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Safe PDE Backstepping QP Control With High
Relative Degree CBFs: Stefan Model

With Actuator Dynamics
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Abstract—High-relative-degree control barrier functions
play a prominent role in automotive safety and in robotics.
In this article, we launch a generalization of this concept
for PDE control, treating a specific, physically relevant
model of thermal dynamics where the boundary of the PDE
moves due to a liquid–solid phase change—the so-called
Stefan model. The familiar quadratic programming (QP) de-
sign is employed to ensure safety but with CBFs that are
infinite-dimensional (including one control barrier “func-
tional”) and with safe sets that are infinite-dimensional as
well. Since, in the presence of actuator dynamics, at the
boundary of the Stefan system, this system’s main CBF
is of relative degree 2, an additional CBF is constructed,
by backstepping design, which ensures the positivity of all
the CBFs without any additional restrictions on the initial
conditions. It is shown that the “safety filter” designed in
this article guarantees safety in the presence of an arbitrary
operator input. This is similar to an automotive system
in which a safety feedback law overrides—but only when
necessary—the possibly unsafe steering, acceleration, or
braking by a vigorous but inexperienced driver. Simulations
have been performed for a process in metal additive man-
ufacturing, which show that the operator’s heat-and-cool
commands to the Stefan model are being obeyed but with-
out the liquid ever freezing.

Index Terms—Additive manufacturing (AM), control bar-
rier function (CBF), distributed parameter systems, nonlin-
ear control, quadratic program, safety, Stefan problem.

I. INTRODUCTION

A. Safety, Hi-Rel-Deg CBFs, and Nonovershooting
Control

GUARANTEED safety is a necessity in most engineering
applications, including robotic and automotive systems.
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Several approaches have been developed for ensuring safety,
such as reachability analysis [4], contraction theory [41], model
predictive control [17], and so on. Since the seminal work on
control barrier functions (CBFs) [2], CBF-based designs for
safety have garnered tremendous attention. While they come
with Lyapunov-like characterizations, CBFs are actually system
outputs, which need to be kept positive. An alternative perspec-
tive is that keeping those inputs positive ensures that a certain
desired set is positively/forward-invariant for the system.

The introduction of high-relative-degree (hi-rel-deg) CBFs in
2016 [38], and their further nonlinear refinement [44], constitute
breakthroughs in removing the relative degree 1 restriction of
the early CBF work. Much progress has followed, including [5],
[11], [20], [45], to mention a few.

While not called “high-relative-degree CBFs” (or CBFs at
all), they do first appear in the second author’s 2006 article [32],
ten years prior to [38]. In that article [32], for a class of nonlinear
systems, the so-called “nonovershooting control” problem is
solved, as one form of safety used to be referred to in the earlier
literature, particularly for setpoint regulation of outputs of linear
plants without exceeding the setpoint.

B. Safe Control for PDEs

Control with safety guarantees plays a prominent role in
robotics and in collision avoidance for autonomous vehicles. For
PDEs, i.e., in infinite dimension, safe control has appeared only
where the infinite-dimensional state needs to maintain a positive
value for reasons of physical validity of the model, such as when
the state is distributed concentration [19] or gas density [21], or
when the liquid level must be kept below a certain value to avoid
spilling [22].

This article makes a significant advance to this inquiry—PDE
safety. We consider a thermal system, known as the Stefan PDE–
ODE system, which models a solid–liquid phase change and
whose liquid needs to be kept from developing islands of solid
in its midst, while an operator is pursuing his objective which
may, for example, be the relocation of the liquid–solid interface
to a desired position.

While we did achieve in [24] the result of regulating the
interface to a setpoint while maintaining the entire liquid in that
phase, we had done that using direct actuation of the heat flux
at the liquid boundary. Realistic actuation does not have direct
access to heat flux but is performed with an electrical actuator
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whose input is voltage connected to the heater through RC series
circuit. In other words, the input for which a controller was
designed in [24] and the realistic voltage input are separated by
at least an integrator. This addition of an integrator changes the
meaning of safety for the Stefan model. Even though just a single
state variable has been added to a model of infinite dimension,
the dimension did increase by one and with that the geometry
of the safe set that needs to be maintained forward invariant
changes. An alternative perspective is that, with the addition of
an integrator, the relative degrees of the CBFs for the Stefan
system have increased by one.

Hence, a nontrivial modification to the feedback in [24] is
needed in order to retain what has been achieved there but in
the presence of an integrator at the input. This retention of
safety is accomplished by suitably employing, and extending,
the backstepping design idea for safety from [32].

C. QP Modifications for Stefan PDE and Actuator ODE

This article differs from [19], [21], and [22] not only in
the sense of the physics considered—thermal here and bio-
populations, gas dynamics, and free-surface flows in those pa-
pers. Another difference is that what was achieved safely in those
papers is stabilization, whereas in this article, we tackle a more
general objective of safeguarding the system from the potentially
unsafe input being applied by an external operator—similar to
safeguarding a vehicle, using dynamic stability control, from
the unsafe, overly aggressive actions of an inexperienced driver
who does not have a good feel for his car’s dynamics. We let the
operator manipulate the input voltage to the liquid–solid system
for as long as his inputs will not create solid islands in the liquid.
But for inputs that would violate the phase change constraints,
we override the operator with a feedback law that guarantees
safety.

This safety override is performed by a quadratic programming
(QP)-feedback modification of the nominal input. Since this
QP modification relies on a backstepping transformation to
introduce a CBF of relative degree 1 to which QP can be applied,
we call this a “QP-backstepping-CBF” design.

In the Stefan model with actuator dynamics, we have two
CBFs: one of relative degree 1 representing the heat flux at
the boundary, which must be maintained positive so that the
temperature of the liquid remains above freezing and the con-
ditions of the “maximum principle” for the heat PDE are met,
and the second CBF that is of relative degree 2 and incorporates
the position of the liquid–solid interface and the deviation of
the actual temperature from the freezing temperature. A single
input must keep both of these CBFs positive. This is achieved by
two QP modifications, which, when combined, give a physically
natural feedback that saturates the operator’s command between
two safety feedback laws, one ensuring that the system is heated
enough and the other ensuring that it is not overheated.

D. Stefan Model of Phase Change and Its Control

The Stefan model of the liquid–solid phase change has been
widely utilized in various kinds of science and engineering pro-
cesses, including sea-ice melting and freezing [26], continuous

casting of steel [39], cancer treatment by cryosurgeries [40],
additive manufacturing (AM) [29], crystal growth [14], and
thermal energy storage systems [30]. Apart from the thermo-
dynamical model, the Stefan PDE–ODE systems have been em-
ployed to model several chemical, electrical, social, and financial
dynamics, such as lithium-ion batteries [23], tumor growth
process [15], neuron growth [10], domain walls in ferroelectric
thin films [36], spreading of invasive species in ecology [12],
information diffusion on social networks [43], and the American
put option [7].

To the best of our knowledge, efforts on control of the Stefan
problem on the full PDE–ODE model commence with the mo-
tion planning results in [18] and [13]. Approaches employing
finite-dimensional approximations are [3] and [9]. For control
objectives, infinite-dimensional approaches have been used for
stabilization of the temperature profile and the moving interface
of a 1-D Stefan problem, such as enthalpy-based feedback [39]
and geometric control [35]. These works designed control laws
ensuring the asymptotical stability of the closed-loop system in
the L2 norm. However, the results in [35] are established based
on the assumptions of the liquid temperature being greater than
the melting temperature, which must be ensured by showing the
positivity of the boundary heat input.

