ, should be nicknamed
“antidampers” among safety filters. In fact, the CBF-QP safety
filters act precisely as pointwise worst-case disturbances, not
unlike the optimal disturbances in H∞ control.

In summary, optimal safety filters should be maximizing a
reward function that is 1) proportional to the CBF and 2) negative
definite in the deviation between the control applied and the
nominal control. In plain language, optimality should reward
both safety and close adherence to the nominal control.

Let us now return to the question—is CBF-QP inverse opti-
mal? It is not. It is only optimal in a myopic sense, pointwise in
x, but not over the infinite horizon. Infinite-horizon optimality
has been pursued in [3], [2], [11], and [14] but toward achieving
optimal stabilization, not optimal safety.

Can we design safety filters that have a property of inverse
optimality? Yes and, in the absence of a disturbance, such a
redesign amounts to little more than multiplying the QP modifi-
cation to the nominal control by a factor of two or higher. Plainly
speaking, doubling the antidamping of the CBF, i.e., doubling
safety, imparts inverse optimality.

C. Nonlinear Systems With Disturbances: Deterministic
and Stochastic

Under deterministic disturbances, two main ideas have
emerged. Robust CBFs [23] ensure safety under a disturbance
with a known bound. In input-to-state safety (ISSf) [25], which
mirrors input-to-state stability [46], the disturbance is bounded
but potentially arbitrarily large and, being also unvanishing,
may take the system outside of the safe set. Hence, the CBF
h may assume negative values but in proportion to the size of
the disturbance, with a class K gain from the disturbance to the
“safety violation” −h.

Controllers that render the safety violation −h proportional
to the disturbance are introduced in the 2006 work on nonover-
shooting control [28] with a backstepping design for a high
relative degree CBF.

In the stochastic case, a general CBF-based safety analysis is
presented in [13]. A mean-nonovershooting tracking design for
stochastic strict-feedback systems is given in [30].

In this article, we tackle four questions related to systems
with disturbances: Two of the questions are the designs of
QP-based safety filters for general nonlinear systems affine in
deterministic or stochastic disturbances. The other two questions
are the inverse optimal versions of safety filters under stochastic
and deterministic disturbances.

But what does inverse optimality mean in the presence of
disturbances? Disturbances not subject to a known upper bound
dictate that optimality take a form of a two-player game, between
the safety filter and the disturbance. While the safety filter’s
goal is to maintain safety, the goal of the disturbance is to erode
safety, while investing as little of its energy as possible. This
leads to cost functionals positive definite in the disturbance and
proportional to the CBF, with the goal of the disturbance to
minimize such a cost.

Contribution Summary: The expansion of the “safety filter
toolkit,” which we offer here, relative to the introductory CBF-
QP [5], is displayed in Table I. We design safety filters that
are deterministic and stochastic disturbance-based versions of
the CBF-QP design. We also provide their modifications that
ensure inverse optimality. Our safety filters are Nash equilibrium
strategies, in balance with the Nash equilibrium strategies of the
disturbances.

D. Safety Framework

We are unconcerned with stability in this article. We consider
a hierarchical scenario comprising the following:

1) at the bottom layer, an “operator”O, who only commands
setpoints or open-loop reference signals;
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TABLE I
DESIGNS THAT EXPAND THE “SAFETY FILTER TOOLKIT” RELATIVE TO THE INTRODUCTORY CBF-QP [5]

2) at the middle layer, a designer N of a nominal feedback
law u0, which fulfills O’s command in the absence of
state constraints;

3) at the top layer, a designer S of a safety filter ū, which
ensures safety for a given nominal u0.

The barrier function h(x) is known only to S . The scenario
considered in CBF-CLF-QP [4], [23] has the setpoint in the safe
set. We allow O to possibly command operation outside of the
safe set (unknown to O) or unstable operation (Example 2), and
this makes the stability issue moot.

E. Preview of Inverse Optimal Safety Filters: A Scalar
Example

Consider the scalar system

ẋ = u , h(x) = −x . (1)

Merely maintaining the positive invariance of {x < 0} is achiev-
able with trivial u = 0 and even with destabilizing u = x. A
good safety filter should keep u close to the nominal u0 when
−x > 0 is comparatively large, i.e., when x is far from the
boundary x = 0.

The QP solution ūQP = min{0,−u0 − x} gives the safety
filter u = uQP = u0 + ūQP = min{u0,−x}, which ensures
safety with ḣ ≥ −h and is pointwise optimal in x but is not
optimal over the interval 0 ≤ t < ∞. However, the modified QP
safety filter u = u∗

QP = u0 + 2ūQP = u0 + 2min{0,−u0 −
x} = min{u0,−u0 − 2x}, namely

u = u∗
QP = −x− |u0 + x| (2)

not only ensures safety but also, as we shall see in the general
results later, maximizes the cost functional −x(+∞) +∫∞
0

(
min{−x, u0} − (u−u0)

2

4max{0,u0+x}
)
dt, and, equivalently,

minimizes the cost functional

x(+∞) +

∫ ∞

0

(
max{x,−u0}+ (u− u0)

2

4max{0, u0 + x}
)
dt

(3)
where we have simply suppressed the dependence on t in
x(t), u(t), u0(x(t), t) under the integrals for the sake of clarity.

The functional (3) is meaningful. The term x(+∞) is a “ter-
minal safety violation” cost, and the term max{x,−u0} under
the integral is a running safety violation cost. The term (u− u0)

2

penalizes the deviation of u from u0, and its denominator inflicts
an infinite penalty on u for possibly not remaining at exactly the
nominalu0 whenu0 < −x, which is when the nominal control is
acting on its own to push the state away from the boundaryx = 0.
The value function of (3) is the “safety violation” +x, which
means that the optimizing safety filter results in the optimal
cost +x0 < 0. In summary, (3) incentivizes both safety and
“liveness.”

If the reader is unsettled by the nonsmoothness of max in (3),
or simply put off by the dogmatism of QP/min-norm control, an

alternative inverse optimal safety filter is the Sontag formula-
inspired ūS = −(u0 + x+

√
(u0 + x)2 + 1), which gives u =

u∗
S = u0 + ūS, namely

u = u∗
S = −x−

√
(u0 + x)2 + 1 (4)

which minimizes

x(+∞) +

∫ ∞

0

[−u0 + x+
√

(u0 + x)2 + 1

2

+
1

2

(u− u0)
2

u0 + x+
√

(u0 + x)2 + 1

]
dt (5)

and hence, such as (3), also maximizes safety and minimizes
u− u0. Note the similarity between the optimal QP filter (2)
and the slightly more conservative optimal Sontag filter (4).
Another variation on the Sontag formula is the safety filter u =

uS = u0 +
1
2 ūS = 1

2 (u0 − x−√
(u0 + x)2 + 1), which is not

inverse optimal but guarantees safety with ḣ ≥ −h.
Fig. 1 illustrates the following properties that accompany the

safety filters in this article:
1) the nominal input is endowed with optimality away from

the boundary;
2) the cost (safety deficit) increases near the boundary;
3) the nominal input is overriden near the boundary when

the input is safety-reducing.

F. Contributions and Organization

The rest of this article is organized as follows. Sections II–V
deal with deterministic disturbances. The main result on inverse
optimality for safety filters is in Section V. Safety filters of the
special QP form, under disturbances, are presented in Section IV
and their inverse optimal versions at the end of Section V.

For the reader less interested in the effects of disturbances
(or overwhelmed by them), Section VI specializes the inverse
optimality results to the disturbance-free case. It is in this section
that the points of this article are most transparently evident. The
reciprocal CBF (RCBF) formulation of inverse optimal safety
filter design in this section is the closest to the traditional notion
of optimal control—the task of control is minimization.

Stochastic systems are dealt with in Sections VII–IX. Stochas-
tic safety filters, stochastic QP formulae, and inverse optimal
achievement of safety under stochastic disturbances are all new
notions in the literature. In addition, the notion of stochastic
safety under nonunity covariance, where covariance is time
dependent and of unknown bound, which is the subject of
Section IX, is a new topic in the safety literature. Sections VIII
and IX are written in a contrasting fashion: the former dealing
with the easier but still novel case of inverse optimal safety
filters for unity-intensity stochastic disturbances, and the latter
dealing with the same topics but with covariance whose intensity
is arbitrary and incorporated in the cost functional—rewarded
for making the system less safe but penalized when its energy is

Authorized licensed use limited to: Miroslav Krstic. Downloaded on December 31,2023 at 19:11:52 UTC from IEEE Xplore.  Restrictions apply. 



KRSTIC: INVERSE OPTIMAL SAFETY FILTERS 19

Fig. 1. Example in Section I-E. Left: running cost −u0+x+
√

(u0+x)2+1
2 + 1

2
(u−u0)

2

u0+x+
√

(u0+x)2+1
in (5) for u0 = 5. Right: optimal feedback u∗

S =

−x−
√

(u0 + x)2 + 1 in (4). Safe set x ≤ 0; safety boundary at x = 0.

large. The inverse optimality results in Sections VIII and IX are
given in the traditional mean sense, as in conventional stochastic
optimal control.

