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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL
UNDER FINITE-TIME VANISHING NOISE*

WUQUAN LI\dagger AND MIROSLAV KRSTIC\ddagger 

Abstract. We develop a prescribed-time mean-nonovershooting stabilizing feedback law for sto-
chastic nonlinear systems with noise that vanishes in finite time. The prescribed time of stabilization
must be strictly after the noise vanishes, but it may occur as early as the user desires after the noise
vanishes. In fact, more generally, the feedback is stabilizing and mean-overshoot free for any noise
that, given the prescribed time of stabilization, satisfies certain decay rate properties which require,
in particular, that no noise component vanish slower than linearly in the ``time to go"" until the pre-
scribed time. In contrast to the existing stochastic prescribed-time designs where only multiplicative
noise is allowed, our design can deal with multiplicative and additive noise simultaneously. A new
controller is designed to guarantee that the mean of the system output prescribed time tracks a given
trajectory without overshooting, that the fourth moment of the tracking error between states and
derivatives of the reference trajectory converges to zero in prescribed time, and that the controller
and all of the states are mean-square bounded. Finally, a simulation example is given to illustrate
the prescribed-time mean-nonovershooting design.

Key words. prescribed-time, mean-nonovershooting, multiplicative and additive noise

MSC code. 93E03
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1. Introduction. Safe control of nonlinear systems is challenging due to the
tight coupling between potentially conflicting control objectives and safety constraints.
References [1, 2, 3, 19, 21, 27, 29] use control barrier functions (CBFs) to characterize
the long-term safety of dynamical systems. A CBF certifies whether a control scheme
achieves forward invariance of a safe set by checking whether the system trajectory
remains away from the boundary of this set.

As demonstrated by [4, 20], overshoot is undesirable in many practical safety
control problems. For example, the optimum setpoint may be close to an economic
or safety constraint in process control problems (e.g., product quality constraints,
metallurgical limits). Consequently, overshoot of a setpoint could lead to violation of
a constraint and endanger process operation. For nonlinear systems, [11] is the first
paper to consider the nonovershooting safety control where a modified backstepping
method is employed to guarantee a nonovershooting response for strict-feedback non-
linear systems. The nonovershooting design possesses all of the attributes of a safety
design with a CBF of a uniform and high relative degree [1].
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1188 WUQUAN LI AND MIROSLAV KRSTIC

Recently, [12] generalized the results in [11] to the stochastic setting. The safe
control scheme in [12] guarantees that the mean of the output asymptotically tracks
a given trajectory without any overshooting while keeping all of the states mean-
square bounded. In many real-world applications, the control tasks require the given
trajectory to be prescribed-time tracked, rather than asymptotically tracked, by the
mean of the output without any overshooting. Thus, it is important to study the
prescribed-time mean-nonovershooting control for stochastic nonlinear systems.

Prescribed-time control is popular in applications where there exists a short, fi-
nite amount of time remaining to achieve the control objective. The appeal of such
control is that it allows the user to prescribe the convergence time a priori and ir-
respective of initial conditions. Many prescribed-time control results have recently
been developed for systems with different structures. For deterministic systems, [22,
23] provide prescribed-time designs for robust regulation of normal-form nonlinear
systems; [26] investigates the prescribed finite time consensus control for multiagent
systems; [5, 6] address the prescribed-time observer design and output-feedback design
for linear systems; [8, 9, 10] focus on the prescribed-time stabilization for uncertain
nonlinear strict-feedback-like systems; and [24, 25] consider prescribed-time designs
for the Schr\"odinger equation and reaction-diffusion equations, respectively. When
it comes to stochastic systems, [15] is the first paper on prescribed-time control to
solve stochastic nonlinear prescribed-time stabilization and inverse optimality prob-
lems; [13] presents a different design to reduce the control effort; and [14] introduces
prescribed-time output-feedback designs for stochastic nonlinear systems without and
with sensor uncertainty. We stress that the stochastic prescribed-time designs in
[13, 14, 15] only focus on stochastic prescribed-time stabilization, without consider-
ing the prescribed-time mean-nonovershooting and safety. Although [1] develops a
prescribed-time safety design for a chain of integrators, the system considered is de-
terministic and disturbance free. There exist no analogous results for prescribed-time
mean-nonovershooting control for stochastic nonlinear systems.

Motivated by the above observations, we develop prescribed-time mean- nonover-
shooting designs for stochastic nonlinear systems where the matched noise should be
at least linearly vanishing. The contributions of this paper are threefold:

\bullet We propose a new mean-nonovershooting design framework for stochastic
nonlinear systems. The design in this paper is completely different from the
mean-nonovershooting design in [12] in the following two aspects: First, our
controller is characterized by a time-varying blow-up function that grows
unbounded towards the terminal time, which makes the control design and
safety analysis in this paper much more difficult than those in [12]. Sec-
ond, unlike [12] where the mean of the output can track a given trajectory
asymptotically without overshooting, our design has the clear advantage of
achieving mean-nonovershooting tracking in prescribed-time, and not merely
asymptotically.

\bullet In contrast to the stochastic prescribed-time designs in [13, 14, 15], we con-
sider more general models and present a new design scheme. On the one hand,
the control schemes in [13, 14, 15] are only effective for systems with multi-
plicative noise, but the design in this paper can deal with multiplicative and
additive noise simultaneously. On the other hand, different from the stochas-
tic prescribed-time designs in [13, 14, 15] for stabilization, the control objec-
tive of this paper is prescribed-time mean-nonovershooting tracking of a time-
varying reference trajectory. In our prescribed-time mean-nonovershooting
design, many time-varying nonlinear terms produced by the time-varying
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1189

reference trajectory and the time-varying blow-up function are absorbed into
the virtual controllers, which makes the design in this paper much more com-
plex than the designs in [13, 14, 15].

\bullet In contrast to [1, 2, 3, 19, 21, 27, 29] where control barrier functions, ``nom-
inal"" control input, and ``safety filter"" are designed to achieve safety control
objective, we propose a different safety control scheme for stochastic systems.
In our scheme, there is no need for a ``safety filter"" redesign, and only a nom-
inal controller is designed to ensure that the mean of the system output can
track a given trajectory ``from below"" in prescribed time without overshoot-
ing while keeping all of the states mean-square bounded. In other words,
although our design is different from those in [1, 2, 3, 19, 21, 27, 29], our
design is not inferior in terms of safety.

