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SUMMARY

This paper proposes a novel approach to robust backstepping for global stabilization of uncertain nonlinear
systems via output feedback. The design procedure developed in this paper is based on the concept of
state-dependent scaling, which handles output-feedback stabilization problems of strict-feedback systems
with various structures of uncertainties in a uni"ed way. The proposed method is suitable for numerical
computation. The theory of the method employs the Schur complements formula instead of Young's
inequality and completing the squares. This paper shows a condition of allowable uncertainty size under
which an uncertain system is globally stabilized by output feedback. A class of systems is shown to be always
globally stabilizable for arbitrarily large nonlinear size of uncertainties. A recursive procedure of robust
observer design for such a class of uncertain systems is presented. Copyright ( 2000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Backstepping has become a popular paradigm for global stabilization of a wide class of uncertain
nonlinear systems. Robust backstepping involves domination of uncertain nonlinearities at each
step of its recursive procedure [1, 2]. Such domination is achieved through the choice of
appropriate functions which satisfy certain inequalities in the Lyapunov derivative corresponding
to the locations and characteristics of uncertain components. Recently, it was shown in Reference
[3] that state-dependent scaling can provide a systematic and uni"ed method for constructing
suitable dominating functions for state-feedback control. The idea of state-dependent (SD) scaling
design is motivated by the study [4] which demonstrated that scaling factors of small-gain
conditions are allowed to be functions of state. The methodology of SD scaling is applicable not
only to geometrically structured systems, but also to other general classes of nonlinear systems



[5]. The concept of SD scaling design has #exibilities to formulate a wide variety of robust
nonlinear control problems and it is suitable for computational optimization [6].

As for output feedback control where state variables are not available for feedback, one may
simply give up seeking global stabilization and settle for semi-global stabilization. The idea of
input saturation and high-gain observer has been successful for such semi-global stabilization
[7}9]. The studies [10, 11] proposed a useful semi-global backstepping lemma and high-gain
observers with saturating control for dynamic output feedback. By using these semi-global
techniques, a robust stabilization problem was also considered intensively for a certain type and
location of unstructured uncertainty, namely, robustness against unknown stable zero dynamics.
It is possible to incorporate unknown parameters in such semi-global stabilization (e.g. Reference
[12]). However, from another viewpoint, given an uncertain system, semi-global stabilization
using high-gain and saturation may be meaningful only if the system cannot be globally
stabilized. There are also global results for output-feedback stabilization of nonlinear systems in
the strict-feedback form. Typical results (e.g. Reference [2]) are applicable only to nonlinear
systems whose nonlinearities in the system equation do not depend on unmeasured states. It is
not clear what is the essential ingredient of this assumption, apart from their technique of
constructing observers and controllers. Aside from inverse optimality, discussion about robust
global stabilization via this type of output feedback is absent in spite of their practical import-
ance. Note that the feedback con"guration meant by &output feedback' in this paper and
Reference [2] is di!erent from partial-state measurement feedback considered in Reference [13].

The "rst objective of this paper is to propose a uni"ed design procedure to tackle robust and
global stabilization problems of output feedback for a class of uncertainties which are as broad as
uncertainty considered in the state-feedback literature, namely, uncertain systems in the strict-
feedback form with nonlinearly bounded uncertainties appearing in systems with various struc-
tures. This paper successfully extends the authors' state-dependent scaling design for state-
feedback backstepping to the output-feedback case. Then, the robust backstepping is described as
recursive selection of appropriate scaling factors. The proposed design procedures are amenable
to numerical calculation based on computational optimization. Since the backstepping is per-
formed by domination, it is unnecessary to use precise parameters of systems, which prevents the
controller from having long and complicated terms. Another important feature of this paper is
that output backstepping is shown to be feasible without using Young's inequality. The paper
employs the Schur complements formula which gives a necessary and su$cient condition for
negativity of a quadratic form on the transformed co-ordinate. It is demonstrated that the Schur
complements formula is less conservative than other popular techniques such as Young's
inequality and completing the squares. This paper also presents a novel recursive procedure of
robust observer design which guarantees global solutions for a class of uncertain nonlinear
systems.

The authors' position is seeking global stabilization instead of settling for semi-global stabiliz-
ation. Thus, the second objective is to characterize the essential di!erence between nominal and
robust global stabilization in output feedback control. The robustness in this paper is desirable in
that the size and location of uncertainty is pre-speci"ed a priori, which is completely di!erent
from the inverse optimal type of robustness. The backstepping procedure is developed without an
assumption restricting nonlinearities to depend only on measured states, i.e., /(y) where y is
output. The feedback gain design does not need to exclude nonlinearities such as / (y)x, where x is
unnecessarily measured. This paper describes what kind of task is required for observer design in
such a case. Then, the paper shows a condition on uncertain nonlinear systems for which global
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Figure 1. Uncertain nonlinear plant &
P
.

robust stabilizability is always guaranteed. The condition vanishes if the whole state is available
for control. It will be shown that, exclusively for nonlinear systems, &nonlinear size' of uncertain-
ties, appeared as coupling, is crucial for global robust stabilization, which cannot compensated
globally by either feedback-gain or observer-gain independently. This situation contrasts with
nominal stabilization in which the whole system is globally stabilizable by designing controller
feedback-gain strong enough whenever the observer dynamics by itself design to be only stable
(or, vice versa).

The standpoint of this paper is quite di!erent from those of nonlinear adaptive control and
many of backstepping papers. From a viewpoint of this paper, roles of SD scaling design are
(1) provide a method of (trying to) solving the problem; (2) characterize a condition under which
the robust stabilization is solvable; (3) provide information about how large size of uncertainty is
allowable. The latter two roles are necessary since the problem by itself does not always have the
solution. Note that the nominal system and structure and size of uncertainties are speci"ed
a priori regardless of solvability. The SD scaling design provides us with a way to obtain a control
law even if achievable performance is not as good as originally desired. It also theoretically
persuades us to give up seeking unreasonably large uncertainty. In addition, this paper demon-
strates a class of uncertain systems which is always robustly stabilizable for arbitrarily large size
and arbitrarily fast growth-order uncertainties. This standpoint is more common in the nonlinear
literature.

In this paper, F'0 stands for F"FT'0. The maximum eigenvalue is denoted by j
.!9

( ) ).

2. SD SCALING ANALYSIS FOR OBSERVER-FEEDBACK CONTROL

Consider the uncertain nonlinear system &
P
shown in Figure 1. The system &

0
denotes a nominal

plant and &* represents the uncertainty. The nominal part &
0

is described by

&
0
: G

xR "A(y)x#B (y)w#G (y)u,

z"C(y)x,

y"C
y
x,

x (t)3Rn, u (t)3R1

w(t)3Rp, z(t)3Rp

y (t)3Rr
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The matrix-valued functions A, B, C and G are assumed to be C0 functions of the output y.
Suppose that the uncertain system &* has the following structure of nonlinear mappings
* : z>w:

&* : *"block-diag[*
1
, *

2
,2, *

n
] (2)

Some of the mappings *
i
: z

i
>w

i
, i"1, 2,2, n, can be zero in vector size. Each uncertainty *

i
is

de"ned as

*
i
: z

i
"C

z
i$

z
i4
D>w

i
"C

w
i$

w
i4
D, w

i
"C

*
i$
0

0

*
i4
D z

i
(3)

Here, *
i$

and *
i4

represent a dynamic and a static system, respectively. It is unnecessary for each
*
i
to have the two types of uncertainty. These *

i$
and *

i4
are de"ned by

*
i$

: G
xR *

i
"f*

i$
(x*

i
, z

i$
, t)

w
i$
"h*

i$
(x*

i
, z

i$
, t)

(4)

*
i4
: w

i4
"h*

i4
(z

i4
, t) (5)

where vector-valued C0 functions f*
i$
, h*

i$
and h*

i4
satisfy f*

i$
(0, 0, t)"0, h*

i$
(0, 0, t)"0 and

h*
i4
(0, t)"0 for all t*0. The state variable of &* and x*"[xT*

1
, xT*

2
,2, xT*

n
]T. For notational

simplicity, we assume that *
i$

and *
i4

are square in size of input and output vectors.

Dexnition 1
The uncertainty &* is said to be admissible if (i)}(ii) are satis"ed for i"1, 2,2, n: (i) The

equilibrium x*
i
"0 of *

i$
is globally uniformly asymptotically stable and *

i$
has L

2
-gain less

than or equal to one with a positive-de"nite radially unbounded C1 storage function <*i(x*
i
).

(ii) *
i4

satis"es Ez
i4
E2*Ew

i4
E2 for all t3[0,R).