Recently, boundary feedback controllers for the Stefan prob-
lem have been designed via a “backstepping transformation”
[31], [33], [42], which has been used for many other classes
of infinite-dimensional systems. For instance, Koga et al. [24]
designed a state feedback control law, an observer design, and
the associated output feedback control law by introducing a
nonlinear backstepping transformation for moving boundary
PDE, which achieved exponential stabilization of the closed-
loop system without imposing any a priori assumption, with
ensuring the robustness with respect to the parameters’ uncer-
tainty. Numerous other results can be found in [27]. However, the
notion of safety and CBFs has not been treated in PDE systems,
let alone for the Stefan system.

E. Results and Contributions of the Article

This article develops two safe control designs for the Stefan
PDE–ODE system with actuator dynamics by employing the
CBF technique. As remarked in Section I-C, three CBFs are
considered, two of which are given by the physical restrictions
in the Stefan model, and the other one is designed to deal with a
CBF with relative degree 2. First, we develop a nonovershooting
control to regulate the liquid–solid interface position at a set-
point position, with satisfying the positivity of all CBFs. Next,
we design a QP-backstepping-CBF of safety filter for a given
nominal or operator input, with ensuring that the closed-loop
system satisfies the positivity of all CBFs. Then, revisiting the
nonovershooting control, the global exponential stability of the
closed-loop system is proven via the PDE-backstepping and Lya-
punov method. This article extends our conference paper [28]
by

1) developing the safe control under the additional con-
straints from above on states via both nonovershooting
and QP control;
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Fig. 1. Schematic of the one-phase Stefan problem with actuator
dynamics.

2) deriving the nonovershooting regulation for the Stefan
system with a general higher order actuator dynamics;

3) ensuring the safety constraints for the two-phase Stefan
system that incorporates the dynamics of the solid phase
with a disturbance under the nonovershooting control;

4) applying the two safe control methods to a process in
metal AM of a titanium alloy through numerical simula-
tion.

F. Organization

The rest of this article is organized as follows. The one-phase
Stefan model with actuator dynamics of the first order and its
state constraints are provided in Section II. The nonovershooting
regulation is derived in Section III, and a QP-backstepping safety
filter is designed in Section IV, with providing the theorem.
The stability analysis under the nonovershooting regulation
is given in Section V. The safe control under the additional
constraints from above on states is developed in Section VI,
and the nonovershooting regulation for a higher order actuator
dynamics is shown in Section VII. The two-phase Stefan prob-
lem with unknown disturbance is presented in Section VIII. The
application to metal AM is presented in Section IX. Finally,
Section X concludes this article.

Notation and definitions: Throughout this article, par-
tial derivatives and the positive definite functional are de-
noted as ut(x, t) = ∂u

∂t (x, t), ux(x, t) =
∂u
∂x (x, t), and ||u[t]|| =√∫ s(t)

0 u(x, t)2dx, where u[t] is a function defined on [0, s(t)]

with real values defined by (u[t])(x) = u(x, t) for all x ∈
[0, s(t)]. R+ := [0,+∞). C0(U ; Ω) is the class of continu-
ous mappings on U ⊆ Rn, which takes values in Ω ⊆ R and
Ck(U ; Ω), where k ≥ 1 is the class of continuous functions on
U , which have continuous derivatives of order k on U and takes
values in Ω.

II. STEFAN MODEL AND CONSTRAINTS

Consider the melting or solidification in a material of lengthL
in one dimension (see Fig. 1). Divide the domain [0, L] into two
time-varying subintervals: [0, s(t)], which contains the liquid

phase, and [s(t), L], that contains the solid phase. Let heat flux
enter at boundary x = 0, which affects the distal liquid–solid
interface dynamics through heat propagation across the liquid
phase. Evidently, the heat equation alone does not completely
describe the phase transition and must be coupled with the
dynamics of the moving boundary.

The energy conservation and heat conduction laws yield the
heat equation of the liquid phase, the boundary conditions, and
the initial values as follows:

Tt(x, t) = αTxx(x, t), for t > 0, 0 < x < s(t) (1)

−kTx(0, t) = qc(t), for t > 0 (2)

T (s(t), t) = Tm, for t > 0 (3)

s(0) = s0, and T (x, 0) = T0(x), for x ∈ (0, s0] (4)

where α := k
ρCp

, and T (x, t), qc(t), ρ, Cp, and k are the dis-
tributed temperature of the liquid phase, the boundary heat flux,
the liquid density, the liquid heat capacity, and the liquid heat
conductivity, respectively.

In this article, we model the heater, which produces the heat
flux qc(t), as actuated by an input voltage U(t) of a linear RLC-
network through a nonlinear feedback:

q̇c(t) = U(t). (5)

The derivation of (5) from the RC series circuit and a real
voltage input is given in Appendix A. For the sake of readability,
hereafter, we call U(t) just as voltage input. The local energy
balance at the liquid–solid interface x = s(t) is

ṡ(t) = −βTx(s(t), t) (6)

where β := k
ρΔH∗ and ΔH∗ represents the latent heat of fusion.

In (6), the left-hand side represents the latent heat, and the right-
hand side represents the heat flux by the liquid phase. As the
moving interface s(t) depends on the temperature, the problem
defined in (1)–(6) is nonlinear. The temperature in the solid is
assumed at melting.

There are two requirements for the validity of the model (1)–
(6):

T (x, t) ≥ Tm ∀x ∈ (0, s(t)) ∀t > 0 (7)

0 < s(t) < L ∀t > 0. (8)

First, the trivial: the liquid phase is not frozen, i.e., the liquid
temperature T (x, t) is greater than the melting temperature Tm.
Second, equally trivially, the material is not entirely in one
phase, i.e., the interface remains inside the material’s domain.
These physical conditions are also required for the existence and
uniqueness of solutions [1]. Hence, we assume the following for
the initial data.

Assumption 1: 0 < s0 < L, T0(x) ∈ C1([0, s0]; [Tm,+∞))
with T0(s0) = Tm.

Lemma 1: With Assumption 1, if qc(t) is a bounded piecewise
continuous nonnegative heat function, i.e.,

qc(t) ≥ 0 ∀t ≥ 0 (9)
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then there exists a unique classical solution for the Stefan prob-
lem (1)–(6), which satisfies (7), and

ṡ(t) ≥ 0 ∀t ≥ 0. (10)

The definition of the classical solution of the Stefan problem
is given in [24, Appendix A]. The proof of Lemma 1 is by
maximum principle for parabolic PDEs and Hopf’s lemma, as
shown in [16].

III. NONOVERSHOOTING REGULATION BY BACKSTEPPING

FOR MULTIPLE CBFS

The regulation of the interface s(t) to a desired setpoint sr is
a crucial task in several applications that involve thermal phase
change, such as creating a layer of desired thickness in metal
AM [29]. However, the actuator dynamics given in (5) introduce
a major extra challenge to achieving setpoint regulation while
guaranteeing the safety constraints (7), (8).

In this section, we regulate s(t) to sr, as well as T (x, t) to
Tm and qc to zero. This is an equilibrium at the boundary of the
safe set. Such a mix of stabilization and safety control problems
is called “nonovershooting control” [32]. In addition to the two
physically imposed CBFs, with backstepping we design a third
CBF to ensure safety but without having to additionally restrict
the initial conditions, which is common in other CBF designs.
Such an addition of a CBF, ten years after [32], was indepen-
dently discovered in the format of hi-rel-deg CBFs in [38].
In the next section, we introduce a “QP-backstepping-CBF
design,” to allow a safe application of a “nominal feedback,”
possibly distinct from the setpoint regulating feedback, or an
application of an external operator open-loop input, using a QP
selection between the nominal input and backstepping-designed
safeguards.