The remainder of this paper is organized as follows. Section 2 presents problem
formulation. Section 3 is devoted to the prescribed-time mean-nonovershooting con-
trol design. Section 4 focuses on prescribed-time safety analysis. Section 5 gives an
example illustrating the theoretical results. Section 6 includes concluding remarks.
Appendices A--G introduces useful tools and the proofs of Proposition 1, Lemmas 1--4
and Theorem 1.

2. Problem formulation. Consider a class of stochastic nonlinear systems de-
scribed by

dxi = xi+1dt+\varphi T
i (t, x)d\omega , i= 1, . . . , n - 1,(2.1)

dxn = (u+ \phi (t, x))dt+\varphi T
n (t, x)d\omega ,(2.2)

y= x1,(2.3)

where x = (x1, . . . , xn)
T \in Rn, u \in R, and y \in R are the system state, control input,

and output, respectively. The functions \phi : R+ \times Rn \rightarrow R and \varphi i : R
+ \times Rn \rightarrow Rm

are continuous of their arguments and locally Lipschitz in x, and i = 1, . . . , n. \omega 
is an m-dimensional independent standard Wiener process defined on the complete
probability space (\Omega ,\scrF ,\scrF t, P ) with a filtration \scrF t satisfying the usual conditions (i.e.,
it is increasing and right continuous, while \scrF 0 contains all P -null sets).

We introduce the following two functions:

\mu (t) =

\biggl( 
T

t0 + T  - t

\biggr) 2

, t\in [t0, t0 + T ),(2.4)

\nu (t) = 1 - t - t0
T

, t\in [t0, t0 + T ),(2.5)

where T > 0 is the freely prescribed time.
Obviously, the blow-up function \mu (t) is a monotonically increasing function on

[t0, t0+T ) with \mu (t0) = 1 and limt\rightarrow t0+T \mu (t) =+\infty ; \nu (t) is a monotonically decreasing
function on [t0, t0+T ) with \nu (t0) = 1 and limt\rightarrow t0+T \nu (t) = 0 (In this paper, limt\rightarrow t0+T

means t approaches t0 + T ``from the left"" or ``from below"").
For system (2.1)--(2.3), we make the following assumptions.

Assumption 1. The given trajectory yr(t) \in R and its derivatives y
(1)
r (t), . . .,

y
(n - 1)
r (t) exist. Moreover, there is a known positive constant M such that

| y(i)r (t)| \leq M, i= 0, . . . , n - 1, \forall t\in [t0,+\infty ),(2.6)

where y
(0)
r (t) = yr(t).
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1190 WUQUAN LI AND MIROSLAV KRSTIC

Assumption 2. There exist nonnegative constants c0,1, c0,2, ci,1, ci,2, and \sigma i

(i= 1, . . . , n) such that

| \phi (t, x)| \leq c0,1(| x1| + \cdot \cdot \cdot + | xn| ) + c0,2 \forall t\in [t0, t0 + T ),(2.7)

| \varphi i(t, x)| \leq (ci,1(| x1| + \cdot \cdot \cdot + | xi| ) + ci,2)\gamma i(t) \forall t\in [t0, t0 + T ),(2.8)

where \gamma i(t) satisfies

0\leq \gamma i(t)\leq \nu \sigma i(t)(2.9)

with

\sigma i \geq 2n - 2i+ 1.(2.10)

Remark 1. From Assumption 2, the noise in system (2.1)--(2.3) is allowed to
be additive and multiplicative simultaneously. In the existing results on stochastic
prescribed-time control [13, 14, 15], the noise is only allowed to be multiplicative.
From this aspect, we consider more general systems for stochastic prescribed-time de-
sign in this paper. In contrast to the stochastic prescribed-time stabilization problems
in [13, 14, 15] and due to the effect of the time-varying reference trajectory yr(t) and
the additive noise, in order to solve the prescribed-time mean-nonovershooting control
problem, we require the noise to be vanishing in prescribed time T . More specifically,
it can be observed from Assumption 2 that \sigma n \geq 1, which means, along with (2.5),
that the most slowly vanishing noise in the system (i.e., the matched noise) should
vanish at a rate that is no slower than linear in the ``time to go"" given by t0 + T  - t.

The objective of this paper is, with Assumptions 1--2, to design a prescribed-
time mean-nonovershooting controller for system (2.1)--(2.3), such that the closed-
loop system has an almost surely unique solution on [t0, t0 + T ), the mean of the
system output can prescribed-time track a given trajectory without overshooting, the
fourth moment of the tracking error between states and derivatives of the reference
trajectory converges to zero in prescribed time, and the control input and all of the
states are mean-square bounded.

Remark 2. How can the requirement that the noise vanish no later than the
time t0 + T (Assumption 2) be motivated? In real-world applications, an important
scenario is where the noise is vanishing by some time t0 + Tmax, the time Tmax > 0 is
known, and we are able to pick any time T for prescribed stabilization, with T strictly
greater than Tmax. In this case, Assumption 2 is modified as follows.

Assumption 2\prime . Let T > Tmax > 0. There exist nonnegative constants c0,1, c0,2,
ci,1, and ci,2 such that

| \phi (t, x)| \leq c0,1(| x1| + \cdot \cdot \cdot + | xn| ) + c0,2 \forall t\in [t0, t0 + T ),(2.11)

| \varphi i(t, x)| \leq (ci,1(| x1| + \cdot \cdot \cdot + | xi| ) + ci,2)\gamma i(t) \forall t\in [t0, t0 + T ),(2.12)

where

\gamma i(t) =

\biggl\{ 
1, t0 \leq t < t0 + Tmax,
0, t0 + Tmax \leq t < t0 + T.

(2.13)

Next, we prove that Assumption 2\prime is a special case of Assumption 2.

Choosing

mi =
T\sigma i

(T  - Tmax)\sigma i
,(2.14)
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1191

we have

\gamma i(t)\leq mi\nu 
\sigma i(t) \forall t\in [t0, t0 + T ).(2.15)

By (2.15), (2.12) can be rewritten as

| \varphi i(t, x)| \leq (ci,1mi(| x1| + \cdot \cdot \cdot + | xi| ) + ci,2mi)\nu 
\sigma i(t),(2.16)

which shows that Assumption 2 can be satisfied easily by satisfying the simple and
practically reasonable, albeit more conservative, Assumption 2\prime .

3. Prescribed-time mean-nonovershooting control design. In this sec-
tion, we design the prescribed-time mean-nonovershooting controller step by step.