In Section X, we consider parameter estimation and contrast
the classical QP-based projection operator with a novel safety
filter that, unlike projection, is continuous and also inverse op-
timal. In Section XI, we return to nonovershooting control [28],
i.e., regulation to the safety boundary, beyond the strict-feedback
systems in [28] and in the presence of deterministic or stochastic
disturbances [30].

Notations: Let a < 0 < b. A continuous function γ :
(a, b) → R with γ(0) = 0 is of extended class K(a,b) if it is
strictly increasing. A continuous function β : (a, b)× R≥0 →
R is of class KL(a,b) if it is of class K(a,b) in its first argument
and has a zero limit as its second argument goes to infinity.

II. INPUT-TO-STATE SAFETY (ISSF)

We start with definitions of a barrier function and safe set.
Definition 1: The scalar-valued differentiable function h :

Rn → R with infx∈Rn h(x) < 0 and supx∈Rn h(x) > 0 is re-
ferred to as a barrier function candidate. The set C = {x ∈
Rn | h(x) ≥ 0} is referred to as a safe set.

Assumption 1: C is without isolated points.
Consider now the disturbance-driven system

ẋ = f(x) + g1(x)d , d ∈ Rm1 . (6)

Definition 2: The set C of the system (6) is said to be input-
to-state safe (ISSf) if

h(x(t)) ≥ β(h(x0), t)− ρ

(
sup

0≤τ≤t
|d(τ)|

)
∀t ≥ 0 . (7)

where the function ρ ∈ K is referred to as the ISSf gain function
and β ∈ KL(inf h(ξ),suph(ξ)) =: KLh.

This property is not new. Controller design ensuring ISSf,
using backstepping for nonovershooting control, goes as far
back as 2006 in the paper [28]—see the safety bound (61) of
Theorem 3 with a disturbance of unlimited unknown bound
d̄, as well as the safety bound (90) of Proposition 1 with an
observer-based nonovershooting controller.

The following definition is a very slightly adjusted version
of [32, Def. 4].

Definition 3: The function h is called an ISSf barrier function
(ISSf-BF) if there exist a functionρ : [0,+∞) → [0,− inf h(ξ))
of class K and a function α in K(inf h(ξ),suph(ξ)) such that, for
all x ∈ Rn, d ∈ Rm1 ,

min {0, h(x)} ≤ −ρ(|d|)
⇒ Lfh+ Lg1hd ≥ −α(h) . (8)

The following result is a variation on [32, Th. 1], proved by
adapting [26, Th. 2.2] and [25, Th. 1].

Lemma 1: For the system (6), if there exists an ISSf-BF h
such that (8) holds, then the system is ISSf with β(r, t) in (7)
defined by the solution to ḣ = −α(h), h(0) = r.

For converse barrier certificates, see [33].

III. ISSF-CONTROL BARRIER FUNCTION (ISSF-CBFS)

Consider now, with loc. Lipschitz f, g1, and g2, the system

ẋ = f(x) + g1(x)d+ g2(x)u , u ∈ Rm2 . (9)

Definition 4: A scalar differentiable function h is called an
ISSf-CBF for (9) if there exists a class K function ρ : R≥0 →
[0,− inf h(ξ)) and α ∈ K(inf h(ξ),suph(ξ)) =: Kh such that, for
all x ∈ Rn, d ∈ Rm1

min {0, h(x)} ≤ −ρ(|d|)
⇒ sup

u∈Rm2

{Lfh+ Lg1hd+ Lg2hu} ≥ −α(h). (10)

The following result for CBFs is obtained by adapting our
CLF result [27, Lemma 2.1].

Lemma 2: A pair (h, ρ) satisfies (10) if and only if

Lg2h(x) = 0 ⇒ ω(x) ≥ 0 (11)

where

ω(x) = Lfh− |Lg1h| ρ−1(max{0,−h(x)}) + α(h(x)) .
(12)

ISSf-CBFs, which do not require the disturbance to be in a
known compact set, are different from robust CBFs [12], [23].
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That is the very purpose of the antecedent in the implication (10)
and the term ρ−1(max{0,−h(x)}) in (12).

Theorem 1: If there exists an ISSf-CBF, the system (9) is
rendered ISSf using the following Sontag-type control law1:

u = uS(x) = (Lg2h)
T

{
κ(x), (Lg2h)

T �= 0

0, (Lg2h)
T = 0

(13)

where, with ω(x) defined in (12),

κ(x) =
−ω +

√
ω2 + (Lg2h(Lg2h)

T)2

Lg2h(Lg2h)
T

=
Lg2h(Lg2h)

T

ω +
√

ω2 + (Lg2h(Lg2h)
T)2

. (14)

Proof: We substitute (13) into (9) and get

ḣ = Lfh+ Lg1hd− ω +

√
ω2 + (Lg2h(Lg2h)

T)2

≥ − α(h(x)) + |Lg1h|
[
ρ−1(max{0,−h(x)})− |d|] .

(15)

For min{0, h(x)} ≤ −ρ(|d|), we, thus, have

ḣ = Lf+g2αS
+ Lg1hd ≥ −α(h(x)) (16)

which, thanks to Lemma 1, completes the proof of ISSf. �

IV. ISSF FILTER

Now we turn our attention to the simultaneous objectives of
maintaining safety and deviating as little as possible from the
nominal u0(x, t). For that purpose, we rewrite (9) as

ẋ = f(x) + g2(x)u0 + g1(x)d+ g2(x)(u− u0) . (17)

Let an ISSf-CBF h(x) be available, with associated (ρ, α).
Accounting for the inclusion of u0 into the drift vector field
(17), we modify (12) as

ω(x, u0) = Lf+g2u0
h− |Lg1h| ρ−1(max{0,−h(x)})

+ α(h(x)) . (18)

Then, we introduce the QP problem

ūQP = arg min
v∈Rm2

|v|2 subject to (19)

ω(x, u0) + Lg2hv ≥ 0 . (20)

The well-known explicit solution to this problem is [17]

ūQP =

⎧⎨
⎩
0, ω(x, u0) ≥ 0

−ω(x, u0)

|Lg2h|2
(Lg2h)

T , ω(x, u0) < 0 .
(21)

Remark 1: Regarding the possible division by Lg2h = 0 in
the second case of (21), we recall that, by Lemma 2, every ISSf-
CBF satisfies the implicationLg2h = 0 ⇒ ω(x, u0) ≥ 0, which
is equivalent to the implication ω(x, u0) < 0 ⇒ Lg2h �= 0, and
this precludes Lg2h being zero in the second case of (21), i.e., a
division by zero is not possible.

While bounded, (21) is not necessarily continuous at points
where Lg2h(x) = 0. When the nominal u0 is only a function of
x, continuity can be ensured by assuming the following.

Assumption 2: For a given locally Lipschitzu0 : Rn → Rm2 ,
system (17) satisfies the small control property (SCP) [23], [27],

1See also the proof in [27, Th. 3.2] and [25, Remark 5].

[45], [47], i.e., there exists a (not necessarily known) continuous
ūc(x) such that Lg2h(x) = 0 ⇒ ūc(x) = 0 and

ωc(x) = Lf+g2(u0+ūc)h− |Lg1h| ρ−1(max{0,−h(x)})
+ α(h(x)) ≥ 0 . (22)

From (22) it follows, for ω defined in (18), that ω ≤ 0 ⇒
|ω| ≤ |Lg2h||ūc|, from which the continuity follows for ūQP in
(21), as well as for the Sontag controller in Theorem 1 (and 9).
With the SCP, (21) and (13) are also locally Lipschitz on the
open set Lg2h(x) �= 0.