Let h1(t), �1(t), h2(t), and h(x, t) be CBFs defined by

h1(t) : = σ(t)

= −
(
k

α

∫ s(t)

0

(T (x, t)− Tm)dx+
k

β
(s(t)− sr)

)

(11)

�1(t) = qc(t) (12)

h2(t) = −qc(t) + c1σ(t) (13)

h(x, t) = T (x, t)− Tm. (14)

The CBF h1 in (11) represents the “energy deficit” (positive,
thermal plus potential) relative to the setpoint equilibrium. The
added CBF (13), seemingly redundant because h2 = −�1 +
c1h1, represents a backstepping transformation and is crucial
for ensuring that h1 is maintained positive.

Lemma 2: With Assumption 1, suppose that the following
conditions hold:

h1(t) ≥ 0 (15)

�1(t) ≥ 0 (16)

for all t ≥ 0. Then, it holds that

h(x, t) ≥ 0 ∀x ∈ (0, s(t)) ∀t ≥ 0 (17)

0 < s0 ≤ s(t) ≤ sr ∀t ≥ 0, (18)

under the classical solution of (1)–(6).
Lemma 2 is proven with Lemma 1. To validate the conditions

(15) and (16) for all t ≥ 0, at least the conditions must hold at
t = 0, which necessitate the following assumptions on the initial
condition and the setpoint restriction.

Assumption 2: 0 ≤ qc(0).
Assumption 3: The setpoint position sr is chosen to satisfy

s0 +
β

α

∫ s0

0

(T0(x)− Tm)dx ≤ sr < L. (19)

Under these assumptions, we perform a design of a regulating
control U(t) so that the conditions (15) and (16) hold. Taking
the first and second time derivatives of (11), we have

ḣ1 = − �1 = −qc (20)

− ḧ1 = �̇1 = U. (21)

Thus, “energy deficit” CBF defined by (11) has relative de-
gree 2, from the voltage input, according to the perspective
in [38], which inherits the backstepping change of variable (13)
from [32].

The double integrator U 	→ h1 is not unlike a model of adap-
tive/distance cruise control, studied in many papers on CBFs
and QP. The single integrator U 	→ �1 is not unlike a classical
(velocity) cruise control problem. Hence, in the Stefan model,
achieving safety amounts to simultaneously maintaining safety
in terms of both distance and velocity cruise control, without
imposing additional restrictions on the initial conditions of the
position-like and velocity-like states through design. In addition,
in the Stefan model, on top of the two CBFs of relative degrees
1 and 2, one has to maintain the positivity of the CBF (14), i.e.,
to ensure (17), where the temperature field plays the role of zero
dynamics of infinite dimension.

We design a “nonovershooting control” [32], denoted as U =
U ∗(σ, qc), so that the following relationships hold:

ḣ1 = −c1h1 + h2 (22)

�̇1 = −c1�1 + c2h2 (23)

ḣ2 = −c2h2. (24)

Indeed, h2 in (13) is defined so that (22) holds; hence, it suf-
fices to design the control so that (24) holds. Taking the time
derivatives of (13), one gets

U ∗(σ, qc) = −(c1 + c2)qc + c1c2σ. (25)

With (25), we see that (23) also holds.
The solution to the linear differential (22)–(24) is analytically

obtained by

h2(t) = h2(0)e
−c2t (26)

h1(t) = h1(0)e
−c1t +

h2(0)

c2 − c1
(e−c1t − e−c2t) (27)

�1(t) = �1(0)e
−c1t +

c2h2(0)

c2 − c1
(e−c1t − e−c2t). (28)

With Assumptions 2 and 3,h1(0) ≥ 0 and�1(0) ≥ 0 hold. Thus,
if h2(0) ≥ 0, one can see that the solutions (26)–(28) are all
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nonnegative. For h2(0) ≥ 0 to hold, we choose the control gain
c1 as

c1 ≥ qc(0)

σ(0)
(29)

and obtain the following lemma.
Lemma 3: Let Assumptions 1–3 hold. Then, the closed-loop

system consisting of the plant (1)–(6) with the nonovershooting
control law (25), where the gain satisfies (29), guarantees the
following to hold:

h1(t) ≥ 0, �1(t) ≥ 0, h2(t) ≥ 0 ∀t ≥ 0. (30)

Moreover, (17) and (18) hold.
We show stability in Section V.

IV. QP-BACKSTEPPING-CBF DESIGN OF SAFETY FILTER

Here, we derive a safety filter to satisfy all CBF constraints
for a given operator input. First, we aim to satisfy h2 ≥ 0, since
it also ensures h1 ≥ 0 by the relation of (22), as a designed
exponential CBF. Namely, we satisfy

ḣ2 ≥ −c2h2. (31)

Taking the time derivative of (13) and applying (31) leads to the
condition of the input as

U ≤ U ∗(σ, qc) (32)

where U ∗ is given in (25). It remains to ensure �1 ≥ 0. Since
both h1 ≥ 0 and h2 ≥ 0 are satisfied under the input condition
(32), and taking into account the fact that h2 can be written with
respect to h1 and �1 as defined in (13), we aim to satisfy the
following inequality:

�̇1 ≥ −c̄1�1 + c̄2h1 (33)

for some c̄1 > 0 and c̄2 > 0, which ensures �1 ≥ 0. Taking the
time derivative of (12), and with (5), to make (33) hold, we arrive
at the following condition on the input:

U∗(σ, qc) ≤ U (34)

U∗(σ, qc) = − c̄1qc + c̄2σ. (35)

Comparing (25) with (35), for ensuring the feasibility of the two
constrains (32) and (34), it is sufficient to choose the gains in
accordance with the following conditions:

c̄1 ≥ c1 + c2, 0 ≤ c̄2 ≤ c1c2. (36)

By redefining the gain parameters from (c1, c2, c̄1, c̄2) to
(k1, k2, δ1, δ2), one can show that (25) and (35) with the condi-
tion (29) are equivalent to the following formulation:

U∗ = −(k1 + δ1)qc + k2σ (37)

U ∗ = −k1qc + (k2 + δ2)σ (38)

where

k1 ≥ qc(0)/σ(0), k2 > 0 (39)

δ1 ≥ 0, δ2 ≥ 0. (40)

Finally, a safety filter, for a given nominal or operator input
Uo(t), is designed, inspired by [2], by solving the QP problem1

U = min
u∈R

|u− Uo|2 (41)

subject to U∗ ≤ u ≤ U ∗. (42)

Applying the Karush–Kuhn–Tucker optimality condition, the
explicit solution is

U = min{max{U∗, Uo}, U ∗}. (43)

Since U∗ and U ∗ are designed by backstepping, with an ad-
dition of a CBF to given CBFs, we call this safety filter a
“QP-backstepping-CBF” design.

The cumbersome formula (43) can be rewritten with a satu-
ration function on the operator input Uo as

U =

⎧⎪⎨
⎪⎩
U ∗, Uo > U ∗

Uo, U∗ ≤ Uo ≤ U ∗

U∗, Uo < U∗.
(44)

The analysis and design above establish the following.
Theorem 1: Let Assumptions 1–3 hold. Consider the closed-

loop system (1)–(6) with QP safety control (44), (37), and
(38), under an arbitrary operator input Uo(t), where the gain
parameters are chosen to satisfy (39) and (40). Then, all CBFs
defined as (11)–(14) satisfy the constraints h1(t) ≥ 0, �1(t) ≥ 0
for all t ≥ 0, and h(x, t) ≥ 0 for all x ∈ (0, s(t)) and for all
t ≥ 0.