Step 1. In this step, we aim to design the virtual controller x\ast 
2.

Defining

\xi 1 = x1  - yr,(3.1)

V1 =
1

4
\xi 41 ,(3.2)

by (2.1) and (3.1)--(3.2) we get

\scrL V1 = \xi 31(x2  - \.yr) +
3

2
\xi 21 | \varphi 1| 2.(3.3)

It follows from (2.5)--(3.1) and Lemma A.1 that

3

2
\xi 21 | \varphi 1| 2 \leq 

3

2
\nu 2\sigma 1\xi 21(c1,1| x1| + c1,2)

2

\leq 3

2
\nu 2\sigma 1\xi 21(c1,1| \xi 1| + c1,1| yr| + c1,2)

2

\leq 3\nu 2\sigma 1\xi 21
\bigl( 
c21,1\xi 

2
1 + (c1,1M + c1,2)

2
\bigr) 

\leq 
\biggl( 
3c21,1 +

9

4\beta 1
(c1,1M + c1,2)

4\mu 

\biggr) 
\xi 41 + \beta 1\nu 

4\sigma 1+2

\leq 
\biggl( 
3c21,1 +

9

4\beta 1
(c1,1M + c1,2)

4

\biggr) 
\mu \xi 41 + \beta 1\nu 

4\sigma 1+2,(3.4)

where \beta 1 is an arbitrary positive constant.
Substituting (3.4) into (3.3) yields

\scrL V1 \leq \xi 31(x2  - x\ast 
2) + \xi 31(x

\ast 
2  - \.yr) +

\Bigl( 
3c21,1 +

9

4\beta 1
(c1,1M + c1,2)

4
\Bigr) 
\mu \xi 41

+ \beta 1\nu 
4\sigma 1+2.(3.5)

If we choose the virtual controller as

\alpha 1 = c1 + 3c21,1 +
9

4\beta 1
(c1,1M + c1,2)

4,(3.6)

x\ast 
2 = \.yr  - \mu \alpha 1\xi 1,(3.7)

and define

\xi 2 = x2  - x\ast 
2,(3.8)
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1192 WUQUAN LI AND MIROSLAV KRSTIC

then (3.5) can be rewritten as

\scrL V1 \leq  - c1\mu \xi 
4
1 + \xi 31\xi 2 + \beta 1\nu 

4\sigma 1+2,(3.9)

where c1 > 0 is a design parameter.
From (2.1), (3.7), and (3.8) we get

d\xi 1 =
\bigl( 
 - \alpha 1\mu \xi 1 + \xi 2

\bigr) 
dt+\varphi T

1 d\omega .(3.10)

Step 2. In this step, we aim to design the virtual controller x\ast 
3.

From (3.7)--(3.8) we get

\xi 2 = x2  - \.yr + \mu \alpha 1\xi 1.(3.11)

It can be inferred from (2.1) and (3.11) that

d\xi 2 =
\Bigl( 
x3  - \"yr +

\Bigl( 2

T
\mu 3/2\alpha 1  - \alpha 2

1\mu 
2
\Bigr) 
\xi 1 + \alpha 1\mu \xi 2

\Bigr) 
dt+

\Bigl( 
\varphi T
2 + \alpha 1\mu \varphi 

T
1

\Bigr) 
d\omega .(3.12)

Choose the new scaled Lyapunov function

V2 = V1 +
1

4\mu 4
\xi 42 .(3.13)

By (3.9), (3.12), and (3.13) we get

\scrL V2 \leq  - c1\mu \xi 
4
1 + \xi 31\xi 2  - 

2

T
\mu  - 7/2\xi 42 +

3

2\mu 4
\xi 22 | \varphi 2 + \mu \alpha 1\varphi 1| 2 + \beta 1\nu 

4\sigma 1+2

+
1

\mu 4
\xi 32

\Bigl( 
x3  - \"yr +

\Bigl( 2

T
\mu 3/2\alpha 1  - \alpha 2

1\mu 
2
\Bigr) 
\xi 1 + \alpha 1\mu \xi 2

\Bigr) 
.(3.14)

By Lemma A.1 we obtain

\xi 31\xi 2 \leq \varepsilon 2,1,1\mu \xi 
4
1 +

27

256\varepsilon 32,1,1\mu 
3
\xi 42 ,(3.15)

where \varepsilon 2,1,1 is an arbitrary positive constant.
From (3.1) and (3.11) we have

| x1| \leq | \xi 1| +M,(3.16)

| x2| \leq \alpha 1\mu | \xi 1| + | \xi 2| +M.(3.17)

It follows from (2.8), (2.9), and (3.16)--(3.17) that

| \varphi 2 + \mu \alpha 1\varphi 1| 2 \leq 2\nu 2\sigma 2(c2,1(| x1| + | x2| ) + c2,2)
2 + 2\alpha 2

1\nu 
2\sigma 1 - 4(c1,1| x1| + c1,2)

2

\leq \=a2,1\nu 
2\sigma 2(\mu 2\xi 21 + \xi 22 +M2 + 1) + \=a2,2\nu 

2\sigma 1 - 4(\xi 21 +M2 + 1),(3.18)

where \=a2,1 and \=a2,2 are positive constants.
From Lemma A.1 we have

3

2\mu 4
(\=a2,1\nu 

2\sigma 2\mu 2 + \=a2,2\nu 
2\sigma 1 - 4)\xi 21\xi 

2
2 \leq 

3

2\mu 2
(\=a2,1 + \=a2,2)\xi 

2
1\xi 

2
2

\leq \varepsilon 2,1,2\mu \xi 
4
1 +

9

16\varepsilon 2,1,2\mu 3
(\=a2,1 + \=a2,2)

2\xi 42 ,(3.19)
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1193

3\=a2,2
2\mu 4

(M2 + 1)\nu 2\sigma 1 - 4\xi 22 \leq \beta 2,1\nu 
4\sigma 1+2 +

9\=a22,2
16\beta 2,1\mu 3

(M2 + 1)2\xi 42 ,(3.20)

3\=a2,1
2\mu 4

(M2 + 1)\nu 2\sigma 2\xi 22 \leq \beta 2,2\nu 
4\sigma 2+10 +

9\=a22,1
16\beta 2,2\mu 3

(M2 + 1)2\xi 42 ,(3.21)

where \varepsilon 2,1,2, \beta 2,1, and \beta 2,2 are arbitrary positive constants.
From (3.18)--(3.21) we have