With the QP safety filter (21), we have the following result.
Theorem 2: The control law

u = u0 + ūQP(x, u0) (23)

with ūQP(x, u0) defined in (21) and ω(x, u0) defined in (18)
renders the system (17) ISSf with respect to the ISSf-CBF h(x),
with a gain function ρ, i.e., there exists β ∈ KLh such that, for
all t ≥ 0

h(x(t)) ≥ β(h(x0), t)− ρ

(
sup

0≤τ≤t
|d(τ)|

)
. (24)

Proof: We substitute (23) and (21) into (9), get

ḣ = Lf+g2u0
h+ Lg1hd+ Lg2hūQP

= − α(h(x)) + ω +max {0,−ω}
+ |Lg1h|ρ−1(max{0,−h(x)}) + Lg1hd

≥ − α(h(x)) + max {ω, 0}
+ |Lg1h|

[
ρ−1(max{0,−h(x)})− |d|]

≥ − α(h(x)) + |Lg1h|
[
ρ−1(max{0,−h(x)})− |d|]

(25)

and invoke Lemma 1. �
Example 1: Consider the system

ẋ = u+ (1 + x2)d (26)

with an ISSf-CBF h(x)=−x. For some ρ ∈ K∞, (18) is ω
= −u0 − (1 + x2)ρ−1(max{0, x}) + α(h(x)) and the
QP formula (21) gives ūQP = min{0,−u0 − (1 +
x2)ρ−1(max{0, x}) + α(h(x))}. Taking, e.g., α(h) = h,
the overall feedback (23), given by u = min{u0,−(1 +
x2)ρ−1(max{0, x})− x}, guarantees, ∀ρ ∈ K∞,

x(t) ≤ e−tx0 + ρ

(
sup

0≤τ≤t
|d(τ)|

)
∀t ≥ 0 . (27)

�
Example 2: The safety filter (23) ensures safety but, on its

own, does not guarantee forward completeness. For instance,
the example in Section I-E, where ẋ = u, h(x) = −x, results in
the QP safety filter u = min{u0,−x}. If the nominal control
happens to be u0 = x3, the resulting overall control is u =
min{x3,−x}. Within the safe set x < 0, this feedback becomes
simply u = x3 and gives a closed-loop system ẋ = x3, which
has a finite escape time. While this might at first disappoint, it
should not. The safety filter ensures both safety and the exact
conformity with the nominal control u0 = x3. If the user wishes
to drive the solution to −∞ in finite time, this is what the user
gets with this safety filter. �

Hence, insisting on forward completeness may contradict the
nominal objective and is not implied by safety. Nevertheless, for
reasons of being able to state results like (24) for all t ≥ 0, we
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seek conditions that ensure forward completeness. One way is
to assume unboundedness observability [6].

Assumption 3: For system (9) with BF h and nominal u0,
there exists a proper, smooth U : Rn → R≥0 such that

Lf+g1 d+g2uU ≤ U + σ1 (max{0,−h(x)}+ |d|)
+ σ2(|u− u0|) (28)

for some σ1, σ2 ∈ K∞ and for all x ∈ Rn, d ∈ Rm1 , and u ∈
Rm2 . In addition, for some M > 0, the feedback uc in Assump-
tion 2 satisfies |ūc(x)| ≤ σ−1

2 (MU(x)) ∀x ∈ Rn.
With this assumption, we ensure that once we prove safety,

namely, that h(x(t)) ≥ −ρ(supt≥0 |d(t)|) holds, it fol-
lows that max{0,−h(x(t)) ≤ ρ(supt≥0 |d(t)|) and, from
(28) and (21), that U̇ ≤ (1 +M)U + σ1(ρ(supt≥0 |d(t)|) +
supt≥0 |d(t)|), which implies forward completeness. The condi-
tion |ūc(x)| ≤ σ−1

2 (U) in Assumption 3 is undoubtedly strong,
but the alternative routes to ensuring the existence of solutions
are even less appealing.

Due to limited space, in the rest of this article, we do not
belabor regularity and existence issues. Assumptionssuch as
Assumptions 2 and 3, can ensure these properties for all our
safety filter designs, but at the expense of restricting u0.

Remark 2: Since controls such as (21) appear in our article at
least half a dozen times, for the sake of compactness, we write
it as

ūQP = (Lg2h)
T max {0,−ω(x, u0)}

|Lg2h|2
(29)

with a recollection from (11) that ω < 0 ⇒ Lg2h �= 0 and with
a notational convention that 0/0 = 0.

For the reader’s future convenience, we point out that an
alternative representation of (23) with the safety filter (21) is

u =

{
u0, ω(x, u0) ≥ 0

χ0(x)u0 + χ1(x), ω(x, u0) < 0
(30)

where

χ0(x) = I − (Lg2h)
TLg2h

|Lg2h|2
(31)

χ1(x) = −(Lg2h)
T ω1(x)

|Lg2h|2
(32)

ω1(x) = Lfh− |Lg1h| ρ−1(max{0,−h(x)}) + α(h(x)) .
(33)

The “half-Sontag” formula also generates min-norm control.
Theorem 3: The feedback

u = u0 +
1

2
uS (34)

withuS defined in (13) and (14) andω defined in (18) renders the
system (17) ISSf and is the pointwise minimizer of |v|2 subject
to the following constraint more conservative than (20):

1

2

(
ω −

√
ω2 + (Lg2h(Lg2h)

T)2
)
+ Lg2hv ≥ 0 . (35)

Proof: The pointwise minimization result is immediate from
(19) to (21). For (17), (34) ISSf follows from

ḣ = − α(h(x)) +
1

2

(
ω +

√
ω2 + (Lg2h(Lg2h)

T)2
)

+ |Lg1h|ρ−1(max{0,−h(x)}) + Lg1hd . (36)

�

V. INVERSE OPTIMAL ASSIGNMENT OF ISSF GAIN

In the system (17), there are two inputs: u− u0 and d. This
leads us to formulate the problem of safety filter design as a
differential game [7], [8], for example, of the zero-sum type.
In this game, the objective for both our control u− u0 and
for the disturbance d is for them to remain small. However,
their objectives differ regarding safety: u− u0 is tasked with
keeping h(x(t)) from becoming too small, whereas d is tasked
with making h(x(t)) small and, in fact, negative. Since our goal
in designing u− u0 is to make the ISSf gain function from d to
the “safety violation” −h(x) small, we refer to this problem as
gain assignment.

We pursue the following zero-sum two-player minimax
(supinf, to be precise) optimization problem:

sup
u−u0∈U

inf
d∈D

{
lim
t→∞

[
2βh(x(t)) +

∫ t

0

(
l(x, u0)

− (u− u0)
TR2(x, u0)(u− u0) + βλγ

( |d|
λ

))
dτ

]}
(37)

where U and D are the sets of locally bounded functions of x.
In this problem, R2(x, u0) = R2(x, u0)

T > 0 for all x and u0,
γ and γ′ are in class K∞, the constants β and λ are positive, and
l(x, u0) is a weight on the state, upper bounded by a class K∞
function of h.

We do not approach the game (37) as a problem of direct
determination of a Nash equilibrium but as an inverse problem:
both the Nash control laws u∗(x)− u0 and d∗, as well as
the weights l(x, u0), R2(x, u0), γ(·), are up to the designer to
choose. Even h(x) is available for design, for a given safe set C.

Before we continue, let us introduce the following notation:
For a class K∞ function γ whose derivative exists and is also a
class K∞ function, �γ denotes the Legendre–Fenchel transform

�γ(r) =

∫ r

0

(γ′)−1(s)ds (38)

= r(γ′)−1(r)− γ
(
(γ′)−1(r)

)
, (by Lemma 4.a) (39)

where (γ′)−1(r) stands for the inverse function of
dγ(r)

dr
.

Theorem 4: Consider the auxiliary system of (9)

ẋ = f(x)− g1(x)�γ(2|Lg1h|)
(Lg1h(x))

T

|Lg1h|2
+ g2(x)u (40)

with a nominal control law u0(x, t), where γ is a class K∞
function whose derivative γ′ is also a class K∞ function. Sup-
pose that, for a given u0, there exists a matrix-valued function
R2(x, u0) = R2(x, u0)

T > 0 such that the control law of the
form

u = u0 + ū(x, u0) := u0 +R2(x, u0)
−1 (Lg2h)

T (41)

ensures safety of the system (40) with respect to CBF candidate
h(x), namely, ensures that

Lf+g2u0
h− �γ(2|Lg1h|)

+ Lg2hR
−1
2 (Lg2h)

T ≥ −α(h(x)) (42)

for some α ∈ Kh. Then, the control law

u = u0 + ū∗(x, u0) := u0 + βū(x, u0)

= u0 + βR−1
2 (Lg2h)

T , β ≥ 2 (43)
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applied to (9) maximizes the cost functional

J(u− u0) = inf
d∈D

{
lim
t→∞

[
2βh(x(t)) +

∫ t

0

(
l(x, u0)

− (u− u0)
TR2(x, u0)(u− u0)

+ βλγ

( |d|
λ

))
dτ

]}
(44)

for any λ ∈ (0, 2], where

l(x, u0) = − 2β
[
Lf+g2u0

h− �γ(2|Lg1h|)
+ Lg2hR

−1
2 (Lg2h)

T ]
− β(2− λ)�γ(2|Lg1h|)
− β(β − 2)Lg2hR

−1
2 (Lg2h)

T (45)

≤ 2βα(h(x)) (46)

is decrescent in the CBF h on the interval (inf h, suph).
Proof: Thanks to (42) and (45), we get (46). Substituting l(x)

into (44), it follows that

J(u) = inf
d∈D

{
lim
t→∞

[
2βh(x(t))

+

∫ t

0

(
− 2βLf+g2u0

h+ βλ�γ(2|Lg1h|)