Note that, if δ1 and δ2 are chosen as zero, QP safety control
(44) becomes

U = U∗ = U ∗ = −k1qc + k2σ (45)

which disregards the operator input Uo and instead performs a
nonovershooting regulation to s = sr, T = Tm, qc = 0, whose
stability is proven in the next section.

V. STABILITY OF NONOVERSHOOTING REGULATION

Theorem 2: Let s(0) and T (x, 0) satisfy Assumptions 1–3.
Consider the closed-loop system (1)–(6) with the nonovershoot-
ing control law (45), where the gain parameters satisfy (39).
Then, all CBFs defined as (11)–(14) satisfy the positivity con-
straints. This means, in particular, that, for all qc(0) > 0, the
interface s(t) does not exceed sr, the temperature T (x, t) does
not drop below Tm at any position x between 0 and s(t), and the
heat flux qc(t) never takes a negative value. Furthermore, the
closed-loop system is exponentially stable at the equilibrium
s = sr, T (x, ·) ≡ Tm, qc = 0, in the sense of the following pos-
itive definite functional:

Φ(t) := ||T [t]− Tm||2 + (s(t)− sr)
2 + qc(t)

2 (46)

for all initial conditions in the safe set, i.e., globally. In other
words, there exist positive constantsM > 0 and b > 0 such that

1Strictly speaking, constraints (42) should be written, following the Lie deriva-
tive conditions on the CBFs �1 and h2, as, respectively, u+ c̄1�1 − c̄2h1 ≥ 0
and −u+ c2h2 − c1�1 ≥ 0. But we believe that (42) poses less of a chance to
confuse the reader.
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the following estimate holds:

Φ(t) ≤MΦ(0)e−bt. (47)

The safety is already proven in Lemma 3. The rest of this
section proves stability in Theorem 2.

Let X(t) be reference error variable defined by X(t) :=
s(t)− sr. Then, system (1)–(6) is rewritten with respect to
h(x, t) defined in (14), �1(t) defined in (12), and X(t) as

s(t) = X(t) + sr (48)

ht(x, t) = αhxx(x, t) (49)

hx(0, t) = −�1(t)/k (50)

�̇1(t) = U(t) (51)

h(s(t), t) = 0 (52)

Ẋ(t) = −βhx(s(t), t). (53)

A. Backstepping Transformation to Target System

Following [25, Sec. 3.3], we introduce the following forward
and inverse transformations:

w(x, t) = h(x, t)− β

α

∫ s(t)

x

φ(x− y)h(y, t)dy

− φ(x− s(t))X(t) (54)

φ(x) = c1β
−1x− ε (55)

h(x, t) = w(x, t)− β

α

∫ s(t)

x

ψ(x− y)w(y, t)dy

− ψ(x− s(t))X(t) (56)

ψ(x) = eλ̄x (p1 sin (ωx) + ε cos (ωx)) (57)

where λ̄ = βε
2α , ω =

√
4αc1−(εβ)2

4α2 , p1 = − 1
2αβω (2αc1 −

(εβ)2), and 0 < ε < 2
√
αc1
β is to be chosen later. As derived

in [25, Sec. 3.3], taking the spatial and time derivatives of
(54) along the solution of (49)–(53), and noting the CBF h2(t)
defined in (13) satisfying (24), one can obtain the following
target system:

wt(x, t) = αwxx(x, t) + ṡ(t)φ′(x− s(t))X(t) (58)

wx(0, t) =
h2(t)

k
− β

α
ε

[
w(0, t)− β

α

∫ s(t)

0

ψ(−y)w(y, t)dy

− ψ(−s(t))X(t)

]
(59)

ḣ2(t) = − c2h2(t) (60)

w(s(t), t) = εX(t) (61)

Ẋ(t) = − c1X(t)− βwx(s(t), t). (62)

Note that (59) is derived using h2(t) = −qc(t) + c1σ(t)

= −�1(t) − c1(
k
α

∫ s(t)

0 (T (x, t) − Tm)dx + k
β (s(t)− sr))

= −�1(t) − k(βα
∫ s(t)

0 φ′(−y)h(y, t)dy + φ′(−s(t))X(t)),
with the help of (55). Indeed, the introduction of (13) is part

of the state transformation of �1 → h2, and this transformation
is complemented by a feedback control given by (25), in
order to eliminate U . The objective of the transformation (54)
is to add a stabilizing term −c1X(t) in (62) of the target
(w,X)-system, whose stability is easier to prove than that of
(u,X)-system.

Note that the boundary condition (61) and the kernel function
(55) are modified from the one in [24]. The target system derived
in [24] requires H1-norm analysis for stability proof. However,
with the actuation dynamics of the boundary heat input, H1-
norm analysis fails to show the stability. The modification of the
boundary condition (61) enables us to prove the stability in L2

norm, as shown later.

B. Lyapunov Analysis

Following [25, Lemma 20], by introducing a Lyapunov func-
tion V (t) defined by

V (t) =
1

2α
||w[t]||2 + ε

2β
X(t)2 (63)

one can see that there exists a positive constant ε∗ > 0 such that
for all ε ∈ (0, ε∗), the following inequality holds:

V̇ (t) ≤ − bV (t) +
2sr
k2
h2(t)

2 + aṡ(t)V (t) (64)

where a = 2βε
α max{1, αc2sr

2β3ε3 }, b = 1
8 min{ α

s2r
, c}, and the con-

dition ṡ(t) ≥ 0 ensured in Lemma 1 is applied. We further
introduce another Lyapunov function of h2, defined by

Vh(t) =
p

2
h2(t)

2 (65)

with a positive constant p > 0. Taking the time derivative of (65)
and applying (60) yields

V̇h(t) = ph2ḣ2 = −c2ph2(t)2. (66)

Let V̄ be the Lyapunov function defined by

V̄ = V + Vh. (67)

Applying (64) and (66) with setting p = 4sr
c2k2 , the time derivative

of (67) is shown to satisfy

˙̄V (t) ≤ −b̄V̄ (t) + aṡ(t)V̄ (t) (68)

where b̄ = min{b, 2sr/k2}. As performed in [25], with the
condition 0 < s(t) ≤ sr ensured in Lemma 2, the differential
inequality (68) leads to

V̄ (t) ≤ easr V̄ (0)e−b̄t (69)

which ensures the exponential stability of the target system (58)–
(62). Due to the invertibility of the transformation (54)–(56), one
can show the exponential stability of the closed-loop system,
which completes the proof of Theorem 2.

VI. CONSTRAINTS FROM ABOVE ON TEMPERATURE AND

HEAT FLUX

A. Upper Bound Constraints

In practical control systems, the capability of the heater is
often restricted to a certain range due to the device limitation.
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The Stefan problem, as a melting process, is particular in this
regard. The heat input should not go beyond a given upper bound,
while it is feasible to assume that the lower bound is zero, i.e., the
heat actuator does not work as a cooler. Furthermore, the liquid
temperature must be lower than some value, which could be the
maximum temperature limited by the device or environment for
ensuring the safe operation, or the boiling temperature to avoid
an evaporation, which is another phase transition, from liquid to
gas.