3

2\mu 4
\xi 22 | \varphi 2 + \mu \alpha 1\varphi 1| 2 \leq \varepsilon 2,1,2\mu \xi 

4
1 +

\Bigl( 3
2
\=a2,1 +

9

16\varepsilon 2,1,2
(\=a2,1 + \=a2,2)

2

+
9\=a22,2
16\beta 2,1

(M2 + 1)2 +
9\=a22,1
16\beta 2,2

(M2 + 1)2
\Bigr) 1

\mu 3
\xi 42

+ \beta 2,1\nu 
4\sigma 1+2 + \beta 2,2\nu 

4\sigma 2+10.(3.22)

Substituting (3.15) and (3.22) into (3.14) yields

\scrL V2 \leq  - (c1  - \varepsilon 2,1)\mu \xi 
4
1 +

\Bigl( 3
2
\=a2,1 +

27

256\varepsilon 32,1,1
+

9

16\varepsilon 2,1,2
(\=a2,1 + \=a2,2)

2

+
9\=a22,2
16\beta 2,1

(M2 + 1)2 +
9\=a22,1
16\beta 2,2

(M2 + 1)2
\Bigr) 1

\mu 3
\xi 42 +

1

\mu 4
\xi 32

\Bigl( 
x3  - x\ast 

3

+ x\ast 
3  - \"yr + \alpha 1\mu \xi 2 +

\Bigl( 2

T
\mu 3/2\alpha 1  - \alpha 2

1\mu 
2
\Bigr) 
\xi 1

\Bigr) 
+ (\beta 1 + \beta 2,1)\nu 

4\sigma 1+2

+ \beta 2,2\nu 
4\sigma 2+10,(3.23)

where

\varepsilon 2,1 = \varepsilon 2,1,1 + \varepsilon 2,1,2.(3.24)

If we choose

\alpha 2 = c2 +
3

2
\=a2,1 +

27

256\varepsilon 32,1,1
+

9

16\varepsilon 2,1,2
(\=a2,1 + \=a2,2)

2 +
9\=a22,2
16\beta 2,1

(M2 + 1)2

+
9\=a22,1
16\beta 2,2

(M2 + 1)2,(3.25)

x\ast 
3 = \"yr  - 

\Bigl( 2

T
\mu 3/2\alpha 1  - \alpha 2

1\mu 
2
\Bigr) 
\xi 1  - (\alpha 1 + \alpha 2)\mu \xi 2,(3.26)

and define

\xi 3 = x3  - x\ast 
3,(3.27)

then we have

\scrL V2 \leq  - (c1  - \varepsilon 2,1)\mu \xi 
4
1  - 

c2
\mu 3

\xi 42 +
1

\mu 4
\xi 32\xi 3 + \beta 2(\nu 

4\sigma 1+2 + \nu 4\sigma 2+10),(3.28)

where c2 > 0 is a design parameter and

\beta 2 =max\{ \beta 11 + \beta 2,1, \beta 2,2\} .(3.29)
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1194 WUQUAN LI AND MIROSLAV KRSTIC

By (3.12) and (3.26) we obtain

d\xi 2 =
\bigl( 
 - \alpha 2\mu \xi 2 + \xi 3

\bigr) 
dt+

\Bigl( 
\varphi T
2 + \alpha 1\mu \varphi 

T
1

\Bigr) 
d\omega .(3.30)

Deductive step. In this step, we aim to design the virtual controller x\ast 
k+2.

Assume that at step k there are a set of virtual controllers defined by

x\ast 
i = y(i - 1)

r +
2

T

\partial x\ast 
i - 1

\partial \mu 
\mu 3/2 +

i - 2\sum 
j=1

\partial x\ast 
i - 1

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1)

 - \alpha i - 1\mu \xi i - 1, 3\leq i\leq k+ 1,(3.31)

\xi i = xi  - x\ast 
i , 2\leq i\leq k+ 1,(3.32)

such that

d\xi i =
\bigl( 
 - \alpha i\mu \xi i + \xi i+1

\bigr) 
dt+

\Bigl( 
\varphi T
i  - 

i - 1\sum 
j=1

\partial x\ast 
i

\partial xj
\varphi T
j

\Bigr) 
d\omega , 2\leq i\leq k,(3.33)

and

\scrL Vk \leq  - 
k\sum 

i=1

ci  - \varepsilon k,i
\mu 4i - 5

\xi 4i +
1

\mu 4(k - 1)
\xi 3k\xi k+1 + \beta k

k\sum 
j=1

\nu 4\sigma j+8j - 6,(3.34)

where \alpha 2, . . . , \alpha k are positive constants, c1, . . . , ck are design parameters, \varepsilon k,1, . . . ,
\varepsilon k,k - 1 and \beta 1, . . . , \beta k are arbitrary positive constants, \varepsilon k,k = 0 and Vk(\=\xi k) =\sum k

i=1
1

4\mu 4(i - 1) \xi 
4
i , and

\=\xi k = (\xi 1, . . . , \xi k)
T .

To complete the induction, at the (k+1)th step (2\leq k\leq n - 2), we consider the
\xi k+1-system.

It follows from (2.1), (3.31), and (3.32) that

d\xi k+1 =

\biggl( 
xk+2  - y(k+1)

r  - 2

T

\partial x\ast 
k+1

\partial \mu 
\mu 3/2  - 

k\sum 
j=1

\partial x\ast 
k+1

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1)

\biggr) 
dt

+

\biggl( 
\varphi T
k+1  - 

k\sum 
j=1

\partial x\ast 
k+1

\partial xj
\varphi T
j

\biggr) 
d\omega .(3.35)

We choose the Lyapunov function

Vk+1(\=\xi k+1) = Vk(\=\xi k) +
1

4\mu 4k
\xi 4k+1.(3.36)

By (3.34)--(3.36) and It\^o's formula we get

\scrL Vk+1 \leq  - 
k\sum 

i=1

ci  - \varepsilon k,i
\mu 4i - 5

\xi 4i +
1

\mu 4(k - 1)
\xi 3k\xi k+1 +

3

2\mu 4k
\xi 2k+1

\bigm| \bigm| \bigm| \bigm| \varphi k+1  - 
k\sum 

j=1

\partial x\ast 
k+1

\partial xj
\varphi j

\bigm| \bigm| \bigm| \bigm| 2

 - 2k

T\mu 4k - 1/2
\xi 4k+1 +

1

\mu 4k
\xi 3k+1

\biggl( 
xk+2  - y(k+1)

r  - 2

T

\partial x\ast 
k+1

\partial \mu 
\mu 3/2  - 

k\sum 
j=1

\partial x\ast 
k+1

\partial \xi j

\cdot ( - \alpha j\mu \xi j + \xi j+1)