− β2Lg2hR
−1
2

(
Lg2h

)T

− (u− u0)
TR2(u− u0) + βλγ

( |d|
λ

))
dτ

]}

= inf
d∈D

{
lim
t→∞

[
2βh(x(t))

− 2β

∫ t

0

(
Lf+g2u0

h+Lg1hd+Lg2h(u− u0)

)
dτ

−
∫ t

0

(
(u− u0)

TR2(u− u0)− 2βLg2h(u− u0)

+ β2Lg2hR
−1
2

(
Lg2h

)T)
dτ

+

∫ t

0

(
βλγ

( |d|
λ

)
+ 2βLg1hd

+ βλ�γ(2|Lg1h|)
)
dτ

]}

= inf
d∈D

{
lim
t→∞

[
2βh(x(t))− 2β

∫ t

0

dh

−
∫ t

0

(u− u0 − ū∗)TR2(u− u0 − ū∗)dτ

+ β

∫ t

0

[
λγ

( |d|
λ

)
− λγ

(
(γ′)−1(2|Lg1h|)

)

+ 2

(
λ|Lg1h|(γ′)−1(2|Lg1h|) + Lg1hd

)]
dτ

]}

(by (39))

= 2βh(x(0)) + βλ inf
d∈D

∫ ∞

0

Π(d, d∗) dt

−
∫ ∞

0

(u− u0 − ū∗)TR2(u− u0 − ū∗)dτ dt (47)

where

Π(d, d∗) = γ

( |d|
λ

)
− γ

( |d∗|
λ

)

− γ′
( |d∗|

λ

)
(d∗)T

λ|d∗| (d
∗ − d) (48)

and

d∗(x) = −λ(γ′)−1(2|Lg1h|)
(Lg1h)

T

|Lg1h|
. (49)

By Lemma 4.d, Π(d, d∗) can be rewritten as

Π(d, d∗) = γ

( |d|
λ

)
+ �γ

(
γ′
( |d∗|

λ

))

+ γ′
( |d∗|

λ

)
(d∗)T

|d∗|
d

λ
. (50)

Then, by Lemma 5, we have

Π(d, d∗) ≥ γ

( |d|
λ

)
+ �γ

(
γ′
( |d∗|

λ

))

− γ

( |d|
λ

)
− �γ

(
γ′
( |d∗|

λ

))

= 0 (51)

and Π(d, d∗) = 0 if and only if
d

λ
= (γ′)−1

(
γ′
( |d∗|

λ

))
d∗

|d∗| ,
that is

Π(d, d∗) = 0 iff d = d∗ . (52)
Thus,

inf
d∈D

∫ ∞

0

Π(d, d∗) dt = 0 (53)

and the “worst-case” disturbance is given by (49). The maximum
of (47) is reached with u = u0 + ū∗. Hence, the control law (43)
maximizes the cost functional (44). The value function of (44)
is J∗(x) = 2βh(x). �

The parameterβ ≥ 2 in the statement of Theorem 4 represents
a design degree of freedom. The parameter λ (note that it
parameterizes not only the penalty on the disturbance but also the
penalty on the state’s proximity to the boundary, i.e., the reward
for the state’s distance from the boundary, l(x, u0)) indicates
that the same control law is inverse optimal with respect to an
entire family of different cost functionals.

Remark 3: One approach to studying safety in the presence
of inputs and disturbances is reachability [9], [12], [56], [57],
where Hamilton–Jacobi–Isaacs (HJI) PDEs arise and need to be
solved. Even though not explicit in the proof of Theorem 4, the
CBF h(x) solves the following family of HJI equations:

Lf+g1u0
h+

β

2
Lg2hR2(x, u0)

−1 (Lg2h)
T − λ

2
�γ(2|Lg1h|)

+
l(x, u0)

2β
= 0 (54)

parameterized by (β, λ) ∈ [2,∞)× (0, 2]. �
Remark 4: It is also easily seen from the proof of Theorem 4

that, even for initial conditions on the boundary, the achieved
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disturbance attenuation level is

2βh(x(t))+2β

∫ ∞

0

α(h(x)) dt≥2βh(x(t))+

∫ ∞

0

l(x, u0) dt

≥
∫ ∞

0

(u−u0)
TR2(x, u0)(u−u0) dt−βλ

∫ ∞

0

γ

( |d|
λ

)
dt

≥ −βλ

∫ ∞

0

γ

( |d|
λ

)
dt . (55)

Summarizing, we refer to the property

h(x(t)) +

∫ ∞

0

α(h(x)) dt ≥ −λ

2

∫ ∞

0

γ

( |d|
λ

)
dt (56)

as integral ISSf. �
Example 3: Consider the system from Example 1. Take

γ(r) = �γ(2r) = r2. With

R2 =
1

max {0, u0 − α(h(x))}+ (1 + x2)2
> 0 (57)

condition (42) is satisfied. The control (43) is given by

u=u0− β

R2
=u0+β

[
min {0,−u0+α(h(x))}−(1+x2)2

]
(58)

and, for all β ≥ 2, is the maximizer of

J(u− u0) = inf
d∈D

{
lim
t→∞

[
2βx(t) +

∫ t

0

(
l(x, u0)

−R2(u− u0)
2 +

β

λ
d2
)
dτ

]}
(59)

for any λ ∈ (0, 2], with l(x, u0) ≤ −2βx, and achieves

x(+∞) +

∫ ∞

0

x(t) dt ≤ 1

2λ

∫ ∞

0

d2(t) dt (60)

and, ∀β ≥ 1, controller (58) with α(h) = h guarantees

x(t) ≤ e−tx0 +
1

4

(
sup

0≤τ≤t
|d(τ)|

)2

∀t ≥ 0 . (61)

�
Following the general result in Theorem 4, a natural question

arises: Is the ISSf QP safety filter (21), (18) inverse optimal?
The following theorem, proven similarly to Theorem 4, answers
the question in the affirmative.

Theorem 5: Consider system (17) with associated ISSf-CBF
h and a gain function ρ. For any β ≥ 2, the control law

u = u0 + ū∗
QP(x, u0) = u0 + βūQP(x, u0) (62)

with ūQP defined in (21) and ω defined in (18), maximizes

J(u− u0) = inf
d∈D

{
lim
t→∞

[
2βh(x(t)) +

∫ t

0

(
l(x, u0)

−R2(x, u0)|u− u0|2 + β

λ
R1(x)|d|2

)
dτ

]}
(63)

for all λ ∈ (0, 2], where

R1(x) =
1

ρ−1(max{0,−h(x)}) > 0 (64)

R2(x, u0) =
|Lg2h|2

max {0,−ω} > 0 (65)

l(x, u0) ≤ 2βα(h(x)) . (66)

The weightR1 in (64) is infinite in the safe seth(x) ≥ 0where
the “optimal disturbance”

d∗(x) = −λρ−1(max{0,−h(x)}) (Lg1h(x))
T

|Lg1h|
(67)

spends no effort. Likewise, R2 in (65) is infinite when ω ≥ 0
since control (21) puts in no effort when u0 makes the system
safe on its own. We also recall from Remark 1 that (21) precludes
Lg2h from being zero when ω < 0, so R2 can, in fact, never be
zero, namely, u− u0 is penalized for all x.

Example 4: Back to Example 1, controlu = u0 + βūQP,β ≥
2, with ūQP = min{0,−u0 − (1 + x2)ρ−1(max{0, x}) + x},
results in

x(+∞) +

∫ ∞

0

x(t) dt ≤ 1

2λ

∫ ∞

0

d2(t)

ρ−1(max{0, x(t)}) dt
(68)

which, unlike control (58) in Example 3, fails to achieve a finite
integral gain in the safe set x ≤ 0 like (60). �

VI. INVERSE OPTIMAL QP SAFETY FILTER FOR

DISTURBANCE-FREE SYSTEMS

In the disturbance-free system,

ẋ = f(x) + g2(x)u0 + g2(x)(u− u0) (69)

let us introduce

ω2(x, u0) = Lf+g2u0
h+ α(h(x)) (70)

and the control law u = u0 + ūQP2(x, u0) with (recalling
Remark 2 on division by Lg2h = 0)

ūQP2 = (Lg2h)
T max {0,−ω2(x, u0)}

|Lg2h|2
. (71)

This standard QP safety filter renders system (69) safe w.r.t. CBF
h(x). The next result follows from Theorem 5.

Corollary 1: For system (69) and any β ≥ 2, the control

u = u0 + ū∗
QP2(x, u0) = u0 + βūQP2(x, u0) (72)

with ūQP2 defined in (71), maximizes the cost functional

J(u− u0) = lim
t→∞

[
2βh(x(t)) +

∫ t

0

(
l(x, u0)

− |Lg2h|2|u− u0|2
max {0,−ω2}

)
dτ

]
(73)

with l(x, u0) ≤ 2βα(h).
It is from this corollary that the illustrations in Section I-E

follow, along with the intuition provided there. By examining
the payoff (73), one notes that the deviation u− u0 is being min-
imized, whereas the “terminal safety” payoff β(h(x(+∞))) and
the “running safety” payoff l(x, u0) are being maximized. The
running safety payoff is meaningful because l(x, u0) ≤ 2βα(h):
if the payoff l(x, u0) is high, then its upper bounding explicit
safety payoff α(h) is certainly high.