The uncertain system &
P
has an equilibrium point at the origin when u,0. Uncertainty having

super-linear growth (and thus unbounded gain) can be included by a judicious choice of B (y) and
C(y). Indeed &

0
not only describes a nominal plant, but also contains information about

input-output nonlinearities of uncertainty. The mainpulation to choose an appropriate pair of
(&

0
, &*) taking nonlinearity into account is akin to the idea of nonlinear gain [14}17]. Remember

that B (y) and C(y) specify the &nonlinear size' (including size, nonlinearity, location and structure)
of uncertainties.

To robustly stabilize nonlinear system &
P
, we employ the full-order observer and feedback of

the estimated state:

xLQ "A (y)xL #>(y, xL ) (y!yL )#G (y)u

yL "C
y
xL

(6)

u"K (y, xL )xL (7)

The closed-loop system is written as

d

dtC
x

xL D"C
A

>C
y

GK

A!>C
y
#GKDC

x

xL D#C
B

0Dw (8)
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Consider a di!eomorphism between [xL T, xL T!xT]T3R2n and [s( T, g]T3R2n as follows:

C
s(
gD"C

S (y, xL )
0

0

=DC
xL

xL !xD (9)

The time-derivative of s( is obtained as

s(0 "C
LS

Ly
1

xL ,
LS

Ly
2

xL ,2,
LS

Ly
n

xL DC
y
xR #C

LS

LxL
1

xL ,
LS

LxL
2

xL ,2,
LS

LxL
n

xL D xLQ #S (y, xL )xLQ "<(y, xL )xR #¹(y, xL )xLQ

(10)

The square matrix = is constant and non-singular. The closed-loop system on the new co-
ordinate (s( , g) is

C
s(0
g5 D"C

(<#¹) (A#GK)S~1

0

!(<A#¹>C
y
)=~1

=(A!>C
y
)=~1 DC

sL
gD#C

<B

!=BDw (11)

z"C[S~1 !=~1]C
sL
gD (12)

For the dynamic uncertainty *
i$
, we de"ne

L
i$
"M¸

i$
"j

i$
I
i$

: j
i$
'0N. (13)

Here, I
i$

denotes an identity matrix which is compatible in size with z
i$
. For the static uncertainty *

i4
,

L
i4
"M¸

i4
"j

i4
(y, xL )I

i4
: j

i4
(y, xL )'0∀(y, xL )3Rr]RnN. (14)

is de"ned. These matrices are SD scaling which estimates the worst case value of the time-
derivative of Lyapunov functions [5]. The set of scaling matrices for the whole &* is denoted by
L as follows:

L"G¸"
nblock

i/1

-diag ¸
i
(y, xL ),¸

i
3L

iH (15)

L
i
"G¸i

(y, xL )"C
¸
i$
0

0

¸
i4
(y, xL )D :

¸
i$
3L

i$
¸

i4
3L

i4
H (16)

Scaling matrices for static uncertainties are chosen as functions of output and state estimate,
while constant scaling is necessary and su$cient for robust stabilization against time-varying
uncertainty in linear system theory. Repeated uncertainties and corresponding SD scaling
matrices can be incorporated in all materials of this paper as in Reference [3]. They are deleted for
brevity. The following describes the main idea of the SD scaling approach to the output feedback
stabilization.

¹heorem 1
(i) Suppose that there exist constant matrices P'0 and PI '0 such that

N (y, xL )"C
S~T(A#GK)T(<#¹ )TP#P(<#¹)(A#GK)S~1

!=~T(<A#¹>C
y
)TP

!P(<A#¹>C
y
)=~1

=~T(A!>C
y
)T=TPI #PI =(A!>C

y
)=~1D(0 (17)
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is satis"ed for all (y, xL )3Rr]Rn, then the nominal nonlinear system &
0

is globally
uniformly asymptotically stabilized by the dynamic output feedback (6) and (7). Further-
more, a Lyapunov function is given by < (x, xL )"sL TPsL #gTPI g.

(ii) Suppose that there exist constant matrices P'0, PI '0 and a scaling function ¸3L such
that

M(y, xL )"

S~T(A#GK)T(<#¹)TP#P(<#¹) (A#GK)S~1

BT<TP

P<B

!¸

¸CS~1

!=~T(<A#¹>C
y
)TP

0

!PI =B

S~TCT¸

0

!¸

!=~TCT¸

!P (<A#¹>C
y
)=~1

!BT=TPI
!¸C=~1

=~T(A!>C
y
)T=TPI #PI =(A!>C

y
)=~1

(0 (18)

is satis"ed for all (y, xL )3Rr]Rn, then the uncertain nonlinear system &
P

is globally
uniformly asymptotically stabilized by the dynamic output feedback (6) and (7) for any
admissible uncertainty &*. Furthermore, a Lyapunov function is given by
<(x, xL , x*)"s( TPsL #gTPI g#+n

i/1
j
i$
<*i(x*i).

Proof. (i) Note that co-ordinate transformation (9) is globally di!eomorphic. The function
<(x, xL ) de"ned in (i) is positive de"nite and radially unbounded. The time derivative of< satis"es

d

dt
< (x, xL ))C

sL
gD

T
NC

sL
gD

Since N(y, xL )(0 is satis"ed for all (y, xL )3Rr]Rn, d</dt(0 holds for all (x, xL )3Rn]RnCM0N.
Thus, the equilibrium [xT, xL T]T"0 of the closed-loop system is globally asymptotically stable.
(ii) Due to assumptions of admissible uncertainties, the function <(x, xL ) de"ned in (ii) is positive
de"nite and radially unbounded. The time derivative of < satis"es

d

dt
<)

sL
g

w

T
N

BT<TP !BT=TPI

P<B

!PI=B

0

sL
g

w

#

n
+
i/1
C
w
i$

z
i$
D
T

C
!¸

i$
0

0

¸
i$
DC

w
i$

z
i$
D

Using properties of state-dependent scaling [18], it can be veri"ed that d</dt(0 holds for all
(x, xL , w)O0 if

sL
g

w

T

A N

BT<TP !BT=TPI

P<B

!PI=B

0

#

0

0

I

S~TCT

!=~TCT

0

]C
!¸

0

0

¸DC
0

CS~1

0

!C=~1

I

0DB
sL
g

w

(0
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is satis"ed for all (s( , g, w)O0. Rearranging this inequality, we obtain

N

BT<TP !BT=TPI

P<B

!PI =B

!¸

#

S~TCT¸

!=~TCT¸

0

¸~1[¸CS~1 !¸C=~1 0](0

Since ¸'0, the above inequality is equivalent to M(0. Hence, the inequality M(0 is su$cient
for global uniform asymptotic stability of the equilibrium [xT, xL T, xT*]T"0. K

The analysis of robust stability is reduced into the existence of a scaling matrix which makes
M negative. This is considered as the de"nition of the state-dependent scaling approach to output
feedback control with the full-order observer. Although representation (11) seems to allow us to
use a sort of separation between state-feedback stabilization and observer design, it is not true for
nonlinear systems stabilization. To explain this point, we need the following.

¸emma 1
Consider a symmetric matrix

F"C
F
11

FT
12

F
12

F
22
D , F

22
3Rq]q

(i) Schur complements formula: F(0 is equivalent to

F
22

(0, F
11
!F

12
F~1
22

FT
12
(0 (19)

(ii) Young's inequality: F(0 is satis"ed if

F
22
#!~1(0, F

11
#F

12
!FT

12
(0, !"

q
diag
i/1

c
i
'0 (20)

Proof. The inequalities (ii) can be derived by using elementary linear algebra as follows:

0'F
11
#F

12
!FT

12
'F

11
#F

12
!FT

12
!F

12
(!#F~1

22
)FT

12
"F

11
!F

12
F~1
22

FT
12

(21) K

Condition (20) is an alternative expression of Young's inequality for vectors or completing the
squares:

2yTz)yT!y#zT!~1z (22)

where y and z are vectors. It is veri"ed that (22) yields (20) as follows:

C
x

zD
T
FC

x

zD"xTF
11

x#2xTF
12

z#zTF
22

z

)xTF
11

x#xTF
12

!FT
12

x#zT!~1z#zTF
22

z

"C
x

zD
T

C
F
11
#F

12
!FT

12
0

0

F
22
#!~1DC

x

zD
This paper refers to (20) as Young's inequality in order to distinguish that from the Schur
complements formula since (20) has been commonly used in terms of the Young's inequality (22)
in nonlinear systems control [1, 2, 19]. The common role of Young's inequality is to get rid of
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products of two vectors in the Lyapunov derivative and to get a decoupled quadratic expression.
The Schur complements formula looks at the negativity in terms of matrices in stead of the scalar
value of quadratic forms. The Schur complements formula gives a necessary and su$cient
condition while Young's inequality is only su$cient. From this viewpoint, this paper shows how
to replace the task of Young's inequality with the superior Schur complements. In other words,
this paper proposes backstepping procedures without introducing any conservatism in solving
problems recursively except that Theorem 1 is a su$cient condition (note that recursive construc-
tion of a solution by itself may have unnecessary conservatism). This idea may not only allow the
design to tolerate large size of uncertainties, but also prevent controllers from having unnecessary
high gain and harmfully fast or slow growth order.