\biggr) 
+ \beta k

k\sum 
j=1

\nu 4\sigma j+8j - 6.(3.37)
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1195

By Lemma A.1 we obtain

1

\mu 4(k - 1)
\xi 3k\xi k+1 \leq \varepsilon k+1,k,1

1

\mu 4k - 5
\xi 4k +

1

4

\biggl( 
4

3
\varepsilon k,k - 1,1

\biggr)  - 3
1

\mu 4k - 1
\xi 4k+1,(3.38)

where \varepsilon k+1,k,1 is an arbitrary positive constant.
To proceed further, we need some estimates. The following proposition supplies

these estimates, whose proof is given in Appendix B.

Proposition 1. For k\geq 2, there exist positive constants bk, bk,0, bk,1, . . . , bk,k - 1

such that

| x\ast 
k| \leq bk

\Bigl( k - 1\sum 
j=1

\mu k - j | \xi j | +M
\Bigr) 
,(3.39)

\bigm| \bigm| \bigm| \partial x\ast 
k

\partial \mu 

\bigm| \bigm| \bigm| \leq bk,0

k - 1\sum 
j=1

\mu k - j - 1| \xi j | ,(3.40)

\bigm| \bigm| \bigm| \partial x\ast 
k

\partial \xi j

\bigm| \bigm| \bigm| \leq bk\mu 
k - j , 1\leq j \leq k - 1,(3.41) \bigm| \bigm| \bigm| \partial x\ast 

k

\partial xj

\bigm| \bigm| \bigm| \leq bk,j\mu 
k - j , 1\leq j \leq k - 1.(3.42)

It follows from Assumption 1, (3.1), (3.32), and (3.39) that

| x1| \leq | \xi 1| +M,(3.43)

| xj | \leq | \xi j | + bj

\Bigl( j - 1\sum 
s=1

\mu j - s| \xi s| +M
\Bigr) 
, 2\leq j \leq n.(3.44)

From (2.8), (2.9), (3.42), (3.43), and (3.44) we get\bigm| \bigm| \bigm| \bigm| \varphi k+1  - 
k\sum 

j=1

\partial x\ast 
k+1

\partial xj
\varphi j

\bigm| \bigm| \bigm| \bigm| 2 \leq 2\nu 2\sigma k+1

\Bigl( 
ck+1,1

k+1\sum 
s=1

| xs| + ck+1,2

\Bigr) 2
+ 2
\Bigl( k\sum 

j=1

bk+1,j\nu 
\sigma j\mu k+1 - j

\Bigl( 
cj,1

j\sum 
s=1

| xs| + cj,2

\Bigr) \Bigr) 2
\leq \~bk+1,1

k+1\sum 
i=1

\mu 2(k+1 - i)\xi 2i +
\~bk+1,1(M + 1)2\mu 2k

\Bigl( k+1\sum 
i=1

\nu 2\sigma i+4i - 4
\Bigr) 
,(3.45)

where \~bk+1,1 is a positive constant.

By (3.45) we obtain

3

2\mu 4k
\xi 2k+1

\bigm| \bigm| \bigm| \bigm| \varphi k+1  - 
k\sum 

j=1

\partial x\ast 
k+1

\partial xj
\varphi j

\bigm| \bigm| \bigm| \bigm| 2 \leq 3\~bk+1,1

2\mu 4k
\xi 4k+1 +

k\sum 
i=1

3\~bk+1,1

2\mu 2(k+i - 1)
\xi 2i \xi 

2
k+1

+
3\~bk+1,1

2\mu 2k
(M + 1)2

k+1\sum 
i=1

\nu 2\sigma i+4i - 4\xi 2k+1.(3.46)

By Lemma A.1 we have

3\~bk+1,1

2\mu 2(k+i - 1)
\xi 2i \xi 

2
k+1 \leq 

1

\mu 4i - 5
\varepsilon k+1,i,2\xi 

4
i +

9

16\varepsilon k+1,i,2

\~b2k+1,1

1

\mu 4k - 1
\xi 4k+1(3.47)
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1196 WUQUAN LI AND MIROSLAV KRSTIC

and

3\~bk+1,1

2\mu 2k
(M + 1)2\nu 2\sigma i+4i - 4\xi 2k+1

\leq \beta k+1,i\nu 
4\sigma i+8i - 6 +

9\~b2k+1,1

16\beta k+1,i\mu 4k - 1
(M + 1)4\xi 4k+1,(3.48)

where \varepsilon k+1,i,2 and \beta k+1,i are arbitrary positive constants.
With (3.47) and (3.48), (3.46) can be rewritten as

3

2\mu 4k
\xi 2k+1

\bigm| \bigm| \bigm| \bigm| \varphi k+1  - 
k\sum 

j=1

\partial x\ast 
k+1

\partial xj
\varphi j

\bigm| \bigm| \bigm| \bigm| 2

\leq 
k\sum 

i=1

\Bigl( 
\varepsilon k+1,i,2

1

\mu 4i - 5

\Bigr) 
\xi 4i +

\Bigl( k\sum 
i=1

9

16\varepsilon k+1,i,2

\~b2k+1,1 +
3

2
\~bk+1,1

+

k+1\sum 
i=1

9\~b2k+1,1

16\beta k+1,i
(M + 1)4

\Bigr) 1

\mu 4k - 1
\xi 4k+1 +

k+1\sum 
i=1

\beta k+1,i\nu 
4\sigma i+8i - 6.(3.49)

Substituting (3.38) and (3.49) into (3.37) yields

\scrL Vk+1 \leq  - 
k\sum 

i=1

ci  - \varepsilon k+1,i

\mu 4i - 5
\xi 4i +

1

\mu 4k
\xi 3k+1

\biggl( 
xk+2  - x\ast 

k+2 + x\ast 
k+2  - y(k+1)

r  - 2

T

\partial x\ast 
k+1

\partial \mu 
\mu 3/2

(3.50)

 - 
k\sum 

j=1

\partial x\ast 
k+1

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1)