In some application areas (computer science, subfields of
robotics, etc.), RCBFs of the formB(x) = 1/h(x) are preferred.
We return to the QP filter u = u0 + ūQP2 with (71) and (70),
which can be expressed as

u = u0 + ũQP(x, u0) (74)

with (recalling Remark 2 on division by LgB = 0)

ũQP = − (LgB)T
max {0, ω̃(x, u0)}

|LgB|2 (75)
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ω̃(x, u0) = Lf+gu0
B − ᾱ

(
1

B(x)

)
(76)

for some ᾱ ∈ K, and recast Corollary 1 for RCBFs.
Corollary 2: Let a function B be such that h = 1/B satisfies

Definition 1, and let B be an RCBF, namely, let B satisfy the
condition LgB = 0 ⇒ ω̃ ≤ 0, with ω̃ defined in (76). Then, the
safety filter

u = u0 + βũQP(x, u0) , β ≥ 2 (77)

with ũQP defined in (75), minimizes

J(u− u0) = lim
t→∞

[
− 2β

B(x(t))
+

∫ t

0

(
l̄(x, u0)

+
|LgB|2|u− u0|2

max {0, ω̃}
)
dτ

]
(78)

with l̄(x, u0) ≥ − 2β
B2(x(t)) ᾱ(

1
B(x) ).

VII. STOCHASTIC CBFS

We return to the barrier function in Definition 1, under
Assumption 1, but now consider the stochastic system

dx = f(x) dt+ g1(x) dw (79)

where w is an r-dimensional standard Wiener process, and
f and g are locally Lipschitz.

For the barrier function candidate h(x), we recall that Itô’s
lemma states that

dh = Lh dt+ Lg1h dw (80)

where

Lh = Lfh+
1

2
Tr

{
gT1

∂2 h

∂x2
g1

}
(81)

is referred to as the infinitesimal generator of h.
We say that the system (79) satisfies the stochastic barrier

function condition (SBFc) if there exists a functionα ∈ Kh such
that, for all x ∈ Rn, the following function is nonnegative:

ω(x) = LfV +
1

2
Tr

{
gT1

∂2 h

∂x2
g1

}
+ α(h) . (82)

From here on, we proceed formally, with systems and con-
trollers that satisfy the SBFc, without going a step further to
establish safety in probability, or at least in the mean, which
would be done by employing the techniques as in the proof given
in [26, Th. 3.2], the techniques in [13, Th. 3], or the technique
in the proof given in [30, Lemma 1].

Now we turn our attention to systems that, in addition to the
noise input w, have a control input u ∈ Rm2

dx = f(x) dt+ g1(x) dw + g2(x)u dt . (83)

Definition 5: A scalar differentiable function h is called a
stochastic control barrier function (SCBF) for (83) if there exists
a function α ∈ K(0,suph(ξ)) such that the following implication
holds for all x ∈ {η ∈ Rn|0 ≤ h(η) < supξ∈Rn h(ξ)}:

sup
u∈Rm2

{
LfV +

1

2
Tr

{
gT1

∂2h

∂x2
g1

}
+ Lg2hu

}
≥ −α(h).

(84)
The following is obtained by adapting [27, Lemma 2.1].
Lemma 3: A function h is an SCBF, namely, it satisfies (84)

in Definition 5, if and only if

Lg2h = 0 ⇒ ω ≥ 0 (85)

where ω(x) is defined in (82).

Next, a Sontag-type control law ensures stochastic safety.
Theorem 6: Under the control law (13), (14) with ω(x) de-

fined in (82), the system (83) satisfies the SBFc.
Proof: A direct substitution yields

Lh = Lfh+
1

2
Tr

{
gT1

∂2h

∂x2
g1

}
+ Lg2huS ≥ −α(h(x)) .

(86)

�

VIII. INVERSE OPTIMAL STOCHASTIC SAFETY FILTERS

Next, we turn our attention to systems where, in addition to
ensuring safety in the presence of noise w, the task of control
input u is to stick close to the nominal u0

dx = [f(x) + g2(x)u0] dt+ g1(x) dw + g2(x)(u− u0) dt .
(87)

Theorem 7: Consider the control law

u = u0 + ū(x, u0) (88)

ū(x, u0) = R−1
2 (Lg2h)

T
�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)∣∣∣Lg2hR
−1/2
2

∣∣∣2 (89)

where γ2 is a class K∞ function whose derivative is also a class
K∞ function, and R2(x) is a matrix-valued function such that
R2(x) = R2(x)

T > 0. If the control law (89) makes the system
(87) satisfy the SBFc with respect to an SCBF candidate h(x),
namely, if the following condition holds:

Lf+g2u0
h+

1

2
Tr

{
gT1

∂2h

∂x2
g1

}
+ �γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)
≥ −α(h) (90)

then the control law

u = u0 + ū∗(x, u0) (91)

ū∗ =
β

2
R−1

2 (Lg2h)
T
(γ′

2)
−1
(∣∣∣Lg2hR

−1/2
2

∣∣∣)∣∣∣Lg2hR
−1/2
2

∣∣∣ , β ≥ 2 (92)

also makes the system (87) satisfy the SBFc and, moreover,
maximizes the cost functional

J(u− u0) = lim
t→∞E

{
2βh(x(t)) +

∫ t

0

[
l(x, u0)

− β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣) ]dτ} (93)

where

l(x, u0) = − 2β

[
Lf+g2u0

h+
1

2
Tr

{
gT1

∂2h

∂x2
g1

}

+ �γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣) ]

− β (β − 2) �γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)
≤ 2βα(h) . (94)

Proof: Before we engage into proving that the control law
(92) maximizes (93), we first show that makes the system (87)
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satisfy the SBFc. With Lemma 4 we get

Lh |(92)= Lf+g2u0
h+

1

2
Tr

{
gT1

∂2h

∂x2
g1

}

+
β

2

∣∣∣Lg2hR
−1/2
2

∣∣∣ (γ′
2)

−1
(∣∣∣Lg2hR

−1/2
2

∣∣∣)

= Lf+g2u0
h+

1

2
Tr

{
gT1

∂2h

∂x2
g1

}

+
β

2

[
�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)
+γ2

(
(γ′

2)
−1
(∣∣∣Lg2hR

−1/2
2

∣∣∣))]
≥ Lh |(89)≥ −α(h) (95)

which proves that (92) makes the system (87) satisfy the SBFc.
Now we prove optimality. Recalling that the Itô differential

of h is

dh = Lh(x) dt+ ∂h

∂x
g1(x) dw (96)

according to the property of Itô’s integral [36, Th. 3.9], we get

E

{
h(0)− h(t) +

∫ t

0

Lh(x(τ))dτ
}

= 0. (97)

Then, substituting l(x) into J(u), we have

J(u− u0) = lim
t→∞E

{
2βh(x(t)) +

∫ t

0

[
l(x, u0)

− β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣) ]dτ}

= 2βE {h(x(0))}+ lim
t→∞E

{∫ t

0

[
2βLh |(87)

+l(x, u0)− β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)] dτ}

= 2βE {h(x(0))}

+ lim
t→∞E

{∫ t

0

[
− β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)

−β2�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)+2βLg2h(u−u0)

]
dτ

}
.