Corollary 1
Assume that there exists a constant matrix PI '0 such that (23) holds for all (y, xL )3Rr]Rn.

H (y, xL )"=~T(A!>C
y
)T=TPI #PI =(A!>C

y
)=~1(0 (23)

(i) Suppose that there exists a constant P'0 such that

NM (y, xL )"N
11

(y, xL )!N
12

(y, xL )H~1(y, xL )NT
12

(y, xL )(0

N
11
"S~T(A#GK)T (<#¹)TP#P(¹#<) (A#GK)S~1

N
12
"P (<A#¹>C

y
)=~1 (24)

is satis"ed for all (y, xL )3Rr]Rn, then the nominal nonlinear system &
0

is globally
uniformly asymptotically stabilized by the dynamic output feedback (6) and (7). Moreover,
if &

0
is a linear system and if S is constant, the pair of (24) and (23) is equivalent to the

existence of P'0 and PI '0 satisfying

N
11
(0, H(0 (25)

(ii) Suppose that there exist a constant matrix P'0 and a scaling function ¸3L such that

MM (y, xL )"M
11

(y, xL )!M
12

(y, xL )H~1(y, xL )MT
12

(y, xL )(0

M
11
"

N
11

BT<TP

¸CS~1

P<B

!¸

0

S~TCT¸

0

!¸

, M
12
"

N
12

BT=TPI
¸C=~1

(26)

is satis"ed for all (y, xL )3Rr]Rn, then the uncertain nonlinear system &
P

is globally
uniformly asymptotically stabilized by the dynamic output feedback (6) and (7) for any
admissible uncertainty &* .

Proof. (i) Conditions (24) and (23) are obtained by applying the Schur complements formula to
(17). It is obvious that (24) and (23) imply (25). Conversely, suppose that P'0 and PI '0 solve
(25) with a constant S for a linear system &

0
. If PI in (24) is replaced by bPI , inequality (24) is

satis"ed for a su$ciently large constant b'0.
(ii) This part is straightforward from the Schur complements formula. K
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Inequalities (25) represent the separation principle for linear systems. Conditions (25), however do
not guarantee global stability nonlinear &

0
. If &

0
is nonlinear, b in the proof would be required to

be unbounded as y or xL goes to $R. If b is a function of (y, xL ), there is no guarantee that there
exists a Lyapunov function < which is consistent with

L<
L[sL T, gT]T

"2[s( TP, gTb (y, xL )PI ]

for P and PI of (25). It is true that (24) can be satis"ed semi-globally by a su$ciently large constant
b. We may achieve semi-global stabilization by using (25) and taking into account the level set of
<(x, xL )"sTPs#gTbPI g. This paper does not pursue this direction of semi-global stabilization
since it does not capture essential points required for global and nonlinear stabilization. As for
robust stabilization, we cannot separate observer design completely from robust stabilization in
a global sense. The separation argument in (i) of Corollary 1 is not applicable to (ii) even for linear
&
0

because of the coupling term M
12

(especially BT=TPI ) between feedback and observer. Linear
robust control theory tells us that observer design must be coupled with robusti"cation of
stabilization. In other words, the observer should be designed strong enough, taking into account
the e!ect of uncertainty.

The parameters P, PI and ¸ solving the inequalities in Theorem 1 and Corollary 1 globally are
not always guaranteed to be existent. The existence of the solutions depends on the geometric
structure of &

0
and &

P
as well as S and=. In the rest of this paper, classes of systems which admit

the global solutions are presented.

3. A ROBUST STRICT-FEEDBACK FORM AND OBSERVERS

This section de"nes a class of uncertain nonlinear systems for which output backstepping design
via SD scaling will be proposed. The output equation of &

0
is supposed to be

y"x
1

or equivalently C
y
"[1 020]. This case is sometimes called output feedback in the nonlinear

control literature [2]. We assume that A and G can be written in the form

A(x
1
)"

a
11

a
12

0 2 0

a
21

a
22

a
23

0 0

F F F } } F

0

a
n~1,1

a
n~1,2

2 a
n~1,n

a
n,1

a
n,2

2 a
n,n

, G (x
1
)"

0

F

0

a
n,n`1

with C0 scalar functions a
ij
(x

1
) required to satisfy

a
i, i`1

(x
1
)O0, 1)i)n, ∀x

1
3R
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As for functions B and C, we assume

B (x
1
)"

B
11

0 2 0

B
21

B
22

} F

F } } 0

B
n1

2 B
n,n~1

B
nn

, C(x
1
)"

C
11

0 2 0

C
21

C
22

} F

F } } 0

C
n1

2 C
n,n~1

C
nn

where B
ij
(x

1
)3R1]p

i and C
ij
(x

1
)3Rp

i
]1. Then, the uncertainty a!ects the system as

B(x)w"

B
11

*
1
C

11
B
21

*
1
C

11
#B

22
*

2
C

21
F

0

B
22

*
2
C

22
F

0 2

0 }

}

x
1

x
2

x
3
F

The nonlinear operator *
i
can have dynamics with initial conditions. For simplicity, this paper

assumes that the system does not have any uncertainties in the virtual control coe$cients in the
backstepping. It is possible to extend the idea of SD scaling easily to the uncertain system which
has uncertain components * in a more general manner as in Reference [3].

Two types of properties of observers will be used in this paper.

Ordinary observer: The observer-gain > (x
1
) is chosen as a C0 function matrix such that there

exist a constant matrix PI '0 and a C0 function matrix Q
y
(x

1
)'0 satisfying

(A!>C
y
)TPI #PI (A!>C

y
)(!Q

y
(27)

for all x
1
3R.

Robust observer. Given a matrix-valued function !(x
1
)'0, the C0 observer-gain function

>(x
1
) and the constant matrix = are chosen such that there exists a constant diagonal matrix

PI '0 satisfying

H(x
1
)"=~T(A!>C

y
)T=TPI #PI= (A!>C

y
)=~1(!!~1 (28)

for all x
1
3R.

Note that H(!!~1(0 is equivalent to 0(!H~1(!. A robust observer is an ordinary
observer. The converse is not true. Suppose that PI '0 is a solution to (27). We can always
decompose the matrix into PI "=TPI

/%8
= with a lower triangular matrix = and a diagonal

matrix PI
/%8

. This implies that (28) is satis"ed by replacing PI and !~1 with PI
/%8

and=~TQ
y
=~1,

respectively, whenever (27) holds with a symmetric matrix PI '0. However, !~1)=~TQ
y
=~1

is not guaranteed at all. The left-hand side of (28) corresponds to the Lyapunov derivative of the
observer error system. The robust observer requires that the observer error system is stable to
a degree prescribed by !. The smaller !'0 is, the more robust the observer is.

4. BACKSTEPPING DESIGN FOR OUTPUT FEEDBACK

This section extends the robust backstepping procedure in [3, 18] to output feedback design. The
backstepping is carried out successfully by selecting SD scaling matrices recursively.
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Let xL
*k+

denote the state of the observer xL
1

through xL
k
:

xL
*k+
"[xL

1
, xL

2
,2,xL

k
]T

Consider smooth scalar-valued functions s
1
(x

1
), s

2
(x

1
, xL

1
),2, s

n~1
(x

1
, xL

*n~2+
) which are to be

determined in a recursive manner from s
1

through s
n~1

. We de"ne a matrix S(x
1
, xL ) as follows:

S~1(x
1
, xL

*n~2+
)"

1 0 0 2 0

s
1

1 0 2 0

0 s
2

1 } 0

F F } } F

0 2 0 s
n~1

1

(29)

The smooth functions < and ¹ in (10) are obtained as

< (x
1
, xL

*n~1+
)"

0 0 2 0

|1,1
0 2 0

|2,2
0 } 0

F F } F

|n~1,n~1
0 2 0

¹ (x
1
, xL

*n~1+
)"

1 0 0 0 2 0

|0,1
1 0 0 2 0

|2,2 |1,2
1 0 } 0

|3,3 |3,3 |2,3
1 } 0

F F F } } F

|n~1,n~1
2 2 |n~1,n~1 |n~2,n~1

1

where |i,j
denotes any function depending only on (x

1
, xL

*i+
), and the functions s

1
through s

j
and

their partial derivatives. Let us choose the feedback gain (7) as

K"[(!1)n~1s
1
2s

n
, 2, !s

n~1
s
n
, s

n
] (30)

where s
n
(x

1
, xL

*n~1+
) is another smooth function yet to be determined. We also consider P and

= in the form of

P"

n
diag
i/1

P
i
, P

i
'0, ="

=
11

0 2 0

=
21
=

22
2 0

F F } F

=
n1

2 =
n,n~1

=
n,n

(31)

Scaling matrices are C0 functions chosen from the set

L"G¸"

n
block-diag

i/1

¸
i
(x

1
, xL

*i~2+
), ¸

i
3L

iH (32)
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The matrices in (17) and (18) which characterize the nominal and robust stability become