\biggr) 
+

\Biggl( 
3

2
\~bk+1,1 +

1

4

\biggl( 
4

3
\varepsilon k,k - 1,1

\biggr)  - 3

+

k\sum 
i=1

9

16\varepsilon k+1,i,2

\~b2k+1,1 +

k+1\sum 
i=1

9\~b2k+1,1

16\beta k+1,i
(M + 1)4

\Biggr) 
1

\mu 4k - 1
\xi 4k+1

+ \beta k+1

k+1\sum 
i=1

\nu 4\sigma i+8i - 6,

where

\varepsilon k+1,i = \varepsilon k,i + \varepsilon k+1,i,2, 1\leq i\leq k - 1,(3.51)

\varepsilon k+1,k = \varepsilon k+1,k,1 + \varepsilon k+1,k,2,(3.52)

\beta k+1 =max
\Bigl\{ 

max
1\leq i\leq k

\{ \beta k+1,i\} + \beta k, \beta k+1,k+1

\Bigr\} 
.(3.53)

If we choose

\alpha k+1 = ck+1 +
3

2
\~bk+1,1 +

1

4

\biggl( 
4

3
\varepsilon k,k - 1,1

\biggr)  - 3

+

k\sum 
i=1

9

16\varepsilon k+1,i,2

\~b2k+1,1

+

k+1\sum 
i=1

9\~b2k+1,1

16\beta k+1,i
(M + 1)4,(3.54)

x\ast 
k+2 = y(k+1)

r +
2

T

\partial x\ast 
k+1

\partial \mu 
\mu 3/2  - \alpha k+1\mu \xi k+1 +

k\sum 
j=1

\partial x\ast 
k+1

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1),(3.55)
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1197

and define

\xi k+2 = xk+2  - x\ast 
k+2,(3.56)

then we have

\scrL Vk+1 \leq  - 
k+1\sum 
i=1

ci  - \varepsilon k+1,i

\mu 4i - 5
\xi 4i +

1

\mu 4k
\xi 3k+1\xi k+2 + \beta k+1

k+1\sum 
i=1

\nu 4\sigma i+8i - 6(3.57)

and

d\xi k+1 = ( - \alpha k+1\mu \xi k+1 + \xi k+2)dt+

\biggl( 
\varphi T
k+1  - 

k\sum 
j=1

\partial x\ast 
k+1

\partial xj
\varphi T
j

\biggr) 
d\omega ,(3.58)

where ck+1 > 0 is a design parameter and \varepsilon k+1,k+1 = 0.
Step n. In this step, we aim to design the actual controller u.
Similar to (3.55), we choose the actual control law as

u= y(n)r +
2

T

\partial x\ast 
n

\partial \mu 
\mu 3/2 +

n - 1\sum 
j=1

\partial x\ast 
n

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1) - \alpha n\mu \xi n  - \phi (t, x),(3.59)

and then we get

\scrL Vn(\=\xi n)\leq  - 
n\sum 

i=1

ci  - \varepsilon n,i
\mu 4i - 5

\xi 4i + \beta n

n\sum 
i=1

\nu 4\sigma i+8i - 6(3.60)

and

d\xi n = - \alpha n\mu \xi ndt+

\biggl( 
\varphi T
n  - 

n - 1\sum 
j=1

\partial x\ast 
n

\partial xj
\varphi T
j

\biggr) 
d\omega ,(3.61)

where cn > 0 is a design parameter, \alpha n is a positive constant, \varepsilon n,1, . . . , \varepsilon n,n - 1 and \beta n

are arbitrary positive constants, \varepsilon n,n = 0, \xi n = xn  - x\ast 
n,

\=\xi n = (\xi 1, . . . , \xi n)
T , and

Vn(\=\xi n) =

n\sum 
i=1

1

4\mu 4(i - 1)
\xi 4i .(3.62)

Remark 3. In this section, we propose a new stochastic prescribed-time control
design, which is essentially different from those in [13, 14, 15]. Comparing this design
with those in [13, 14, 15], we observe that the virtual controllers x\ast 

2 in (3.7), x\ast 
3 in

(3.26), x\ast 
k+2 in (3.55), and the actual controller u in (3.59) are much more complex

than their corresponding parts in [13, 14, 15]. This is mainly because [13, 14, 15] aim
for stochastic prescribed-time stabilization, while the objective of this paper is to solve
the prescribed-time mean-nonovershooting control problem. In [13, 14, 15], the drift

terms of d\xi k+1 in (3.35), i.e.,  - y
(k+1)
r  - m

T

\partial x\ast 
k+1

\partial \mu \mu 1+1/m - 
\sum k

j=1

\partial x\ast 
k+1

\partial \xi j
( - \alpha j\mu \xi j+\xi j+1),

are damped by some negative \mu -scaling terms, which yields much simpler virtual con-
trollers and a much simpler actual controller. However, in order to achieve prescribed-
time mean-nonovershooting control in this paper, we need to ensure that these drift
terms are directly absorbed into the virtual controller x\ast 

k+2 in (3.55), which height-
ens the challenge of the design of the virtual controllers x\ast 

k+3, . . . , x
\ast 
n and the actual

controller u.
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1198 WUQUAN LI AND MIROSLAV KRSTIC

4. Prescribed-time safety analysis. From (3.10), (3.30), (3.58), and (3.61)
we get

\xi k = e
 - 

\int t
t0

\alpha k\mu (s)ds\xi k(t0) +

\int t

t0

e - 
\int t
s
\alpha k\mu (\tau )d\tau \xi k+1(s)ds

+Mk(t), 1\leq k\leq n - 1,(4.1)

\xi n = e
 - 

\int t
t0

\alpha n\mu (s)ds\xi n(t0) +Mn(t),(4.2)

where

M1(t) =

\int t

t0

e - 
\int t
s
\alpha 1\mu (s)ds\varphi T

1 d\omega (s)(4.3)

and

Mk(t) =

\int t

t0

e - 
\int t
s
\alpha k\mu (s)ds

\biggl( 
\varphi T
k  - 

k - 1\sum 
j=1

\partial x\ast 
k

\partial xj
\varphi T
j

\biggr) 
d\omega (s)(4.4)

for 2\leq k\leq n.
We choose the design parameters c1, . . . , cn as

ck >max\{ \v ck, \varepsilon n,k\} , 1\leq k\leq n - 1,(4.5)

cn > 0,(4.6)

where

\v c1 =
1

x1(t0) - yr(t0)
( - x2(t0) + \.yr(t0)),(4.7)