(98)

Now we note that

γ′
2

(
2

β

∣∣∣R1/2
2 ū∗

∣∣∣) =
∣∣∣Lg2hR

−1/2
2

∣∣∣ (99)

which yields

J(u− u0)

= lim
t→∞E

⎧⎪⎨
⎪⎩
∫ t

0

[
− β2γ2

(∣∣∣∣ 2βR1/2
2 (u− u0)

∣∣∣∣
)

−β2�γ2

(
γ′
2

(∣∣∣∣ 2βR1/2
2 ū∗

∣∣∣∣
))

ū∗

+2βγ′
2

(∣∣∣∣ 2βR1/2
2 ū∗

∣∣∣∣
) (

2
βR

1/2
2 ū∗

)T
∣∣∣ 2βR1/2

2 ū∗
∣∣∣ R

1/2
2 (u− u0)

]
dτ

⎫⎪⎬
⎪⎭

+ 2βE {h(x(0))} . (100)
With the general Young inequality (Lemma 5), we obtain

J(u− u0) ≤ 2βE {h(x(0))}+ lim
t→∞E

×
{∫ t

0

[
−β2γ2

(∣∣∣∣ 2βR1/2
2 (u− u0)

∣∣∣∣
)

− β2�γ2

(
γ′
2

(∣∣∣∣ 2βR1/2
2 ū∗

∣∣∣∣
))

+ β2γ2

(∣∣∣∣ 2βR1/2
2 (u− u0)

∣∣∣∣
)

+β2�γ2

(
γ′
2

(∣∣∣∣ 2βR1/2
2 ū∗

∣∣∣∣
))]

dτ

}

= 2βE {h(x(0))} (101)
where the equality holds if and only if

γ′
2

(∣∣∣∣ 2βR1/2
2 ū∗

∣∣∣∣
) (

2
βR

1/2
2 ū∗

)T
∣∣∣ 2βR1/2

2 ū∗
∣∣∣

= γ′
2

(∣∣∣∣ 2βR1/2
2 (u− u0)

∣∣∣∣
) (

2
βR

1/2
2 (u− u0)

)T
∣∣∣ 2βR1/2

2 (u− u0)
∣∣∣ (102)

that is, when u− u0 = ū∗. Thus,
argmax

u−u0

J(u− u0) = ū∗ (103)

max
u−u0

J(u− u0) = 2βE {h(x(0))} . (104)

�
Remark 5: Similar to Remark 3, even though not explicit

in the proof of Theorem 7, h(x) solves the following family
of Hamilton-Jacobi-Bellman equations parameterized by β ∈
[2,∞):

Lf+g2u0
h+

1

2
Tr

{
gT1

∂2h

∂x2
g1

}
+

β

2
�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)

+
l(x, u0)

2β
= 0. (105)

�
Theorem 7 establishes inverse optimality but does not design

a controller that meets condition (90). We pursue an inverse
optimal safety-ensuring control next, using QP.

Theorem 8: For the system (87) and for anyβ ≥ 2, the control
law

u = u0 + ū∗
QP2(x, u0) = u0 + βūQP2(x, u0) (106)

employing a standard QP safety filter

ūQP2 = (Lg2h)
T max {0,−ω(x, u0)}

|Lg2h|2
(107)

with

ω2(x, u0) = Lf+g2u0
h+

1

2
Tr

{
gT1

∂2 h

∂x2
g1

}
+ α(h(x))

(108)
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maximizes the cost functional

J(u− u0) = lim
t→∞E

{
2βh(x(t)) +

∫ t

0

(
l(x, u0)

− |Lg2h|2|u− u0|2
max {0,−ω2}

)
dτ

}
(109)

for any λ ∈ (0, 2] and with some l(x, u0) ≤ 2βα(h).
Proof: By verifying that (90) is met with γ2(r) =

1
4r

2. �
Example 5: While a stochastic disturbance does not always

have a detrimental effect on the SBFc condition, we construct
an example in which the stochastic effect is indeed detrimental
and where a QP safety filter acts to mitigate this effect. Consider
the system

dx = u dt+ (1− x) dw . (110)

Let us take u0 = 0, h(x) = ln(1− x), and α(h) = h. We ob-
tain that (108) gives ω2(x, u0) = − 1

2 + ln(1− x), which yields
(107) in the following form:

ūQP2 = (x− 1)max

{
0,

1

2
− ln(1− x)

}
. (111)

The safety filter kicks in when x > 1−√
e, which is negative.

If the stochastic disturbance w was absent, the control would
be ūQP2 = (x− 1)max{0,− ln(1− x)} and the safety filter
would kick in only at x = 0, i.e., never if x0 < 0.

IX. NOISE-TO-STATE SAFETY FILTERS

In Sections VII and VIII, we studied stochastic systems of the
form (83) with a known, unity covariance. This is quite limiting,
regardless of the unity-intensity noise being the standard in
stochastic optimal control. A stochastic disturbance acting on
a system may be of unknown and time-varying incremental
covariance Σ(t)Σ(t)T dt, i.e.,

E
{
dw dwT

}
= Σ(t)Σ(t)T dt (112)

whereΣ(t) is a bounded function taking values in the set of non-
negative definite matrices. For matrices X = [x1, x2, . . . , xn],
we use the Frobenius norm

|X|F 

=
(
Tr
{
XTX

})1/2
=
(
Tr
{
XXT

})1/2
(113)

and note that |X|F = |col(X)|, where col(X) = [xT
1 , x

T
2 ,

. . . , xT
n ]

T.
When the covariance is unknown and time-varying, it needs to

be treated as a deterministic disturbance in Sections II–IV. Ac-
cordingly, only a graceful degradation of safety in the presence of
the disturbance Σ(t) can be expected, as in (7). We refer to such
a stochastic property as noise-to-state safety (NSSf). However,
we do not conduct analysis of achieving such a property in
probability or in the mean. We just pursue the attainment of
the following condition:

min {0, h(x)} ≤ −ρ
(∣∣ΣΣT

∣∣
F
)

⇓
Lfh+ Lg1u+ 1

2Tr
{
ΣTgT ∂2 h

∂x2 gΣ
}
≥ −α(h)

(114)

for system (83) with (112), by feedback u = u0 + ū(x, u0) for
a nominal control law u0, and call this condition the noise-to
state barrier function condition (NSBFc).

Heretofore, we have dealt with CBF and ISSf-CBFs. We say
that a functionh is a noise-to-state safety control barrier function
(NSSf-CBF) if, in addition to its usual conditions, it satisfies the

implication

Lg2h = 0 ⇒ ω ≥ 0 (115)

where

ω(x, u0) = Lf+g2u0
h(x) + α(h)

− 1

2

∣∣∣∣gT1 ∂2h

∂x2
g1

∣∣∣∣
F
ρ−1(max {0,−h(x)}) (116)

for a class K ρ : [0,+∞) → [0,− inf h(ξ)) and α ∈ Kh.
Theorem 9: Under either the Sontag-type control (13), (14),

or the QP control (21), along with ω(x, u0) defined in (116), the
system (83) with (112) satisfies the NSBFc in (114).

Proof: For both control laws, a direct substitution yields
Lh ≥ −α(h(x)) whenever min{0, h(x)} ≤ −ρ(|ΣΣT|F ). �

Example 6: To illustrate a design for NSSf, we return to
Example 1 but with the disturbance d replaced by white noise
of unknown variance σ(t), namely, to

dx = u dt+ (1 + x2)σ(t) dw . (117)

To vary the design a bit but still keep it simple, we chooseh(x) =
−x3 and α(h) = 3h. Conducting the calculations with (116),
with arbitrary ρ ∈ K∞, we arrive at the QP safety filter

ūQP = min
{
u0,−(1 + x2)2ρ−1 (max{0, |x|x})− x

}
.

(118)
�

Next, we give a result on inverse optimal NSSf filter design.
Theorem 10: Consider the control law

u = u0 + ū(x, u0) (119)

ū(x, u0) = R−1
2 (Lg2h)

T
�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)∣∣∣Lg2hR
−1/2
2

∣∣∣2 (120)

where h(x) is a barrier function candidate, γ1 and γ2 are class
K∞ functions whose derivatives are also class K∞ functions,
andR2(x, u0) is a matrix-valued function such thatR2(x, u0) =
R2(x, u0)

T > 0. If the control law (120) makes the system

dx = f(x) dt+ g1(x)dw̄ + g2(x)u dt (121)

satisfy the SBFc with respect to an NSSf-CBF candidate h(x),
where w̄ is an r-dimensional stochastic process with incremental
covariance

Σ̄Σ̄T = −2gT1
∂2 h

∂x2
g1

�γ1

(∣∣∣gT1 ∂2h
∂x2 g1

∣∣∣
F

)
∣∣∣gT1 ∂2 h

∂x2 g1

∣∣∣2
F

(122)

namely, if the condition

Lf+g2u0
h− �γ1

(∣∣∣∣gT1 ∂2 h

∂x2
g1

∣∣∣∣
F

)
+ �γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)
≥ −α(h) (123)

is satisfied, then the control law

u = u0 + ū∗(x, u0) (124)

ū∗ =
β

2
R−1

2 (Lg2h)
T
(γ′

2)
−1
(∣∣∣Lg2hR

−1/2
2

∣∣∣)∣∣∣Lg2hR
−1/2
2

∣∣∣ , β ≥ 2 (125)

maximizes the cost functional

J(u− u0) = inf
Σ∈D

{
lim
t→∞E [2βh(x(t))
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+

∫ t

0

(
l(x, u0)− β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)

+βλγ1

(∣∣ΣΣT
∣∣
F

λ

))
dτ

]}
(126)

where λ ∈ (0, 2] and

l(x, u0) = − 2β

[
Lf+u0

h− �γ1

(∣∣∣∣gT1 ∂2 h

∂x2
g1

∣∣∣∣
F

)

+ �γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣) ]

− β (β − 2) �γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)

− β(2− λ)�γ1

(∣∣∣∣gT1 ∂2h

∂x2
g1

∣∣∣∣
F

)

≤ 2βα(h) . (127)