N"C
N

11
NT

12

N
12

H D (33)

N
11
"SK TA) T (<#¹)TP#P(<#¹)A) T S) , A) T"[A G], SK "C

S~1

02 0 s
n
D

N
12
"!P(<A#¹>C

y
)=~1

H"=~T(A!>C
y
)T=TPI #PI= (A!>C

y
)=~1

M"C
M

11
MT

12

M
12

H D

M
11
"

N
11

BT<TP

¸CS~1

P<B

!¸

0

S~TCT¸

0

!¸

, M
12
"

N
12

!BT=TPI
!¸C=~1

(34)

where PI is a positive-de"nite symmetric matrix. Using the characteristic matrices N and M, we
introduce two key matrices NI

*k+
and MI

*k+
as follows:

NI
*k+
"C

R1 T
k

0

0

I
n
DNC

R1
k

0

0

I
n
D (35)

RM
k
"C

I
k
0D3Rn]k, R1

n
"I

n

MI
*k+
"C

Q1 T
k

0

0

I
n
DMC

Q1
k

0

0

I
n
D

Q1
k
"

R1
k

0 0

0 IqN 0

0 0 0

0 0 IqN

0 0 0

3R(n#2p)](k#2qN ), Q1
n
"I

n`2p
(36)

where I
k

denotes a k]k identity matrix and qN "+k
i/1

p
i
. These NI

*k+
and MI

*k+
directly let us be

ready for the backstepping design.
Before describing the backstepping procedure, we show several important properties of

NI
*k+

and MI
*k+

. It is seen that the two matrices satisfy

NI
*k+

(x
1
, xL

*k~1+
)"

N
*k+11

(x
1
, xL

*k~1+
)

NT
*k+12

(x
1
, xL

*k~1+
)

0

N
*k+12

(x
1
, xL

*k~1+
) 0

H(x
1
)K
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MI
*k+

(x
1
, xL

*k~1+
)"

M
*k+11

(x
1
, xL

*k~1+
)

MT
12

(x
1
, xL

*n~1+
)QM

k

QM T
k
M

12
(x

1
, xL

*n~1+
)

H(x
1
)K

Here, N
*k+11

, N
*k+12

and M
*k+11

are given by

N
*k+11

"SK T
*k+

A) T T
*k+

(<
*k+
#¹

*k+
)TP

*k+
#P

*k+
(<

*k+
#¹

*k+
)A) T

*k+
SK
*k+

N
*k+12

"!P
*k+

(<
*k+

A
*k+
#¹

*k+
>

*k+
C

y *k+
)=~1

*k+

M
*k+11

"

N
*k+11

BT
*k+
<T

*k+
P

*k+
¸
*k+

C
*k+

S~1
*k+

P
*k+
<

*k+
B

*k+
!¸

*k+
0

S~T
*k+

CT
*k+
¸
*k+

0

!¸
*k+

which consist of system matrices for the "rst k states and input}output components.

A
*k+
"

a
11

a
12

0 2 2 0

a
21

a
22

a
23

0 } F

F F F } 0

a
k~1,1

a
k~1,2

2 2 a
k~1,k

a
k1

a
k2

2 2 a
k,k

, P
*k+
"

P
1

0

0 } 0

0 P
k

B
*k+
"

B
11

0 }

F } 0

B
k1

2 B
kk

, C
*k+
"

C
11

0 }

F } 0

C
k1

2 C
kk

, ¸
*k+
"

¸
1

0 }

0 } 0

0 ¸
k

Similarly, S~1
*k+

(x
1
, xL

*k~2+
), <

*k+
(x

1
, xL

*k~1+
), ¹

*k+
(x

1
, xL

*k~1+
) and=

*k+
are de"ned as k]k upper left

parts of S~1, <, ¹ and =, respectively. In addition, the following matrices are used:

AK
*k+
"CA*k+ K

0

a
k,k`1

D"C
AK

*k~1+
(x

1
)

|0,0
K

0

a
k,k`1

D , SK
*k+

(x
1
, xL

*k~1+
)"C

S~1
*k+

020 s
k
D

>
*k+
"

>
1
F

>
k

, >
*n+
">, C

y *k+
"[1 020]

hij
k!1 times

We can verify the following properties of NI
*k+

and MI
*k+

easily.

Proposition 1
Suppose 1)k)n.
(i-a) NI

*k+
does not include Ms

k`1
, s

k`2
,2, s

n
N.

(i-b) Entries of NI
*k+

are a$ne in s
k
.

(i-c) Entries of NI
*k+

are jointly a$ne in all the entries of P
*k+

.
(i-d) NI

*k+
(0 implies NI

*k~1+
(0 unless k"1.

(i-e) NI
*n+
"N.
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(ii-a) MI
*k+

does not include either Ms
k`1

, s
k`2

,2, s
n
N or M¸

k`1
, ¸

k`2
,2,¸

n
N.

(ii-b) Entries of MI
*k+

are jointly a$ne in ¸
k

and s
k
.

(ii-c) Entries of MI
*k+

are jointly a$ne in all the entries of ¸
*k+

and P
*k+

.
(ii-d) MI

*k+
(0 implies MI

*k~1+
(0 unless k"1.

(ii-e) MI
*n+
"M.

Although the system is nonlinear in state variables, the problem of SD scaling is recursively
linear in design parameters. On the basis of Proposition 1, this paper proposes the following
procedures of backstepping for feedback gain design.

Nominal backstepping: Solve

NI
*k+

(x
1
, xL

*k~1+
)(0, ∀(x

1
,xL

*k~1+
)3R]Rk~1 (37)

for s
k
from k"1 through k"n.

Robust backstepping: Solve

MI
*k+

(x
1
, xL

*k~1+
)(0, ∀(x

1
, xL

*k~1+
)3R]Rk~1 (38)

for Ms
k
, ¸

k
N from k"1 through k"n.

Both the procedures suppose that P, PI , > and= are given. The procedures can be carried out
recursively since the process of "nding decision parameters at Step k does not require any
decision parameters to be found at Step k#1, k#2,2, n. The procedures is also justi"ed in that
Step k is a necessary step for accomplishing Step k#1, k#2,2, n. The problem of "nding
M¸

k
, s

k
N satisfying NI

*k+
(0 and MI

*k+
(0 is convex in decision parameters. The nominal backstep-

ping and the robust backstepping for output feedback design via SD scaling are amenable to
numerical computation based on optimization as it has been shown for state-feedback design in
Reference [3]. The recursive design this section proposes does not require precise knowledge of
each system parameter since the design is based on domination instead of cancellation. An exactly
canceling formula is considered as one special solution to the domination. Moreover, the
domination approach can be exploited to get rid of the propagation of complicated and long
terms in the control law K.

The subsequent sections investigate whether the solutions of the inductive problems exist or
not. A condition of allowable size and nonlinearity of uncertainty will be derived. Furthermore,
a class of systems which can be always robustly stabilizable against arbitrarily large uncertainties
by output feedback will be shown.

5. EXISTENCE AND ANALYTICAL SOLUTION

This section transforms the nominal and robust backstepping into problems which are suitable
for "nding analytical solutions. No conservatism is introduced in this process. The section,
thereby, proposes alternative procedures of nominal and robust backstepping and solves them
analytically. These alternative backstepping procedures can be also done by numerical calcu-
lation. The transformed problem of robust stabilization is no longer a$ne in decision parameters.
Nevertheless, the backstepping can be easily done by curve "tting of a real-valued function which
is only required to lie in a certain interval.
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De"ne the following two functions:

NM
*k+

(x
1
, xL

*k~1+
)"RM T

k
(N

11
!N

12
H~1NT

12
)RM

k
(39)

MM
*k+

(x
1
, xL

*k~1+
)"QM T

k
(M

11
!M

12
H~1MT

12
)QM

k
(40)

Application of the Schur complements to N3
*k+

and MI
*k+

yields the equivalence

N1
*k+
(08N3

*k+
(0 (41)

M1
*k+
(08M3

*k+
(0 (42)

on the assumption that H(0. Note that NM
*n+
"NM and MM

*n+
"MM where NM and MM are de"ned in

Theorem 1 and Corollary 1. The matrix NM
*k+

involves (s
1
,2, s

k
) and their partial derivatives. The

matrix MM
*k+

involves (s
1
,2, s

k
), their derivatives and ¸

*k+
. We partition NM

*k+
into four blocks as

follows:

NM
*k+

(x
1
, xL

*k~1+
)"C

NM
*k~1+

(x
1
, xL

*k~2+
)

'T
k
(x

1
, xL

*k~1+
)

'I
k
(x

1
, xL

*k~1+
)

(I
k
(x

1
, xL

*k~1+
)D for k"2,2, n (43)