We tackle such an overall state-constrained problem, to guar-
antee the following conditions to hold:

Tm ≤ T (x, t) ≤ T ∗ ∀x ∈ [0, s(t)] ∀t ≥ 0 (70)

0 ≤ qc(t) ≤ q∗ ∀t ≥ 0 (71)

for some T ∗ > Tm and q∗ > 0. First, we state the following
lemma for the Stefan problem.

Lemma 4: If Tm ≤ T0(x) ≤ ΔT̄0(1− x/s0) + Tm for some
ΔT̄0 > 0, and if 0 ≤ qc(t) ≤ q̄ holds for some q̄ > 0 and for all
t ≥ 0, then

Tm ≤ T (x, t) ≤ T̄ (x, t) := K(s(t)− x) + Tm (72)

∀x ∈ (0, s(t)) ∀t ≥ 0, where K = max{q̄/k,ΔT̄0/s0}.
Proof: Let v(x, t) := T̄ (x, t)− T (x, t). Taking the time and

second spatial derivatives yields

vt = Kṡ(t)− Tt(x, t), vxx = −Txx(x, t). (73)

Since 0 ≤ qc(t), we have ṡ(t) ≥ 0. Thus, we obtain

vt ≥ αvxx (74)

vx(0, t) ≤ 0, v(s(t), t) = 0. (75)

Applying the maximum principle to (74)–(75), we can state that,
if v(x, 0) ≥ 0 for all x ∈ (0, s0), then v(x, t) ≥ 0 for all x ∈
(0, s(t)) and all t ≥ 0, which concludes Lemma 4.

Inspired by Lemma 4, to guarantee that the upper bound
constraints (70) and (71) are met, the following assumptions
on the initial conditions are imposed.

Assumption 4: qc(0) ≤ q̄c := min{ k
sr
(T ∗ − Tm), q

∗}.
Assumption 5: Tm ≤ T0(x) ≤ ΔT̄0(1− x/s0) + Tm,

where ΔT̄0 := s0
sr
(T ∗ − Tm).

B. Nonovershooting Regulation

Then, with h2(0) ≥ 0, in addition to the positivity of h2(t),
owing to the monotonically decreasing property of (26), it
further holds that

0 ≤ h2(t) ≤ h2(0). (76)

With this condition, one can see from (23) that

0 ≤ �̇1 + c1�1 ≤ c2h2(0). (77)

Applying the comparison lemma, the differential inequality (77)
leads to the following inequality for the solution:

�1(0)e
−c1t ≤ �1(t) ≤

(
�1(0)− c2

c1
h2(0)

)
e−c1t +

c2
c1
h2(0)

(78)

Considering the lower bound of the left-hand side and the upper
bound of the right-hand side, it yields

0 ≤ �1(t) ≤ max

{
�1(0),

c2
c1
h2(0)

}
(79)

and rewriting it as

0 ≤ �1(t) ≤ max

{
�1(0),

c2
c1

(c1h1(0)− �1(0))

}
(80)

the following condition for the control gain:

c2 ≤ c1q̄c
c1σ(0)− qc(0)

(81)

where the right-hand side is positive because of (29) and where
q̄c is defined in Assumption 4, guarantees that

0 ≤ �1(t) ≤ q̄c. (82)

Theorem 3: Let s(0), T (x, 0), and qc(0) satisfy Assumptions
1–5. Consider the closed-loop system (1)–(6) with the nonover-
shooting control law (25), where the gain parameters satisfy
(29) and (81). Then, all CBFs defined as (11)–(14) satisfy the
positivity constraints, and �1 ≤ q̄c also holds. This means, in
particular, that, for all qc(0) > 0, the interface s(t) does not
exceed sr, the temperature T (x, t) does not drop below Tm
and does not exceed the upper limit T ∗ > Tm at any position x
between 0 and s(t), and the heat flux qc(t) never takes a negative
value and does not exceed the upper limit q∗. Furthermore, the
closed-loop system is exponentially stable at the equilibrium
s = sr, T (x, ·) ≡ Tm, qc = 0, in the sense of the positive defi-
nite functional defined as (46), for all initial conditions in the safe
set, i.e., globally. In other words, there exist positive constants
M > 0 and b > 0 such that the estimate (47) holds.

The safety is already proven in this section. The stability proof
is identical to the derivation in Section V.

C. QP-Backstepping-CBF Design

We also design QP safety filter to ensure the upper bounds. In
addition to the QP constraint on input in Section IV, to ensure
the upper bound of �1, we introduce another CBF

�
∗
1(t) = q̄c − �1(t). (83)

We set out to design QP to satisfy further

�̇
∗
1 ≥ −c∗1�∗1 (84)

for some c∗1 > 0, which leads to the condition

U ≤ c∗1(q̄c − �1(t)). (85)

Thus, by setting c∗1 = k1, we reformulate the upper bound of the
control in (38) as

U ∗ = −k1qc +max{(k2 + δ2)σ, k1q̄c} (86)

We state the following theorem.
Theorem 4: Let Assumptions 1–5 hold. Consider the closed-

loop system (1)–(6) with QP safety control (44), (37), and
(86), under an arbitrary operator input Uo(t), where the gain
parameters are chosen to satisfy (39) and (40). Then, all CBFs
defined as (11)–(14) and (83) satisfy the constraints h1(t) ≥ 0,
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�1(t) ≥ 0, and �
∗
1(t) ≥ 0 for all t ≥ 0. Moreover, all of (70),

(71), and (18) hold.

VII. NONOVERSHOOTING REGULATION TO sr UNDER HIGHER

ORDER ACTUATOR DYNAMICS

This section presents how the proposed approach can be
applicable to the Stefan system with the higher order actuator
dynamics. We consider the nth order actuator dynamics, i.e., n
chain of integrator in the actuation path:

qc(t) = p1(t) (87)

ṗi(t) = pi+1(t) ∀i = 1, . . . , n− 1 (88)

ṗn(t) = U(t) (89)

where pi(t) for i ∈ {1, . . . , n} are additional state variables of
higher order derivatives of the heat flux, andU(t) is given as the
input of the nth order derivative of the heat flux.

With the nth order actuator dynamics, the CBFs for the
energy deficit h1(t) = σ(t) ≥ 0 are denoted as hi(t) for all
i ∈ {1, . . . , n} since the relative degree of σ is now n, and the
CBFs for the heat flux qc(t) ≥ 0 are denoted as �1 = qc(t) and
�i(t) for i ∈ {1, . . . , n− 1} for additionally constructed CBFs
since the relative degree of qc(t) is now n− 1. Regarding the
relation of the CBFs, we state the following lemma.

Lemma 5: Suppose that it holds

ḣi = −cihi + hi+1 ∀i ∈ {1, . . . , n} (90)

ḣn+1 = −cn+1hn+1. (91)

Let �i for i ∈ {1, . . . , n} be defined by

�1 = −ḣ1 (92)

�̇i = −ci�i + �i+1 ∀i ∈ {1, . . . , n− 1}. (93)

Then, it holds that

�i = −ḣi ∀i ∈ {1, . . . , n} (94)

�̇n = −cn�n + cn+1hn+1. (95)

Proof: First, we show (94) by induction. Clearly, it holds
for i = 1 from (92). Suppose it holds for i = j, i.e., �j =

−ḣj . From (93), we have �j+1 = �̇j + cj�j = −ḧj − cj ḣj =

−ḣj+1, where we apply �j = −ḣj first and (90) second, and
thus, (94) holds for all i ∈ {1, . . . , n}. Then, taking time deriva-
tive of (94) for i = n yields �̇n = −ḧn = −ḣn+1 + cnḣn by
(90). Then, applying (91) and (94) to this relation leads to (95).