\v ck =
1

\xi k(t0)

\biggl( 
 - xk+1(t0) + y(k)r (t0) +

2

T

\partial x\ast 
k

\partial \mu 
| t=t0 +

k - 1\sum 
j=1

\partial x\ast 
k

\partial \xi j
| t=t0( - \alpha j\xi j(t0)

+ \xi j+1(t0))

\biggr) 
, 2\leq k\leq n - 1,(4.8)

and

\xi k(t0) = xk(t0) - y(k - 1)
r (t0) - 

2

T

\partial x\ast 
k - 1

\partial \mu 
| t=t0  - 

k - 2\sum 
j=1

\partial x\ast 
k - 1

\partial \xi j
| t=t0( - \alpha j\xi j(t0) + \xi j+1(t0))

+ \alpha k - 1\xi k - 1(t0), 2\leq k\leq n - 1.(4.9)

With (3.62), (4.5), and (4.6), (3.60) can be rewritten as

\scrL Vn(\=\xi n)\leq  - c0\mu Vn + \beta n

n\sum 
j=1

\nu 4\sigma j+8j - 6,(4.10)

where

c0 = 4 min
1\leq i\leq n

\{ ci  - \varepsilon n,i\} .(4.11)

From (4.5) and (4.6) we obtain that c0 is a positive constant.
Before presenting the main safety results, we first give four technical lemmas,

which are important in the stability analysis.
The first lemma shows that \xi i(t0)< 0 can be ensured if we choose y(t0)< yr(t0).

The proof of this lemma is given in Appendix C.
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1199

Lemma 1. Consider the plant (2.1)--(2.3), (3.59), and (4.5)--(4.8). If y(t0) <
yr(t0), then we have \xi i(t0)< 0, i= 1, . . . , n.

Based on (4.10), the second lemma provides an estimate for EVn. The proof of
this lemma is given in Appendix D.

Lemma 2. Consider the plant (2.1)--(2.3), (3.59), and (4.5)--(4.8). If Assumptions
1--2 hold, then the following conclusions hold:

(1) The plant has an almost surely unique strong solution on [t0, t0 + T ) for any
x0 \in Rn.

(2) The function Vn defined in (3.62) satisfies

EVn \leq f(t), \forall t\in [t0, t0 + T ),(4.12)

where

f(t) = e
 - c0

\int t
t0

\mu (s)ds
\Bigl( 
Vn(t0) + \beta n

\int t

t0

n\sum 
j=1

\nu 4\sigma j+8j - 6(\tau )e
c0

\int \tau 
t0

\mu (s)ds
d\tau 
\Bigr) 

(4.13)

satisfies

f(t)\sim \beta n

c0

n\sum 
j=1

\nu 4\sigma j+8j - 4 as t\rightarrow t0 + T.(4.14)

In other words, f(t) is the equivalent infinitesimal of \beta n

c0

\sum n
j=1 \nu 

4\sigma j+8j - 4 as t\rightarrow t0+T .

Lemma 3 provides estimates for the Riemann integrals, whose integrands are
stochastic processes. The proof of this lemma is given in Appendix E.

Lemma 3. Consider the plant (2.1)--(2.3), (3.59), and (4.5)--(4.8). If Assumptions
1--2 hold, then, for k= 1, . . . , n - 1 we have

E

\biggl\{ \int t

t0

e - 
\int t
s
\alpha k\mu (\tau )d\tau \xi k+1(s)ds

\biggr\} 
=

\int t

t0

e - 
\int t
s
\alpha k\mu (\tau )d\tau E\{ \xi k+1(s)\} ds.(4.15)

Lemma 4 provides an estimate for Mk(t). The proof of this lemma is given in
Appendix F.

Lemma 4. If Assumptions 1--2 hold for the plant (2.1)--(2.3), (3.59), and (4.5)--
(4.8), then we have

E\{ Mk(t)\} = 0, k= 1, . . . , n.(4.16)

In the following theorem, we state the main safety results on system (2.1)--(2.3).
The proof of this theorem is given in Appendix G.

Theorem 1. Consider the plant consisting of (2.1)--(2.3), (3.59), and (4.5)--(4.8).
If Assumptions 1--2 hold, then the following conclusions hold:

(1) The plant has an almost surely unique strong solution on [t0, t0 + T ) for any
x0 \in Rn.

(2) The mean-square of the state and the controller is bounded.

(3) The state xk converges to y
(k - 1)
r in L4 as t\rightarrow t0 + T . Specifically,

lim
t\rightarrow t0+T

E| xk  - y(k - 1)
r | 4 = 0, 1\leq i\leq n,(4.17)

where L4 denotes the family of quartic integrable random variables.
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1200 WUQUAN LI AND MIROSLAV KRSTIC

(4) In addition, if y(0)< yr(0), we have

E\{ y(t)\} \leq yr(t) \forall t\in [t0, t0 + T ),(4.18)

lim
t\rightarrow t0+T

E\{ y(t) - yr(t)\} = 0.(4.19)

Remark 4. From the proofs of Lemmas 2--4 and Theorem 1, it can be observed that
the requirement that the noise be vanishing (Assumption 2) is crucial for achieving
the safety control objectives. If we remove this requirement with \gamma i(t) = 1, i =
1, . . . , n, by repeating the proof of Lemma 2 we can still prove that limt\rightarrow t0+T E| x1  - 
yr| 4 = 0 holds. However, we will also obtain that limt\rightarrow t0+T Ex2

i = +\infty (2 \leq i \leq n)
and limt\rightarrow t0+T Eu2 = +\infty , which makes the control scheme infeasible. The main
reasons are as follows: with the effect of the additive noise and the time-varying
reference trajectory, and without the vanishing assumption, the convergence rate of
the Lyapunov function Vn(\=\xi n) is only polynomial, rather than exponential, which
results in limt\rightarrow t0+T Eu2 =+\infty .

Remark 5. From the proof of Theorem 1, we obtain that the convergence rates of
states x2, . . . , xn are determined by the noise vanishing rates \delta 1, . . . , \delta n. The larger the
noise vanishing rates, the faster the convergence rate of states. The convergence rate
of y(t) is heavily relied on \alpha 1, . . . , \alpha n, which are determined by the design parameters
c1, . . . , cn. In other words, a larger control effort yields a faster convergence rate
of y(t).