(3
k
"2P

k
(a

kk
#a

k,k`1
s
k
#|k~1,k~1

)3R, '3
k
"|k~1,k~1

(44)

NM
*1+

(x
1
)"(3

1
(x

1
) (45)

Let Q
k
be a non-singular matrix of the form

Q
k
"

I
k~1

0 0 0 0 0

0 0 0 I
1

0 0

0 I
q

0 0 0 0

0 0 0 0 Ip
k

0

0 0 I
q

0 0 0

0 0 0 0 0 Ip
k

3R(k#2qN )](k#2qN )

where q :"+k~1
i/1

p
i
. In order to obtain an inductive expression for MM

*k+
, which is similar to (43), we

let PI in MI
*k+

be a diagonal matrix

PI "
n

diag
i/1

PI
i
, PI

i
'0 (46)

This assumption is not a restriction at all since a matrix PI '0 can be always decomposed into
PI "=T

/%8
PI
/%8
=

/%8
with lower triangular=

/%8
and diagonal PI

/%8
, so that the design parameter

= absorbs =
/%8

. The de"nition of (46) and Q
k
allows MM

*k+
to be partitioned in the form of

QT
k
MM

*k+
(x

1
, xL

*k~1+
)Q

k
"C

MM
*k~1+

(x
1
, xL

*k~2+
)

'T
k
(x

1
, xL

*k~1+
)

'
k
(x

1
, xL

*k~1+
)

t
k
(x

1
, xL

*k~1+
)D for k"2,2, n (47)
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(
k
"

2P
k
(a

kk
#a

k,k`1
s
k
#|k~1,k~1

)

*

*

|k~1,k~1
!¸

k
#;

kk

*

(|k~1,k~1
#CT

kk
)¸

k

|0,0
CT

k,~
¸
k

!¸
k
!¸

k
C

k,~
=~1

*k+
[H~1]

*k+
=~T

*k+
CT

k,~
¸
k

3R(1#2p
k
)](1#2p

k
) (48)

'
k
"

|k~1,k~1

|k~1,k~1
e

k~1,k~1

|k~2,k~2
;

*,k
e

k~3,k~1

|k~2,k~1
CT

k,~
¸
k

|0,0
CT

k,~
¸
k

e
k~3,k~1

CT
k,~

¸
k

(49)

MM
*1+

(x
1
)"(

1
(x

1
) (50)

where e
i, j

denotes any function depending only on (x
1
, xL

*i+
, ¸

*j+
), (s

1
,2, s

j
) and their partial

derivatives. The following matrices are used in (48) and (49):

;
kk
"![BT=TPI ]

k
H~1[BT=TPI ]T

k
, ;

*,k
"![BT=TPI ]

*k~1+
H~1[BT=TPI ]T

k

[BT=TPI ]
*k+
"

[BT=TPI ]
1

F

[BT=TPI ]
k

, BT=TPI "[BT=TPI ]
*n+

[H~1]
*k+
"C

[H~1]
*k~1+

|0,0

|0,0
[H~1]

kk
DK , [H~1]

*n+
"H~1

C"

C
1,~ D020

C
2,~

D0 F

F }0

C
n,~

, C
1,~

"C
11

The calculation to obtain the explicit expressions of (44), (48) and (49) is straightforward, and it is
omitted. De"ne JI

k
(x

1
, xL

*k~1+
)3R conformably with

(3
k
!'3 T

k
NM ~1

*k~1+
'I

k
"JI

k

(I
1
"JI

1

for k*2

for k"1
(51)

We also de"ne J
k
(x

1
, xL

*k~1+
)3R, E

k
(x

1
, xL

*k~1+
)3R1]2p

k and F
k
(x

1
, xL

*k~1+
)3R2p

k
]2p

k as

(
k
!'T

k
MM ~1

*k~1+
'

k
"C

J
k

ET
k

E
k

F
k
D for k*2

(
1
"C

J
1

ET
1

E
1

F
1
D for k"1 (52)

Here, J
k
is identical with JI

k
if p"0. Applying the Schur complements formula to (51) and (52), we

obtain the following lemma.
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¸emma 2
Suppose that H(x

1
)(0 holds for all x

1
3R. Let k be any integer belonging to [1, n].

(i) Assume that NI
*k~1+

(0 is satis"ed for all (x
1
, xL

*k~2+
)3R]Rk~2 unless k"1. Then,

NI
*k+
(0 holds for all (x

1
, xL

*k~1+
)3R]Rk~1 if and only if

JI
k
(0 (53)

is satis"ed for all (x
1
, xL

*k~1+
)3R]Rk~1.

(ii) Assume that MI
*k~1+

(0 is satis"ed for all (x
1
, xL

*k~2+
)3R]Rk~2 unless k"1. Then,

MI
*k+
(0 holds for all (x

1
, xL

*k~1+
)3R]Rk~1 if and only if

F
k
(0, J

k
!E

k
F~1
k

ET
k
(0 when p

k
O0 (54)

J
k
(0 when p

k
"0 (55)

are satis"ed for all (x
1
, xL

*k~1+
)3R]Rk~1.

The backstepping in Section 4 is reduced to either (53), (54) or (55).
We are now in the position to state an existence result of nominal stabilization via output

feedback. The function JI
k
for nominal stabilization is calculated as

JI
k
"2P

k
(a

kk
#a

k,k`1
s
k
#|k~1,k~1

) (56)

This equation leads us to the following.

¹heorem 2
Given an ordinary observer, the nominal system &

0
can be globally uniformly asymptotically

stabilized by the output-feedback law (6) and (7) with a smooth function K.

Proof. Remember that a
k,k`1

(x
1
) is non-zero for all x

1
3R. Since a

k,k`1
and other functions in

(56) are C0 functions, for each k"1, 2,2, n there exist a smooth function s
k
(x

1
, xL

*k~1+
) such that

JI
k
(0 is satis"ed for all (x

1
, xL

*k~1+
)3R]Rk~1. Let="I. Suppose that s

1
satis"es JI

1
(0. Then,

NI
*1+

(x
1
)(0 holds for all x

1
3R by Lemma 2. Suppose that NI

*k~1+
(0 is satis"ed for all

(x
1
, xL

*k~2+
)3R]Rk~2. Then, we can "nd s

k
so as to achieve JI

k
(0 again. Lemma 2 implies

NI
*k+
(0 for all (x

1
, xL

*k~1+
)3R]Rk~1. By induction, Theorem 1 and Proposition 1(i-e) prove the

claim. K

For the robust stabilization problem, J
k
is given as follows:

J
k
"2P

k
(a

kk
#a

k,k`1
s
k
#|k~1,k~1

)#e
k~1,k~1

(57)

The matrices E
k
and F

k
in (52) are calculated as

E
k
"[e

k~1,k~1
(CT

kk
#e

k~1,k~1
)¸

k
] (58)

F
k
"C

!¸
k
#Z

a
¸

k
ZT

b

Z
b
¸
k

!¸
k
#¸

k
Z

c
¸

k
D (59)

where the following expressions are used:

Z
a
"!BT

~,k
=TSkTPI SkT ([H~1]SkT#FM

k11
)PI SkT=SkTB~,k

Z
b
"(|0,0

!FM T
k12

PI SkT=SkTB~,k
)TCT

k,~
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Z
c
"!C

k,~
(=~1[k] [H~1]

*k+
=~T

*k+
#FM

k22
)CT

k,~

FM
k
(x

1
, xL

*k~2+
)"C

FM
k11

FM T
k12

FM
k12

FM
k22
D"

|k~2,k~2
;M

k
e

k~3,k~1

|k~2,k~1

|0,0
e

k~3,k~1

T

MM ~1
*k~1+

|k~2,k~2
;M

k
e

k~3,k~1

|k~2,k~1

|0,0
e

k~3,k~1

FM
1,11

"0, FM
1,12

"0, FM
1,22

"0

;M
k
"! [BT=TPI ]

*k~1+
H~1C

0

I
n~k`1

D

B"

B
~,1

0

B
~,2

2

}

2

0

F

0

B
~,n

, B
~,n

"B
nn

[H~1]SkT"C
[H~1]

kk
|0,0

|0,0
[H~1]Sk!1TDK , [H~1]S1T"H~1

PI SkT"C
PI
k

0

0

PI Sk#1TDK , =SkT"C
=

kk
|

0

=Sk#1TDK
where the component denoted by | is constant. Note that FM

k11
)0 and FM

k22
)0 hold if

MI
*k~1+

(0 is satis"ed.

¸emma 3
Let k be any integer belonging to [1, n].

(i) F
k

is supposed to be invertible for all (x
1
, xL

*k~1+
)3R]Rk~1. Then, there always exists

a smooth function s
k
(x

1
, xL

*k~1+
) such that J

k
!E

k
F~1
k

ET
k
(0 is satis"ed for all

(x
1
, xL

*k~1+
)3R]Rk~1.