The relation (90) with the time derivative component does
not provide an explicit definition of the newly constructed CBFs
hi+1 with respect to the formerly constructed CBFs h1, . . . , hi.
To rewrite the relation, suppose that hi+1 is given by

hi+1 = −pi(t) + αi(h1, . . . , hi) (96)

where αi(h1, . . . , hi) is a recursive function to be determined.
Then, using relation (90), and substituting (96) into the time

derivative component ḣi, we get

hi+1 = ḣi + cihi

= −pi(t) +
i−1∑
j=1

∂αi−1

∂hj
(hj+1 − cjhj) + cihi. (97)

By h2 = −qc(t) + c1h1, it is clear that the initial condition of
the function is α1(h1) = c1h1. Comparing (96) with (97), and
considering h2 = −qc(t) + c1h1, the functionαi(h1, . . . , hi) is
recursively solved by

α1(h1) = c1h1 (98)

αi(h1, . . . , hi) =

i−1∑
j=1

∂αi−1

∂hj
(hj+1 − cjhj) + cihi. (99)

Since the recursive update of �i in (93) is the same as that of hi
in (90), the solution of �i can also be represented by function αi

as

�i+1 = pi+1(t) +

i−1∑
j=1

∂αi−1

∂�j
(�j+1 − cj�j) + ci�i (100)

where the term pi+1(t) in (100) is induced by the definition of
�1 in (92).

The nonovershooting control law is designed so that (91)
holds. Taking the time derivative of (96) for i = n and substi-
tuting (89), to make (91) satisfied, one can obtain the nonover-
shooting control law as

U(t) = cn+1hn+1 +

n∑
j=1

∂αn

∂hj
(hj+1 − cjhj). (101)

Owing to Lemma 5, once we define the high-order CBFs by (91)
and design the nonovershooting control to make (91) satisfied,
then both (93) and (95) hold. Moreover, we require the positivity
of all CBFs at t = 0. The properties h1(0) ≥ 0 and h2(0) ≥ 0
hold with Assumptions 2 and 3. From conditions hi+1(0) ≥ 0
for all i ∈ {1, . . . , n} and �i+1(0) ≥ 0 for all i ∈ {1, . . . , n−
1}, and by (97) and (100), the following conditions on the gain
parameters arise:

ci ≥ max{β+
i (pi, σ0, ci−1), β

−
i (pi+1, ci−1)} (102)

for all i ∈ {1, . . . , n− 1}, and

cn ≥ β+
n (pn, σ0, cn−1) (103)

where pi = [p1(0), p2(0), . . . , pi(0)]
� and ci−1 = [c1, c2, . . . ,

ci−1]
�, and the functions β+

i and β−
i are defined as

β+(pi, σ0, ci−1) =
pi(0)−

∑i−1
j=1

∂αi−1

∂hj
(hj+1(0)− cjhj(0))

hi(0)
(104)

β−(pi+1, ci−1) =
pi+1(0)−

∑i−1
j=1

∂αi−1

∂hj
(�j+1(0)−cj�j(0))

�i(0)
.

(105)
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Note that, while expression (104) is not explicitly written as a
function with respect to pi and ci−1, from the recursive formula
in (99), it is clear that (104) is a function with respect to pi and
ci−1 once we substitutehi by (99). An important property is that,
since the lower bound condition for ci is determined only from
ci−1, the existence of the gain parameters to satisfy the condi-
tions is ensured for sufficiently large ci for all i ∈ {1, . . . , n}.

Let us now examine the chained structure (90)–(95). A clearer
ordering of these 2n+ 1 subsystems is

ḣn+1 = −cn+1hn+1

ḣn = −cnhn + hn+1, �̇n = −cn�n + cn+1hn+1

...
...

ḣ1 = −c1h1 + h2, �̇1 = −c1�1 + �2. (106)

For even more clarity, we give the following flow diagram among
these 2n+ 1 positive subsystems:

hn+1

hn −→ · · · −→ h1
↗

↘
�n −→ · · · −→ �1

Theorem 5: Let s(0) and T (x, 0) satisfy Assumptions 1–3.
Consider the closed-loop system (1)–(4), (6), and (87)–(89)
with the nonovershooting control law (101), where the CBFs
are given by (96) with the recursive update of αi given by
(98)–(99), and the gain parameters satisfy (102) for all i. Then,
all CBFs defined as (11)–(14) satisfy the positivity constraints.
This means, in particular, that, for all qc(0) ≥ 0, and for all
real p(0), the interface s(t) does not exceed sr, the temperature
T (x, t) does not drop below Tm at any position x between 0
and s(t), and the heat flux qc(t) never takes a negative value.
Furthermore, the closed-loop system is exponentially stable at
the equilibrium s = sr, T (x, ·) ≡ 0, qc = p = 0, in the sense of
the positive definite functional:

Φ(t) := ||T [t]− Tm||2 + (s(t)− sr)
2 +

n∑
i=1

pi(t)
2 (107)

for all initial conditions in the safe set, i.e., globally. In other
words, there exist positive constantsM > 0 and b > 0 such that
the following norm estimate holds:

Φ(t) ≤MΦ(0)e−bt. (108)

While in this section we pursued just a nonovershooting
design for regulation to the barrier, it is straightforward to also
design QP safety filters like in Sections IV and VI for the system
with an extra integrator, treated in this section.

VIII. SAFETY FOR THE TWO-PHASE STEFAN SYSTEM

UNDER DISTURBANCE

In this section, we extend the safety design to the “two-phase”
Stefan problem, where the interface dynamics is affected by
a heat loss modeled by the temperature dynamics in the solid

Fig. 2. Schematic of the two-phase Stefan problem with a disturbance
at x = L.

phase. Additionally, the solid phase temperature is affected by
a heat loss caused at the end boundary of the solid phase, which
serves as a disturbance in the system. The safety constraint and
closed-loop analysis for such a two-phase Stefan system with
disturbance have been studied in [25], by means of input-to-
state stability (ISS). In this article, we further incorporate the
actuator dynamics, and tackle the safety verification by utilizing
CBFs and nonovershooting regulation. The configuration of the
two-phase Stefan problem is depicted in Fig. 2.

A. Model and Constraint

The governing equations are described by the following cou-
pled PDE–ODE–PDE system:

∂Tl
∂t

(x, t) = αl
∂2Tl
∂x2

(x, t), for t > 0, 0 < x < s(t) (109)

∂Tl
∂x

(0, t) = −qc(t)/kl, Tl(s(t), t) = Tm, for t > 0 (110)

∂Ts
∂t

(x, t) = αs
∂2Ts
∂x2

(x, t), for t > 0, s(t) < x < L (111)

∂Ts
∂x

(L, t) = −qf(t)/ks, Ts(s(t), t) = Tm, for t > 0 (112)

q̇c(t) = U(t) (113)

γṡ(t) = −kl ∂Tl
∂x

(s(t), t) + ks
∂Ts
∂x

(s(t), t) (114)

where γ = ρlΔH
∗, and all the variables denote the same phys-

ical value with the subscript “l” for the liquid phase and “s”
for the solid phase. The boundary condition of the solid phase
temperature given in (112) is affected by an unknown heat loss,
where qf(t) ≥ 0 denotes the magnitude of the cooling heat flux
at the side of the solid phase, which serves as a disturbance of
the system. The solid phase temperature must be lower than the
melting temperature, which serves as one of the conditions for
the model validity. Namely, we require

Tl(x, t) ≥ Tm ∀x ∈ (0, s(t)) ∀t > 0 (115)

Ts(x, t) ≤ Tm ∀x ∈ (s(t), L) ∀t > 0 (116)

0 < s(t) < L ∀t > 0. (117)
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The following assumption on the initial data (Tl,0(x),
Ts,0(x), s0) := (Tl(x, 0), Ts(x, 0), s(0)) is imposed.