Proof: According to Dynkin’s formula and by substituting
l(x, u0) into J(u− u0), we have

J(u− u0) = inf
Σ∈D

{
lim
t→∞E

[
2βh(x(t))

+

∫ t

0

(
l(x, u0)− β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)

+βλγ1

(∣∣ΣΣT
∣∣
F

λ

))
dτ

]}

= inf
Σ∈D

{
lim
t→∞E [2βh(x(0))

+

∫ t

0

(
2βLh |(83) +l(x, u0)

−β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)

+βλγ1

(∣∣ΣΣT
∣∣
F

λ

))
dτ

]}

= inf
Σ∈D

{
2βE {V (x(0))}

+ lim
t→∞E

∫ t

0

[
−β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)

− β2�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)+ 2βLg2h(u− u0)

+ βλγ1

(∣∣ΣΣT
∣∣
F

λ

)
+βλ�γ1

(∣∣∣∣gT1 ∂2h

∂x2
g1

∣∣∣∣
F

)

+ βTr

{
ΣTgT1

∂2 h

∂x2
g1Σ

}]
dτ

}
. (128)

Using Lemma 5, we have

− 2βLg2h(u− u0)

= β2

(
2

β
R

1/2
2 (u− u0)

)T (
−R

−1/2
2 (Lg2h)

T
)

≤ β2γ2

(
2

β

∣∣∣R1/2
2 (u− u0)

∣∣∣)+ β2�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)
(129)

and

βTr

{
ΣTgT1

∂2 h

∂x2
g1Σ

}

= β
(
col

(
ΣΣT

))T(
col

(
gT1

∂2 h

∂x2
g1

))

≤ βλγ1

(∣∣ΣΣT
∣∣
F

λ

)
+ βλ�γ1

(∣∣∣∣gT1 ∂2 h

∂x2
g1

∣∣∣∣
F

)
(130)

and the equalities hold when (125) and

(
ΣΣT

)∗
= −λ(γ′

1)
−1

(∣∣∣∣gT1 ∂2 h

∂x2
g1

∣∣∣∣
F

)
gT1

∂2 h
∂x2 g1∣∣∣gT1 ∂2 h
∂x2 g1

∣∣∣
F

. (131)

So the “worst-case” unknown covariance is given by (131), the
minimum of (128) is reached with u = ū∗, and minu−u0

J(u−
u0) = 2βE{h(x(0))}. �

Remark 6: Similar to Remarks 3 and 5, even though not
explicit in the statement of Theorem 10, h(x) solves the fol-
lowing family of HJI equations parameterized by β ∈ [2,∞)
and λ ∈ (0, 2]:

Lf+u0
V − λ

2
�γ1

(∣∣∣∣gT1 ∂2 h

∂x2
g1

∣∣∣∣
F

)
+

β

2
�γ2

(∣∣∣Lg2hR
−1/2
2

∣∣∣)

+
l(x)

2β
= 0. (132)

This equation, which depends only on known quantities, helps
explain why we are pursuing a differential game formulation for
safe control design, with Σ as a player. �

Remark 7: Similar to Remark 4, we refer to the property

lim
t→∞E

{
h(x(t))+

∫ t

0

[
α(h(x))+

λ

2
γ1

(∣∣ΣΣT
∣∣
F

λ

)]
dt

}
≥ 0

(133)

as integral noise-to-state safety. �

X. INVERSE OPTIMAL SAFETY FILTERS FOR ADAPTIVE

CONTROL, SYSTEM IDENTIFICATION, AND EXTREMUM

SEEKING

Most problems involving estimation of unknown
parameters—be it in system identification, adaptive control,
or extremum seeking—involve optimization. Safe sets of
unknown parameters are not just about producing estimates that
are within a set in which the unknown parameter is known to
be. There is a more critical reason for keeping the parameters in
a “safe set” in adaptive control—the safe set typically contains
parameter values that correspond to the system model being
controllable or stabilizable. Employing parameter estimates
from outside of the safe set in indirect adaptive control results
in an attempt of stabilizing an unstabilizable system, the result
of which is the controller gains assuming infinite values. Hence,
keeping parameters inside a safe set is critical in these domains
of control theory.
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Keeping parameters inside a safe set is an add-on to parameter
estimator design. The typical problem of safety maintenance
is simple. The parameter estimator has the form of a vector
integrator

˙̂
θ = u (134)

where θ̂ ∈ Rn is the parameter estimate and u = u0(θ̂, ξ, t)
is the parameter estimator feedback, designed using gradient,
least-squares, Lyapunov, passivity, or some other method, and
possibly dependent on an additional state ξ, which may contain
the states of the plant, an observer, and filters. The safety
objective is formulated as keeping θ̂ inside the set {h(θ̂) ≥ 0},
where h has the usual properties of a CBF.

The conventional safety filter in parameter estimation is pa-
rameter projection. Parameter projection assigns

u = u0 + ū (135)

where ū = ūP and

ūP =

(
∂h

∂θ̂

)T

∣∣∣∣∂h∂θ̂
∣∣∣∣
2

⎧⎪⎪⎨
⎪⎪⎩
0, α

(
h
(
θ̂
))

> 0 or
∂h

∂θ̂
u0 ≥ 0

−∂h

∂θ̂
u0, α

(
h
(
θ̂
))

= 0 and
∂h

∂θ̂
u0 < 0

(136)
and α ∈ K is arbitrary, typically taken as identity.

Let us contrast this with the safety filter obtained using the
QP approach where ū = ūQP and

ūQP =

(
∂h

∂θ̂

)T

∣∣∣∣∂h∂θ̂
∣∣∣∣
2 max

{
0,−∂h

∂θ̂
u0 − α

(
h
(
θ̂
))}

. (137)

Recall Remark 2 on the notational convention of impossibility
of division by ∂h

∂θ̂
= 0 in (137).

The similarity between (136) and (137) is striking and not
noted before in the literature, as (137) has not seen use in
parameter estimation. While (137) is continuous, (136) inter-
feres less with the nominal u0 (it lets the trajectory come to
the boundary and then glide tangentially if u0 demands an
exit from the safe set) but is discontinuous (at the boundary
of the safe set). Intuitively, if one were to take α(r) outside
of class K, as a mapping such that α(0) = 0 but α(r) = +∞
for all r > 0, one would obtain (136) from (137). One can
approximate the projection operator quite closely by (137) if
one takes α(r) = 1

ε r
ε for sufficiently small positive ε.

Neither (136) nor (137) have optimality properties, but the
following result, proven using Corollary 1, holds for (137).

Theorem 11: The update law (134) with

u = u0 + βūQP (138)

and (137), for any β ≥ 2, minimizes

J(u− u0) = lim
t→∞

⎡
⎢⎢⎢⎣−2βh

(
θ̂
)
+

∫ t

0

⎛
⎜⎜⎜⎝l

(
θ̂, u0

)

+

∣∣∣∣∂h∂θ̂
∣∣∣∣
2

|u− u0|2

max

{
0,−∂h

∂θ̂
u0 − α

(
h
(
θ̂
))}

⎞
⎟⎟⎟⎠ dτ

⎤
⎥⎥⎥⎦

(139)

where

l
(
θ̂, u0

)
= 2β

∂h

∂θ̂
u0 + β2 max

{
0,−∂h

∂θ̂
u0 − α

(
h
(
θ̂
))}

≥ − 2βα
(
h
(
θ̂
))

. (140)

The cost functional (139) clearly favors the update law u
staying close to the nominal design u0. The two occurrences of
a negative of h(x) in (139), first in the “terminal penalty” before
the integral and, second, in the lower bound on the state penalty
l(x, u0) should be understood as measures of “nonsafety” of the
parameter estimator. By minimizing these nonsafety measures,
the safety filter (138) maximizes the estimator’s safety.

To summarize the update law, (134), (138), and (137), we get

˙̂
θ = u0 + β

(
∂h

∂θ̂

)T

∣∣∣∣∂h∂θ̂
∣∣∣∣
2 max

{
0,−∂h

∂θ̂
u0 − α

(
h
(
θ̂
))}

(141)
for any β ≥ 2. The “soft projection” in [29, E.5 and E.6] is a
special case of the update law (141).

XI. REGULATION TO THE SAFETY BOUNDARY

In some applications, the objective is not to keep the state away
from the boundary but to regulate it to the boundary, without a
safety violation. A very special case of such an objective, for
strict-feedback systems, with the safe set being a “half-space”
and its boundary a hyperplane, was pursued in [28], under the
name of “nonovershooting” control and without employing any
safety filters. In addition, in Section IV of that paper, a problem
of input-to-state stabilization was tackled, where convergence
to the boundary was the goal but the achievement of regulation
to a neighborhood of the boundary proportional to the unknown
bound on the disturbance was guaranteed.