(ii) Suppose that p
k
O0. Assume that MM

*k~1+
(x

1
, xL

*k~2+
)(0 holds for all

(x
1
, xL

*k~2+
)3R]Rk~2 unless k"1. Assume that H (x

1
)(0 holds for all x

1
3R if k"1.

Then, there always exists a C0 function j
k
(x

1
, xL

*k~2+
) such that

j
k
(x

1
, xL

*k~2+
)'0, F

k
(x

1
, xL

*k~2+
)(0 (60)

are satis"ed for all (x
1
, xL

*k~2+
)3R]Rk~2 with ¸

k
(x

1
, xL

*k~2+
)"j

k
(x

1
, xL

*k~2+
)Ip

k
if

j
.!9

(!BT
~,k
=TSkTPI SkT([H~1]SkT#FM

k11
)PI SkT=SkTB~,k

)

]j
.!9

(!C
k,~

(=~1
*k+

[H~1]
*k+
=~T

*k+
#FM

k22
)CT

k,~
))1

4
(61)

holds for all (x
1
, xL

*k~2+
)3R]Rk~2.

Proof. (i) This part is almost the same as Theorem 2.
(ii) De"ne Z

*k+
3R(k#2q)](k]2q) and [Z

*k+
]
22

3R2p
k
]2p

k with

Z
*k+
"!QT

k
QM T

k
M

12
H~1MT

12
QM

k
Q

k
"C

e
k~1,k~1

e
k~1,k

e
k~1,k

[Z
*k+

]
22
D
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The assumption MI
*k~1+

(0 implies H(0 and [Z
*k+

]
22
*0. According to (52), we write F

k
as

F
k
"[(

k
]
22
!['

k
MM ~1

*k~1+
'

k
]
22

Then, ['
k
MM ~1

*k~1+
'

k
]
22
)0 follows from MM

*k~1+
(0 implied by MI

*k~1+
(0. Using (59), (47) and

Z
*k+
"QT

k
(MM

*k+
!QM T

k
M

11
QM

k
)Q

k
, it is veri"ed that

Z
0
"C

Z
a

ZT
b

Z
b

Z
c
D

satis"es the following.

C
I

0

0

¸
k
D Z

0 C
I

0

0

¸
k
D"[Z

*k+
]
22
!['

k
MM ~1

*k~1+
'

k
]
22

Thus, we obtain Z
0
*0 for all (x

1
, xL

*k~2+
)3R]Rk~2. De"ning aN "j

.!9
(Z

a
), bM "j

.!9
(ZT

b
Z

b
) and

cN"j
.!9

(Z
c
), the inequality Z

0
*0 directly proves that non-negative numbers aN , bM and c6 satisfy

bM )aN cN for all (x
1
, xL

*k~2+
)3R]Rk~2. Now, we take ¸

k
"j

k
I and consider F

k
at an arbitrary point

(x
1
, xL

*k~2+
)3R]Rk~2. From Young's inequality, the inequality F

k
(0 is implied by the existence

of q'0 satisfying

!j
k
I#Z

a
#q~1I(0, j2

k
Z

c
!j

k
I#qj2

k
ZT

b
Z

b
(0 (62)

Obviously, (62) is met if q~1(j
k
!aN and bM (q~1(j~1

k
!cN ) are satis"ed. Thus, F

k
(0 holds if

j
k
'aN (63)

j2
k
cN#(bM !aN cN!1)j

k
#aN (0 (64)

are satis"ed. By manipulating the determinant of (64) together with (63), it is veri"ed that there
exists a real number j

k
such that (63) and (64) are satis"ed if and only if

bM )aN cN#1!2JaN cN , aN cN(1 (65)

hold. Now we show that under the conditions (65), any solution j
k
3R to (64) satis"es (63). To this

end, "rst note that bM )1!aN cN is obtained from aN '0, cN'0 and aN cN(1. Let the set of all solutions

A
(1#aN cN!b1 )!J(1#aN cN!b1 )2!4aN cN

2cN
,
(1#aN cN!b1 )#J(1#aN cN!b1 )2!4aN cN

2cN B (66)

to (64) be denoted by the interval (lj, rj). Suppose that lj(aN , or, equivalently

!J(1#aN cN!b1 )2!4aN cN(b1 !1#aN cN

This yields that

(1#aN cN!b1 )2!4aN cN'(b1 !1#aN cN )2

"(1#aN cN!b1 )2!4aN cN (1!b1 )

The above inequality contradicts 1*1!b1 . Thus, we conclude aN )lj. Next, recall that b1 )aN cN . It
is seen that two conditions of (65) are met if 1!4aN cN'0 is satis"ed. Hence, if (61) holds and
j
k

belongs to (lj, rj), then ¸
k
"j

k
I solves F

k
(0. Finally, note that (66) becomes (aN ,#R) as

cN goes to 0. The solution j
k
satisfying F

k
(0 always exists in such a case. Since all functions aN , b1

and cN are C0 functions de"ned on Rk]Rk~2, there exits C0 function j
k
(x

1
, xL

*k~2+
) such that two
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inequalities in (60) hold for all (x
1
, xL

*k~2+
)3Rk]Rk~2 on the assumption that (61) or (65)

holds. K

Condition (61) is only su$cient for the existence of ¸
k

in the backstepping procedure. The
su$ciency is for only the purpose of obtaining a simple and explanatory condition. To check
whether M¸

k
, s

k
N are chosen properly or not, one only has to evaluate MI

*k+
(0. If +

P
does not have

uncertainties at its kth state-space equation, requirement (61) vanishes at the kth steps of
backstepping. Since B and C represent the nonlinear bounds of uncertainties, condition (61) is
considered as the nonlinear size of tolerable uncertainties. For instance, if C and B are block
diagonal, uncertainties appear in &

P
as B

ii
*
i
C

ii
, and (61) with="I becomes

j
.!9

(BT
kk
B

kk
)j

.!9
(C

kk
CT

kk
))

1

4c
k
(c

k
!fM

k
)PI 2

k

fM
1
"0, fM

k
(x

1
, xL

*k~2+
)"e

k~2,k~1
)0 for k*2

where c
k
(x

1
) is any function satisfying diagn

i/1
c
i
'!H~1'0.

A solution j
k
to (60) is any C0 function whose value lies between

1#aN cN!b1 $J(1#aN cN!b1 )2!4aN cN
2cN

(67)

where

aN "j
.!9

(Z
a
), b1 "j

.!9
(ZT

b
Z

b
), cN"j

.!9
(Z

c
)

A solution s
k
is calculated from the a$ne inequality J

k
!E

k
F~1
k

ET
k
(0. We thereby arrive at the

following result for robust stabilizability of &
P
.

¹heorem 3
Suppose that a robust observer is chose such that (61) is satis"ed for all k"1, 2,2, n.

(i) Assume that the uncertainty &* has only static components *
i4
. The system &

P
can be

globally uniformly asymptotically stabilized for any admissible uncertainty by the output-
feedback law (6) and (7) with a smooth function K.

(ii) Assume that the uncertainty &* has dynamic components *
i$
. If there exists a constant

j
k

belonging to interval (67) for each k"1, 2,2, n. then, the system &
P

can be globally
uniformly asymptotically stabilized for any admissible uncertainty by the output-feedback
law (6) and (7) with a smooth function K.

Proof. Suppose that a robust observer is constructed with H satisfying (61). Lemma 3(ii)
guarantees the existence of ¸

k
3L

k
satisfying F

k
(0. Due to Lemma 3(i), we can always "nd

s
k

achieving (54) or (55). Hence, we have MI
*k+
(0 from Lemma 2(ii). Repeating this procedure

from k"1 through k"n, we obtain MI
*n+
(0. Thus, Theorem 1 and Proposition 1(ii-e) prove the

asymptotic stability. Finally, scaling matrices for dynamic uncertainties are required to be
constant. K

Condition (61) may be satis"ed for k)2 by su$ciently small C0 functions c
i
(x

1
)'0 and

diagn
i/1

c
i
'!H~1. However, the argument is valid only if an observer ful"lling H(!!~1 is

constructed for such a large !~1. The smaller c
k

puts a heavier burden on the observer. The
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required strong observers may not exist unless the full information of x is available. The
components of > and = might become very large when c

i
is too small. Since FM

k11
and

FM
k22

depend on > and=, the condition (61) indicates a strong coupling between observer-gain
design and feedback-gain design. The output-feedback robust stabilization problem is not always
solvable globally in a backstepping manner for arbitrarily large uncertainties. This situation
contrasts with state-feedback control by which global stabilization can be always achieved for
arbitrarily large uncertainties [3].

6. RECURSIVE DESIGN OF GLOBALLY ROBUST OBSERVER

The ordinary observer de"ned in Section 3 can be constructed easily whenever the C0 function
A(x

1
)x satis"es

A (x
1
)x"A

0
x#t(x

1
)

with a constant matrix A
0
[2]. However, the observer provided in Reference [2] is not guaranteed

to be a robust observer. We need to develop a method of constructing the robust observer gain.
This section demonstrates the existence of the robust observer gain for a class of diagonal
matrices !(x

1
).