Assumption 6: 0 < s0 < L, Tl,0(x) ∈ C0([0, s0]; [Tm,
+∞)), Ts,0(x) ∈ C0([s0, L]; (−∞, Tm]), and Tl,0(s0) =
Ts,0(s0) = Tm. Also, there exists constants T̄l, T̄s, ηl, ηs > 0
such that

0 ≤ Tl,0(x)− Tm ≤ T̄l
(
1− exp(Lηlα

−1
l (x− s0)

)
(118)

for x ∈ [0, s0] and

−T̄s
(
1− exp(Lηsα

−1
s (x− s0)

) ≤ Ts,0(x)− Tm ≤ 0 (119)

for x ∈ [s0, L].
The following lemma is provided to ensure the conditions of

the model validity.
Lemma 6: Let Assumption 6 hold, qc(t) and qf(t) be bounded

nonnegative continuous functions qc ∈ C0(R+; [0, q̄c)), qf ∈
C0(R+; [0, q̄f)) for some q̄c, q̄f > 0, and

max

{
klεl
αl

(
1 +

αl

L2ηl

)
,
ksεs
αs

(
1 +

αs

L2ηs

)}
<
γ

4
(120)

hold, where

εl := max
{
T̄l, q̄cLk

−1
l

}
, εs := max

{
T̄s, q̄fLk

−1
s

}
. (121)

Furthermore, suppose it holds

0 < γs∞ +

∫ t

0

(qc(τ)− qf(τ))dτ < γL (122)

for all t ≥ 0, where

s∞ := s0 +
kl
αlγ

∫ s0

0

(Tl,0(x)− Tm)dx

+
ks
αsγ

∫ L

s0

(Ts,0(x)− Tm)dx. (123)

Then, there exists a unique solution to (109)–(114), which
satisfies (115)–(117).

Lemma 6 is proven in [6, (Th. 1 in p. 4 and Th. 4 in p. 8)]
by employing the maximum principle. The variable s∞ is the
final interface position s∞ = limt→∞ s(t) under the zero heat
input qc(t) ≡ qf(t) ≡ 0 for all t ≥ 0. For (122) to hold for all
t ≥ 0, we at least require it to hold at t = 0, which leads to the
following assumption.

Assumption 7: s∞ given by (123) satisfies 0 < s∞ < L.
Furthermore, we impose the restriction for the setpoint given

as follows.
Assumption 8: The setpoint sr satisfies s∞ < sr < L.
Physically, Assumption 7 states that neither phase disappears

under qc(t) ≡ qf(t) ≡ 0, and Assumption 8 states that the choice
of the setpoint for the melting is far beyond s∞ from the heat
input. A graphical illustration of the assumptions can be seen in
Fig. 3.

B. Nonovershooting Regulation and Guaranteed Safety

Due to the addition of the solid phase temperature dynamics,
the energy deficit σ in (11) is reformulated. We consider the

Fig. 3. Graphic interpretation of s∞ and sr under qf ≡ 0.

Fig. 4. Schematic of powder bed metal AM by selective laser sintering.
The safe control should be designed to keep generating positive laser
power and to avoid overshoot of the depth of melt pool beyond the
desired layer thickness.

following CBFs for the two-phase problem:

h1(t) := σ(t)

= −
(
kl
αl

∫ s(t)

0

(Tl(x, t)− Tm)dx

+
ks
αs

∫ L

s(t)

(Ts(x, t)− Tm)dx+ γ(s(t)− sr)

)
(124)

�1(t) = qc(t) (125)

h2(t) = − qc(t) + c1σ(t) (126)

hl(x, t) = Tl(x, t)− Tm (127)

hs(x, t) = Tm − Ts(x, t). (128)

Then, it holds ḣ1 = −�1 + qf(t), thereby the nonovershoot-
ing regulation is designed in the same manner as in Section III,
which makes the following relationship to hold:

ḣ1 = −c1h1 + h2 + qf(t) (129)

�̇1 = −c1�1 + c2h2 (130)

ḣ2 = −c2h2 + c1qf(t). (131)
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Fig. 5. Backstepping control ensures that s(t) → sr but prevents s(t) from overshooting sr, T (x, t) from undershooting Tm, and qc(t) from
undershooting zero. This is achieved by nonmonotonic qc(t), which overshoots in the positive direction. (a) Interface position converges to setpoint
without overshooting. (b) Liquid at the location of the laser power qc first warms and then cools, remaining above the melting temperature 1650
◦C. (c) Laser power remains positive. (d) Energy CBF remains positive. (e) Voltage input U achieves nonovershooting regulation of s. (f) Liquid
temperature keeps above the melting temperature in all liquid domain.

Fig. 6. Under operator input Uo(t) = A sin(ωt) +B, which commands both a periodic addition of heat and a net/average removal of heat, and
would lead to islands of solid, the QP-backstepping safety input U in plot (e) ensures that the laser qc in plot (c) remains positive, s does not exceed
sr, and T does not drop below Tm. The interface s advances because the operator periodically commands the addition of heat, in spite of the net
command being for removal of heat (B < 0). (a) As a result of commanded heating, interface s settles to constraint sr. (b) Temperature adjacent to
heat flux qc fluctuates but remains above melting. (c) Inlet heat flux fluctuates but remains positive—it never cools. (d) Energy CBF remains positive.
(e) QP-backstepping voltage input is kept between the lower and upper bounds.
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Namely, the nonovershooting regulation is designed as

U ∗(σ, qc) = −(c1 + c2)qc + c1c2σ. (132)

To satisfy inequality (120), we impose the following assumption.
Assumption 9: qf(t) ∈ C0(R+; [0, q̄f)) for some q̄f > 0 sat-

isfying

q̄f < min

{
qc(0) + c1γs∞,

c1c2
c1 + c2

γsr

}
(133)

and inequality (120) holds with

q̄c = max

{
qc(0),

c2
c1

(c1σ(0)− qc(0)), q̄f

}
. (134)

With qf ≥ 0 in Assumption 9, and with the gain condition

c1 ≥ qc(0)

σ(0)
(135)

relationship (129)–(131) leads to

h1 ≥ 0, �1 ≥ 0, h2 ≥ 0. (136)

Moreover, in the same manner as in Section VI, an upper bound
of the solution to (129)–(131) is also obtained, which ensures
that qc(t) ≤ q̄c. Therefore, with Assumption 9, condition (120)
is satisfied.

It remains to ensure condition (122). Taking the time inte-
gration to the relation ḣ1 = −qc(t) + qf(t), and by h1(0) =
γsr − γs∞, one can obtain

γs∞ +

∫ t

0

(qc(τ)− qf(τ))dτ = γsr − h1(t). (137)

Since h1 ≥ 0 is already ensured, with Assumption 8, the right
inequality in (122) is satisfied. Moreover, by relation (129)–
(131), the upper bound of h1 is shown as

h1(t) ≤ max

{
h1(0),

1

c1

(
max

{
h2(0),

c1
c2
q̄f

}
+ q̄f

)}
.