In general, one can expect that the objective of u0 be stabiliza-
tion of the entire boundary, namely, regulation to the boundary
(on which there may not even be an equilibrium), rather than to
a unique equilibrium on the boundary. We pursue in this section
the regulation for general boundaries/CBFs and for general
systems

ẋ = f(x) + g1(x)d+ g2(x)u . (142)

We do not employ any Lyapunov functions and we do not
consider nominal u0 whose task is equilibrium stabilization.
Instead, the objective of u0 is regulation of the barrier function
h(x(t)) to zero, just as the objective of the safety filter ū(x, u0)
shall be to prevent h(x(t)) from approaching zero too fast.

To summarize, we consider a single barrier function h(x)
with two contradictory objectives but with two distinct input
functions to be designed: u0(x) tasked with reducing h(x) to
zero and ū(x, u0) tasked with keeping h(x) away from zero for
all finite time. We approach these two simultaneous tasks with
the following two functions:

ω0(x) = Lf+g2u0(x)h+ |Lg1h| ρ−1
0 (max{0, h(x)})
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+ α0(h(x)) (143)

ω(x, u0) = Lf+g2u0
h− |Lg1h| ρ−1(max{0,−h(x)})

+ α(h(x)) (144)

where ρ0 : [0,+∞) → [0, suph(ξ)) and ρ : [0,+∞) →
[0,− inf h(ξ)) are in class K and α0, α ∈ Kh.

We urge the reader to closely examine the similarities and
differences between these two functions and then proceed.

Assumption 4: The feedback law u0(x) is input-to-output
stabilizing for the system (142) from the disturbance d to the
CBF h(x) as an output, namely

ω0(x) ≤ 0 ∀x ∈ Rn . (145)

Assumption 5: For a given nominal feedback law u0(x), the
function h(x) is an ISSf-CBF for system (142), namely

Lg2h(x) = 0 ⇒ ω(x, u0(x)) ≥ 0 ∀x ∈ Rn . (146)

Assumption 6: For all x ∈ Rn,

α(h(x)) ≥ α0(h(x))

+ |Lg1h|
[
ρ−1(max{0,−h(x)}) + ρ−1

0 (max{0, h(x)})] .
(147)

The meanings of Assumptions 4 and 5 are obvious.
Assumption 6 means that the system is such that its control
can impart a sufficient margin of safety relative to the nominal
control u0(x) designed to drive the system to the safety bound-
ary. The systems in [28], as well as their rather complicated
backstepping designs of u0(x), satisfy all these assumptions.

A generalization of nonovershooting control is given next.
Theorem 12: Under Assumptions 4–6, there exist functions

β ≤ β0 of class KLh such that

u = u0(x) + (Lg2h)
T max {0,−ω(x, u0(x))}

|Lg2h|2
(148)

ensures the following for system (142) for all t ≥ 0:

β(h(x0), t)− ρ

(
sup

0≤τ≤t
|d(τ)|

)
(149)

≤ h(x(t)) ≤

β0(h(x0), t) + ρ0

(
sup

0≤τ≤t
|d(τ)|

)
. (150)

Proof: Result (149) follows from Theorem 2. To prove (150),
we substitute (148) and (144) into (142) and get

ḣ = Lf+g2u0
h+ Lg1hd+ Lg2hūQP

= − α0(h(x)) + ω0 +max {0,−ω}
− |Lg1h|ρ−1(max{0, h(x)}) + Lg1hd

≤ − α0(h(x)) + max {ω0, ω0 − ω}
− |Lg1h|

[
ρ−1
0 (max{0, h(x)})− |d|] . (151)

Since ω0 − ω = α0 − α ≤ 0 and ω0 ≤ 0, we have that
max{ω0, ω0 − ω} ≤ 0 and, hence,

ḣ ≤ −α0(h(x))− |Lg1h|
[
ρ−1
0 (max{0, h(x)})− |d|] .

(152)
With an argument as, for example, in the proof given in [26, Th.
2.2], (150) follows. �

For the disturbance-free version of (142), namely, for g1 = 0,
Theorem 12 yields the following corollary.

Corollary 3: For a given feedback law u0(x) for system
ẋ = f(x) + g(x)u (153)

let there exist functions α0 ≤ α in class K such that, for all x ∈
Rn, ω0(x) := Lf+gu0(x)h+ α0(h(x)) ≤ 0 and ω(x, u0) :=
Lf+gu0

h+ α(h(x)) ≥ 0 whenever Lgh = 0. Then, there exist
functions β ≤ β0 of class KL such that

u = u0(x) + (Lgh)
T max {0,−ω(x, u0(x))}

|Lgh|2 (154)

ensures the following for all t ≥ 0:
β(h(x0), t) ≤ h(x(t)) ≤ β0(h(x0), t) . (155)

A similar nonovershooting design can be applied to the
stochastic system (83) with unknown covariance (112). Inspired
by (116), the functions in (143) and (144) are modified, respec-
tively, to

ω0(x) = Lf+g2u0(x)h+ α0(h(x))

+
1

2

∣∣∣∣gT1 ∂2 h

∂x2
g1

∣∣∣∣
F
ρ−1
0 (max{0, h(x)}) (156)

ω(x, u0) = Lf+g2u0
h+ α(h(x))

− 1

2

∣∣∣∣gT1 ∂2h

∂x2
g1

∣∣∣∣
F
ρ−1(max{0,−h(x)}) . (157)

Denoting ρ(r) = min{ρ0(r), ρ(r)}, it can be proven that feed-
back (148) guarantees that, for all x ∈ Rn∣∣ΣΣT

∣∣
F ≥ ρ(|h(x)|)

⇒ −α(h(x)) ≤ Lh(x) ≤ −α0(h(x)) .

Finally, for the covariance Σ(t)Σ(t)T ≡ I , the stochastic
nonovershooting-in-the-mean results in [30] are generalized
as follows. Consider the stochastic system (83) and, for a
given feedback law u0(x), let there exist functions α0 ≤ α
in class K such that, for all x ∈ Rn, ω0(x) := Lf+g2u0(x)h+
1
2Tr{gT1 ∂2 h

∂x2 g1}+ α0(h(x)) ≤ 0 and ω(x, u0) := Lf+g2u0
h+

1
2Tr{gT1 ∂2 h

∂x2 g1}+ α(h(x)) ≥ 0 whenever Lg2h = 0. Then,
(148) ensures that, for all x ∈ Rn

−α(h(x)) ≤ Lh(x) ≤ −α0(h(x)) . (158)
In this section, h played a twofold role of a barrier and Lya-

punov function. For a general method for simultaneous (vector)
Lyapunov-like functions for the same system, see [24].

XII. CONCLUSION

For nonlinear systems affine in control, deterministic distur-
bance, or stochastic disturbance, we introduced the appropriate
notions of CBFs, designed safety-ensuring filters, and produced
parameterized families of safety filters that have inverse opti-
mality properties. Optimality is always such that the safety filter
is rewarded for increasing safety and for keeping the input close
to nominal, whereas the disturbance is rewarded for decreasing
safety and for not spending high energy.

Theorems 4 and 10, as well as Example 4, show the potential
benefit of stepping beyond the confines of the QP/min-norm
design.

The theory presented here is of value only if CBFs (as well as
ISSf-CBFs and NSSf-CBFs) can be systematically constructed,
for given constraints on the state, i.e., for given admissible sets.
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Designs of CLFs were, similarly, far from straightforward but the
classes of strict-feedback/triangular systems have proven fruitful
in [29] and in the subsequent literature. Similar promise resides
for CBFs for strict-feedback systems, as illustrated in [28] and
in the subsequent articles [10], [20], [35], [51], [52], [54].

It is well known that not only may safety filters interfere with
stabilization [41], but the loss of boundedness may be inevitable
if enforcing state constraints, as in the case of constraints of a
nonminimum phase kind, where trajectories from a portion of
the state space that honor the constraint always go to infinity
regardless of the controller [42]. This is why we limit our
attention to the topics of safety and liveness in this article,
without using stability to measure success with these distinct
objectives.
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APPENDIX

APPENDIX LEGENDRE-FENCHEL TRANSFORM AND YOUNG’S
INEQUALITY

Lemma 4 [27, Lemma A.1]: If γ and its derivative γ′ are
class K∞, then the Legendre–Fenchel transform satisfies the
following properties:

1) �γ(r) = r(γ′)−1(r)− γ
(
(γ′)−1(r)

)
=

∫ r

0

(γ′)−1(s)ds

(159)

2) ��γ = γ (160)

3) �γ is a class K∞ function (161)

4) �γ(γ′(r)) = rγ′(r)− γ(r) . (162)

Lemma 5 (Young’s inequality [19, Th. 156]): For any x, y ∈
Rn, and for any γ ∈ K∞ whose derivative is also in K∞,

xTy ≤ γ(|x|) + �γ(|y|) (163)

and the equality is achieved if and only if

y = γ′(|x|) x

|x| , that is, for x = (γ′)−1(|y|) y

|y| . (164)
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