Given !(x
1
), it is required to "nd the coordinate transformation= and the observer gain>(x

1
)

such that (28) is satis"ed for all x
1
3R with a diagonal matrix PI '0. First, we choose= as

="

1 0 0 2 0

w
2

1 0 2 0

0 w
3

1 } 0

F F } } F

0 2 0 w
n

1

(68)

The entries w
i
for 2)i)n are constant. Now de"ne

=K "C
w

1
(x

1
) 020

=T D (69)

where w
1
(x

1
) is a C0 function de"ned on x

1
3R yet to be determined. Let the observer gain be

>(x
1
)"!=~1C

w
1
(x

1
)

0 D"!

w
1

!w
1
w

2
F

(!1)n~1w
1
w
2
2w

n

(70)

Then, we obtain

[CT
y

AT]=K "!CT
y
>T=T#AT=T"(AT!CT

y
>T)=T
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Inequality (28) is equivalent to

HM (x
1
)"=K TAM T=~1PI ~1#PI ~1=~TAM=K #PI ~1!~1PI ~1(0

AM "[CT
y

AT]
(71)

The structure of (71) is the same as that of feedback-gain backstepping design except that the
lower triangular structure is replaced by the upper triangular one. In order to demonstrate that
= can be determined recursively from w

n
to w

1
, the following notation:

HM SkT (x1
)"=K TSkTAM TSkT=~1SkT PI ~1SkT #PI ~1SkT=~TSkT AM SkT=K SkT#PI ~1SkT !~1SkT PI ~1SkT (72)

is useful for k"1, 2,2, n, where

AM SkT"C
a
k~1,k
0

|

AM Sk#1TDK , AM SnT"[a
n~1,n

a
n,n

]

!SkT"C
c
k
0

0

!Sk#1TDK , !SnT"c
n

=K SkT"C
w

k
020

=TSkT D , =K SnT"C
w

1
1 D

The matrix HM SkT has properties which are almost the same as those in Proposition 1. Obviously,
HM "HM S1T holds. The matrix HM SkT does not include Mw

k~1
, w

k~2
,2, w

1
N and it is a$ne in w

k
. In

addition, we have

HM SkT"C
HM

kk
|0,0

|0,0
HM Sk#1TDK

Due to these properties, the following design procedure makes sense.
Recursive observer design: Solve

HM SkT(x1
)(0, ∀x

1
3R (73)

for w
k

from k"n through k"1.
Recall that a

k~1,k
O0 holds for all x

1
3R by assumption. Applying the Schur complements

formula to HM SkT, we can obtain the following answer to the existence of the solution.

¹heorem 4
Suppose that AM S3T and !S3T are constant matrices. Given an integer k3[1, n], assume that

HM Sk#1T(x1
)(0 holds for all x

1
3R unless k"n.

(i) For k"n, n!1,2, 3: There always exists a constant w
k
such that HM SkT(0 is satis"ed.

(ii) For k"2: There always exists a constant w
2

such that HM S2T (x1
)(0 is satis"ed for all

x
1
3R if there exist positive constants c

i
such that

K
a2
i2

(x
1
)

a
12

(x
1
) K)c

i
, i"2, 3,2, n, K

1

c
2
(x

1
)a

12
(x

1
) K)c

1
(74)

hold for all x
1
3R.

(iii) For k"1: There always exists a smooth function w
1
(x

1
) such that HM S1T (x1

)(0 is satis"ed
for all x

1
3R.
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The idea of the proof is almost the same as Theorem 2. An expression for constructing w
k
can be

obtained easily as a scalar inequality HM
kk
!|0,0

HM ~1Sk#1T |0,0
(0 which is a$ne in w

k
. The

constant and growth constraints on A and ! guarantee w
k
to be constant for 2)k)n. It may be

worth noting that HM (0 is always semi-globally achievable by constants w
k

for all 1)k)n
without condition (74). The second inequality in (74) is unnecessary for the existence of ordinary
observers since !(x

1
) is not a "xed parameter. The "rst inequality in (74) is met if AM S2T is constant.

Indeed, the recursive observer design includes the ordinary observer design in Reference [2] as
a special case.

The recursive design of observers in this section resembles backstepping. The observer design
starts with a parameter away from observer-gain and back to the actual observer-gain. This is the
unique feature of the observer design procedure in this paper. This design procedure of robust
nonlinear observer is suitable for numerical calculation as well. Since the design is based on
domination instead of cancellation, it is amenable to robusti"cation. The following is established
using this fact.

Proposition 2
Suppose that the uncertain system &

P
is linear. Then, &

P
is robustly stabilizable for arbitrarily

large static uncertainties by the output-feedback law (6) and (7) with constant K and >.

Proof. Due to the block lower triangular structure of B and C, the closed-loop system &
P
with

static uncertainties can be described as

d

dtC
sL
gD"C

S (Ad#GK)S~1

0

!S>C
y
=~1

= (Ad!>C
y
)=~1DC

s(
gD

with an uncertain matrix

Ad"

a
11

a
12

0 2 0

a
21

a
22

a
23

0 0

F F F } } F

0

a
n~1,1

a
n~1,2

2 a
n~1,n

a
n,1

a
n,2

2 a
n,n

#

d
11

0 0 2 0

d
21

d
22

0 0 0

F F F } } F

0

d
n~1,1

d
n~1,2

2 0

d
n,1

d
n,2

2 d
n,n

where each d
ij

is a uniformly bounded function of t. Using the observer design method in this
section,

=~T(Ad!>C
y
)T=TPI #PI =(Ad!>C

y
)=~1(0

can be achieved uniformly in t for all admissible uncertainties d
ij
. It is also seen that

S~T (Ad#GK)TSTP#PS(Ad#GK)S~1(0

can be satis"ed by constant S and K [1, 3]. According to the argument in (i) of Corollary 1, N(0
is satis"ed for Ad . K
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7. UNCERTAIN SYSTEMS GUARANTEEING SOLUTIONS

This section focuses on a special class of uncertain systems, which will be shown to be always
robustly stabilized by output feedback.

Assumption 1
The function A(x

1
)x satis"es

A(x
1
)x"A

0
x#t (x

1
)#/ (x

1
)x

2
(75)

with a constant matrix A
0

and C0 functions t and /. There exist positive constants c
i
such that

Da2
i2

(x
1
)/a

12
(x

1
) D)c

i
, i"2, 3,2, n (76)

hold for all x
1
3R. The matrices B and C satisfy

B (x
1
)"

B
11

(x
1
)

B
21

(x
1
)

F

B
n1

(x
1
)

, C(x
1
)"[C

11
(x

1
) 020] (77)

where B
i1

(x
1
)3R1]p

1, C
11

(x
1
)3Rp

1
]1 and p

1
"p.

Identity (75) equating its left- and right-hand side implies not only t (0)"0, but also that
assumption (75) is equivalent to

A(x
1
)x"A

0
x#A

1
(x

1
)x

1
#A

2
(x

1
)x

2

with C0 functions A
1
(x

1
) and A

2
(x

1
). This assumption is weaker than a common assumption

A (x
1
)x"A

0
x#t (x

1
), t(0)"0

in which the nonlinearities are allowed to depend only on the measured state. Note that if
/
1
(x

1
) (the "rst entry of the vector /) is a constant, we do not need constraint (76) since such

a system can be transformed to a system with /"0 by using co-ordinate transformation [20].
Lemma 3(ii) reduces to the following on Assumption 1.

¸emma 4
Assume that H (x

1
)(0 holds for all x

1
3R. There always exists a C0 function j

1
(x

1
) such that

j
1
(x

1
)'0, F

1
(x

1
)(0 (78)

are satis"ed for all x
1
3R with ¸

1
(x

1
)"j

1
(x

1
)Ip

1
if

![H~1]
11

j
.!9

(!BT=TPI H~1PI =B) j
.!9

(C
11

CT
11

))1
4

(79)

hold for all x
1
3R.

For only the purpose of deriving a compact condition (79), the simple form ¸
1
"j

1
I is used in

Lemma 4. In actual design, one can exploit the freedom of L
i
to avoid unnecessary high-gain and

fast growth order of control laws. For example, if uncertain parameters in &
P

are scalar-valued
functions, ¸

1
can be a diagonal matrix consisting of independent entries such as

¸
1
"diagp

1

i/1
j
1, i

. Condition (79) can be always satis"ed for any B and C by a su$ciently small
positive function ![H~1(x

1
)]

11
. If H(!!~1 is satis"ed by an observer, [!H~1]

11
(c

1
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holds. Section 6 has shown that such a strong observer can be always constructed for arbitrary
c
1
(x

1
)'0 and arbitrary constants c

k
, k"3, 4,2, n under Assumption 1. Recall that = is

independent of c
1

in the observer design.