(138)

Hence, with (133) in Assumption 9, one can deduce that the left
inequality in (122) is also satisfied. Thus, applying Lemma 6,
the safety constraint (115)–(115) is satisfied under the nonover-
shooting design in (132). We state the following theorem.

Theorem 6: Let s(0) and Tl(x, 0), and Ts(x, 0) satisfy As-
sumption 6–8, and qf(t) satisfy Assumption 9. Consider the
closed-loop system (109)–(114) with the nonovershooting con-
trol law (132), where the gain parameters satisfy (135) and c2 ≥
0. Then, all CBFs defined as (124)–(128) satisfy the positivity
constraints. This means, in particular, that, for all qc(0) > 0,
the interface s(t) remains inside (0, L), the liquid temperature
Tl(x, t) does not drop below Tm at any position x between
0 and s(t), the solid temperature Ts(x, t) does not go above
Tm at any position x between s(t) and L, and the heat flux
qc(t) never takes a negative value. Furthermore, the closed-loop
system is exponentially ISS at the equilibrium s = sr, Tl(x, ·) ≡
Tm, Ts(x, ·) ≡ Tm, qc = 0, in the sense of the following positive
definite functional:

Φ(t) := ||Tl[t]− Tm||2 + ||Ts[t]− Tm||2
+ (s(t)− sr)

2 + qc(t)
2 (139)

TABLE I
PHYSICAL PROPERTIES OF TI6AL4V ALLOY [37]

for all initial conditions in the safe set, i.e., globally. In other
words, there exist positive constants M1 > 0, M2 > 0, and b >
0 such that the following estimate holds:

Φ(t) ≤M1Φ(0)e
−bt +M2 sup

τ∈[0,t]
qf(τ). (140)

The safety is already proven in this section. The ISS proof
is identical to the steps performed in [25, Sec. 5-2], which is
omitted in this article.

IX. APPLICATION TO AM

We apply the safe control methods proposed in Sections III
and IV to metal AM with selective laser sintering, which has
been intensively advanced in the recent decade as observed from
the growth in global market [8]. The Stefan model describes the
expansion of melt pool inside the powder bed, which is generated
by laser input [46]. We consider controlling the voltage input,
which manipulates the laser power, for the sake of obtaining the
desired depth of the melt pool, which is a thickness of layer. The
safe set is the positivity of the laser power and the energy deficit
for avoiding the overshooting of the melt pool deeper than the
desired thickness. The schematic of the metal AM is depicted in
Fig. 4.

We perform the numerical simulation considering a titanium
alloy (Ti6Al4V), the physical parameters of which are given in
Table I. The 1-D Stefan model is numerically computed by the
well-known boundary immobilization method combined with
finite difference semidiscretization [34].

First, we investigate the performance of the nonovershooting
control law (45). The initial depth of the melt pool is set to
s0 = 0.01 [mm], and the initial temperature profile is set to a
linear profileT0(x) = T̄ (1− x/s0) + Tm with T̄ = 1 [◦C]. The
setpoint position is set as sr = 0.2 [mm], which is a reasonable
value for layer thickness in metal AM. The control gains are set
as k1 = 8qc(0)/σ(0) = 64.4 [/s], k2 = 973 [/s2]. Fig. 5 depicts
the result of the closed-loop response. Fig. 5(a) illustrates that the
melt pool depth successfully converges to the setpoint monoton-
ically without overshooting, namely, the regulation is achieved.
Fig. 5(b) shows that the surface temperature of the melt pool is
warmed up first and cooled down once the heat is sufficiently
added, with maintaining above the melting temperature. Fig. 5(c)
and (d) depict the two CBFs imposed in the problem, one for
an energy deficit and the other for a laser power, both of which
satisfy the positivity condition. Fig. 5(e) shows the voltage input
which does not have any constraint under the nonovershooting
control. Fig. 5(f) shows 3-D surface plot of the temperature
profile in the liquid melt pool, which remains above the melting
temperature in all the liquid domain. Hence, the numerical result
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is consistent with Theorem 2 on nonovershooting control in
terms of achieving stabilization and safety simultaneously.

Next, we conduct the simulation of the QP-backstepping
safety control (44), with lower bound (37) and upper bound
(38). We set the operator input asUo(t) = A sin(ωt) +B, where
A = 1.14× 107, B = −5× 105, and ω = 2π/τ with time pe-
riod τ = 0.02 [s]. The control gains are set as k1 = 64.4 [/s],
k2 = 973 [/s2], δ1 = 129 [/s], and δ2 = 195 [/s2], respectively.
Fig. 6 depicts the result of the closed-loop response. Fig. 6(a)
illustrates that the interface position monotonically increases
with maintaining s(t) < sr, and slowly converges to the setpoint
position. Fig. 6(b) shows QP-backstepping voltage input (black
solid), the lower bound (green dash), and the upper bound (blue
dash). We observe that the input is affected by both the upper
and lower bounds, to maintain the value between them, while it
executes the operator input other than that, which is a sinusoidal
wave input. We can also see that, as time passes, the lower
bound gradually corresponds to the upper bound, as well as
the QP input, thereby the regulation of the interface position
can be achieved slowly in Fig. 6(a). Due to the operator input,
Fig. 6 shows that the boundary temperature is fluctuating through
repeating the warming up and cooling down, with maintaining
above the melting temperature. Similar behavior can be observed
in Fig. 6(e) showing the laser power. Also in this setup, as ob-
served in Fig. 5(d) and (e), the two CBFs imposed in the problem
satisfy the positivity, which ensures the desired performance of
the safety filter, being consistent with Theorem 1.

X. CONCLUSION

This article has developed two safe control strategies for the
one-phase Stefan PDE–ODE system with actuator dynamics
by utilizing CBF. The first one is the nonovershooting control,
which is derived by the recursive construction of CBFs for
ensuring the safety imposed by the physical model, and also
achieves the regulation of the moving interface position at a
desired setpoint position. The second one is the safety filter
design, which employs an operator input under the conditions
of maintaining safety, as a QP-backstepping-CBF formulation.
The stability proof under the nonovershooting control has been
achieved by PDE-backstepping method and Lyapunov analysis.
The developed methods have been extended to the case of
additional constraints from above on the states, the system with
higher order actuator dynamics, and the two-phase Stefan system
with an unknown disturbance. The proposed nonovershooting
control and the QP safety filter design have been demonstrated
in numerical simulation of the process in metal AM, which
illustrates the desired performance. Namely, both regulation
and safety are simultaneously achieved by the nonovershooting
control, while the safety filter affects the system by a chosen
operator input with maintaining safety.

APPENDIX A
DERIVATION OF ACTUATOR DYNAMICS

We consider that the true voltage input Vin(t) is connected to
RC series circuit whose opposite side has a heater with the heat
flux qc(t) and the voltage Vc(t). The relation between the power

and the voltage is given by

Aqc(t) =
Vc(t)

2

Rc
(141)

where A is a surface area of the material, and Rc is a resistance
of the heater. The circuit equation of the first-order RC series
satisfies

RCV̇c(t) + Vc(t) = Vin(t). (142)

Taking the time-derivative of (141) leads to

q̇c(t) =
2Vc(t)

ARcRC
(−Vc(t) + Vin(t)) . (143)

Therefore, by defining U(t) as

U(t) =
2Vc(t)

ARcRC
(−Vc(t) + Vin(t)) (144)

we have

q̇c(t) = U(t). (145)

Higher order actuator dynamics in Section VII can be modeled in
a similar manner by considering higher order RC series circuit.
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