¹heorem 5
Suppose that &

P
satis"es Assumption 1 and that the uncertainty &* has only static components

*
i4
. Then, the system &

P
can be globally uniformly asymptotically stabilized for any admissible

uncertainty by the output-feedback law (6) and (7) with a smooth function K.

Proof. Choose c
i
, i"3, 4,2, n as any positive numbers. We can de"ne a C0 function c

2
(x

1
)

satisfying

c
2
(x

1
)"

1

Ja2
12

(x
1
)
, K

1

c
2
(x

1
)a

12
(x

1
) K"1, c

2
(x

1
)'0, ∀x

1
3R (80)

since a
12

(x
1
)O0 is true for all x

1
3R by assumption. In addition, let c

1
(x

1
) be a function

satisfying

c
1
j
.!9

(BT=TPI !PI =B) j
.!9

(C
11

CT
11

))1
4

(81)

for all x
1
3R. Due to Theorem 4 and Assumption 1, there always exists>(x

1
) such that HM (x

1
)(0

holds for all x
1
3R. Finally, combining Lemmas 3(i) and 4, it is possible to "nd s

k
and

¸
1

achieving MI (x
1
, xL

*k~1+
)(0 for all (x

1
, x

*k~1+
)3R]Rk~1 from k"1 through k"n. K

Combining Theorem 2 with the recursive observer design in the previous section, we obtain the
following which is a special case of the above theorem.

Corollary 2
Suppose that &

0
satis"es (75) and (76). Then, the nominal system &

0
can be globally uniformly

asymptotically stabilized by the output-feedback law (6) and (7) with a smooth function K.

If the system &
0

ful"lls /"0, requirements (75) and (76) vanish. The combination of the
nominal backstepping formulated by NI

*k+
(0 and the recursive observer design formulated by

HM SkT(0 is an extension of the observer backstepping design presented in Reference [2]. This
paper replaces Young's inequality in the observer backstepping design with the Schur comp-
lements formula. In addition, /O0 is allowed by the result of this paper.

Assumptions (75) and (76) in Theorem 5 and Corollary 2 comes from observer design to ensure
globalness of the observer. Global robust stabilization against dynamic uncertainties via output
feedback is not always achievable if the uncertainty structure and size of uncertainty is arbitrarily
prescribed a priori. Stability robustness in terms of input-to-state stability (ISS) can be obtained
as follows.

Corollary 3
In addition to Assumption 1, assume that there exist constants d

i
'0 such that

B
11

(x
1
)BT

11
(x

1
)

Ja2
12

(x
1
)

)d
0
,

B
21

(x
1
)BT

21
(x

1
)

Ja2
12

(x
1
)

)d
1
, B

i1
(x

1
)BT

i1
(x

1
))d

i
, i"2, 3,2, n (82)
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hold for all x
1
3R. Then, the system &

0
can be made ISS by the output-feedback law (6) and (7)

with a smooth function K.

Proof. The matrix F
1

is calculated as

F
1
"C

!j
1
I#Z

a
j
1
ZT

b

j
1
Z

b
!j

1
I#j2

1
Z

c
D

Z
a
"!BT=TPI H~1PI =B, Z

b
"|0,0

CT
11

, Z
c
"!C

11
[H~1]

11
CT

11

Letting B
l
"[BT

21
,2,B

n1
]T, we have the following equation.

BT=TPI !PI =B"c
1
BT
11

PI 2
1
B
11
#c

2
(w

2
B

11
#B

21
)TPI 2

2
(w

2
B
11
#B

21
)

#BT
l
=K S3TPI S3T!S3TPI S3T=K TS3TBl

(83)

Pick arbitrary positive numbers c
i
, i"3, 4,2, n. Choose c

2
(x

1
) as (80) so that

0)j
.!9

(c
2
(w

2
B
11
#B

21
)TPI 2

2
(w

2
B
11
#B

21
))(a

0

holds with a constant a
0

for all x
1
3R. Since B

l
is uniformly bounded, there exist a constant

a
1
'0 and a C0 function c

1
(x

1
) satisfying

c
1
j
.!9

(BT
11

PI 2
1
B
11

)#a
0
#j

.!9
(BT

l
=K S3TPI S3T!S3TPI S3T=K TS3TBl

))a
1

and c
1
'0 for all x

1
3R. The existence of a robust observer solving H(!!~1 for these c

i
,

i"1,2, n is guaranteed by Theorem 4. Here, it is important that= is constructed independently
of c

1
in the observer design. From (83) and 0(!H~1(! it follows that

a
1
*j

.!9
(BT=TPI !PI =B)*j

.!9
(!BT=TPI H~1PI=B)"aN

Let C
11

(x
1
)"b

1
(x

1
)CI

11
where CI

11
is a constant satisfying j

.!9
(CI

11
CI T

11
)"1. Pick arbitrary real

numbers l'0 and e'0 and choose a C0 function b
1
(x

1
) such that

(!e[H~1]
11

b2
1
(x

1
)#bM (x

1
))(

e (a
1
#e)

(a
1
#l#e)2

(84)

holds for all x
1
3R. There exists such a function b

1
since bM (x

1
)"j

.!9
(C

11 |2
0,0

CT
11

)*0 and
e[H~1]

11
(0. Now, choose j

1
as a positive constant j

1
"a

1
#l#e. Noting cN"![H~1]

11
b2
1
,

inequality (84) is rewritten as

cN((j~1
1

!lj~2
1

)!b1 (j
1
!a

1
!l)~1, j

1
!a

1
!l'0

The above condition is equivalent to

j
1
!a

1
!l'0, b1 ((j~1

1
!cN!j~2

1
l) (j

1
!a

1
!l)

Therefore, there exists a function q(x
1
)'0 such that

q~1(j
1
!a

1
!l, b1 (q~1(j~1

1
!cN!j~2

1
l)

Hence, using Young's inequality and a
1
*aN *0, we have

C
!j

1
I#Z

a
j
1
ZT

b

j
1
Z

b
!j

1
I#j2

1
Z

c
D#lI(0
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Thus, the constant j
1
"a

1
#l#e'0 solves F

1
(x

1
)#lI(0 for all x

1
3R. Since J

k
,

k"1, 2,2, n is a$ne in s
k
, it is possible to achieve M (x

1
, xL

*n~1+
)#lI(0 for all

(x
1
, xL

*n~1+
)3R]Rn~1 by selecting s

k
. Using the Schur complements formula of M, we arrive at

d

dt
<(x, xL ))!lC

sL
gD

T

C
sL
gD#wT

1
(¸

1
!lI)w

1

for all (x, xL )3Rn]Rn. Here, the constant matrix ¸
1
!lI"(j

1
!l)I is positive de"nite. Since

S and = de"ne a di!eomorphism globally, the closed system is ISS. K

An example of the class of systems &
0

that satisfy Assumption 1 is

xR
1
"x

2
#t

1
(x

1
)#/

1
(x

1
)x

2
#b

1
(x

1
)w

xR
2
"x

3
#t

2
(x

1
)#/

2
(x

1
)x

2
#b

2
(x

1
)w

F F

xR
n
"g (x

1
)u#t

n
(x

1
)#/

n
(x

1
)x

2
#b

n
(x

1
)w (85)

y"x
1

where / has positive constants c
i
, i"2, 3,2, n such that

D/
i
(x

1
)/(1#/

1
(x

1
))D)c

i
, ∀x

1
3R (86)

The class of uncertain systems &
P

includes

xR
1
"x

2
#t

1
(x

1
)#/

1
(x

1
)x

2
#d

1
(x

1
, t)

xR
2
"x

3
#t

2
(x

1
)#/

2
(x

1
)x

2
#d

2
(x

1
, t)

F F

xR
n
"g (x

1
)u#t

n
(x

1
)#/

n
(x

1
)x

2
#d

n
(x

1
, t) (87)

y"x
1

where /
i
satis"es (86). For each i3[1, n], it is assumed that there exists a C0 function f

i
such that

Dd
i
(x

1
, t) D)D f

i
(x

1
) D, f

i
(0)"0, ∀x

1
3R, ∀t*0 (88)

The function d
i
(x

1
, t) can be replaced by d

i
(x

1
, h) in (87) and (88), where h (t) is an uncertain

parameter vector.

8. CONCLUSIONS

We have proposed a new method of robust backstepping for output-feedback global stabilization
of uncertain nonlinear systems. The procedure and constructive proof of robust backstepping are
very simple, which only uses Schur complements and domination by scaling functions recursively.
This strategy is quite di!erent from other backstepping techniques available in the literature. This
paper also has presented a recursive procedure of robust observer design for a class of uncertain
strict-feedback nonlinear systems. Since this paper assumes that observer design is completed
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before feedback design, two recursive designs of feedback and observer in this paper cannot
interlace with each other. Integration of the backstepping for feedback and the observer design is
an interesting direction of further research.
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