Remark 6. In contrast to [1, 2, 3, 19, 21, 27, 29], where control barrier functions,
a ``nominal"" control input, and a ``safety filter"" are designed to achieve the safe con-
trol objective, we propose a different safety design for stochastic system (2.1)--(2.3).
Specifically, our ``nominal"" controller (3.59) ensures that the mean of the system
output can track a given trajectory ``from below"" in prescribed time without over-
shooting, while keeping all of the states mean-square bounded. In other words, we
achieve safety by the nominal controller (3.59) without the need for a ``safety filter""
redesign. In fact, our control barrier function is h(t) =E\{ y(t)\}  - yr(t). Thus, although
we develop a different design from those in [1, 2, 3, 19, 21, 27, 29], we maintain safety
in the same CBF-based sense as in those articles.

5. A simulation example. In this section, we use a stochastic mass-spring-
damper system to show the effectiveness of the prescribed-time mean-nonovershooting
control schemes developed in this paper.

The mass-spring-damper system is shown in Figure 1, where a mass m is attached
to a ceiling through a spring-damper combination. The mass is driven by an external
force which serves as a control variable. Let y be the displacement from a reference
position; k is the spring parameter and a is the damper parameter. We assume
that the displacement is relative small, with the restoring force modeled as ky. By
Newton's law of motion, the system is described as

mg+ u - ky - a \.y=m\"y.(5.1)

The damper parameter a(t) has a nominal value a0 and a(t) \in (a0  - 0.2, a0 + 0.2).
Let \Delta (t) = a(t) - a0. \Delta (t) is the Gaussian white noise process with zero mean and
E(\Delta (t))2 = (1 - t

2 )
4.

To obtain a state-space model for the mass-spring-damper system, take the state
variables to be x1 = y and x2 = \.y. Then, from (5.1) we get the state-space form
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1201

Fig. 1. Mass-spring-damper system.

dx1 = x2dt,(5.2)

dx2 =

\biggl( 
u

m
+ g - k

m
x1  - 

a0
m

x2

\biggr) 
dt - 1

4m
(2 - t)2x2d\omega ,(5.3)

y= x1.(5.4)

Choosing m= 1 and a0 = k= 0.1, (5.2)--(5.4) can be rewritten as

dx1 = x2dt,(5.5)

dx2 = (u+ g - 0.1x1  - 0.1x2)dt - 
1

4
(2 - t)2x2d\omega ,(5.6)

y= x1.(5.7)

We choose the reference trajectory as yr(t) = sin t. It is obvious that Assumption 1 is
satisfied.

Letting t0 = 0 and T = 2, (2.4) and (2.5) can be rewritten as

\mu (t) =
\Bigl( 2

2 - t

\Bigr) 2
, t\in [0,2),(5.8)

\nu (t) = 1 - t

2
, t\in [0,2).(5.9)

By (5.6) we obtain

| g - 0.1x1  - 0.1x2| \leq 0.1(| x1| + | x2| ) + g,(5.10)

1

4
| (2 - t)2x2| = \nu 2| x2| \leq \nu | x2| ,(5.11)

which shows that Assumption 2 is satisfied with c01 = 0.1, c02 = g, c11 = 0, c12 = 0,
\gamma 1 = 0, c21 = 1, c22 = 0, \gamma 2(t) = \nu 2(t), and \sigma 2 = 1.

By following the design procedure developed in section 3, we get the controller

u= - g+ 0.1x1 + 0.1x2  - sin t - c1\mu 
3/2(x1  - sin t) - c1\mu (x2  - cos t)

 - 
\Bigl( 
c2 + 5+

27

16
c21

\Bigr) 
\mu (x2  - cos t+ c1\mu (x1  - sin t)).(5.12)

In the simulation, we randomly set the initial conditions as x1(0) =  - 1, x2(0) = 2.
From (4.5) and (4.6) we get
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1202 WUQUAN LI AND MIROSLAV KRSTIC

Fig. 2. The response of states of the closed-loop system (5.5)--(5.9) and (5.12).

Fig. 3. The response of E\{ y\} and yr of the closed-loop system (5.5)--(5.9) and (5.12).

Fig. 4. The response of the controller of the closed-loop system (5.5)--(5.9) and (5.12).

c1 >max

\biggl\{ 
1 - x2(0)

x1(0)
,1

\biggr\} 
= 1,(5.13)

c2 > 0.(5.14)

By (5.13) and (5.14), we choose the controller gains c1 = 1.1 and c2 = 1. We employ
gain clipping due to the finite-precision arithmetic in the computation of the control
signal. Figure 2 gives the response of states, which shows that limt\rightarrow 2 | x1  - yr| 4 = 0
and limt\rightarrow 2 | x2  - \.yr| 4 = 0. Figure 3 describes the response of E\{ y(t)\} and yr(t),
which shows that yr(t) is prescribed-time tracked by E\{ y(t)\} from ``below"" with
limt\rightarrow 2E\{ y(t) - yr(t)\} = 0. Figure 4 gives the response of the controller, from which we
can see that the mean-square of the controller is bounded. Therefore, the effectiveness
of the controller design developed in section 3 is demonstrated.
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1203

Remark 7. Although the mean-nonovershooting control problem of the above sto-
chastic mass-spring-damper system has been studied in [12], this reference only con-
siders the mean-nonovershooting safety control, where the reference trajectories can
be tracked ``from below"" in the asymptotic case, without considering the prescribed-
time mean-nonovershooting control problem. Compared with the design in [12], our
controller (5.12) is characterized by a time-varying blow-up function (5.8) that grows
unbounded towards the terminal time T = 2, which yields limt\rightarrow 2E\{ y(t) - yr(t)\} = 0,
a better and more practical performance than limt\rightarrow \infty E\{ y(t) - yr(t)\} = 0 in [12].

6. Concluding remarks. We have developed a prescribed-time mean-nonover-
shooting design for stochastic nonlinear systems where the matched noise should be
vanishing at a rate that is no slower than linear in the ``time to go"" until the prescribed
time of convergence. This design is applicable to any noise that vanishes strictly before
the prescribed time. In comparison to existing designs, our design has two advantages.
First, we can achieve mean-nonovershooting tracking in prescribed time rather than
asymptotically. Second, our design can deal with multiplicative and additive noise
simultaneously. A new controller is designed to ensure that the closed-loop system
has an almost surely unique solution on [t0, t0 + T ), that the mean of the system
output can prescribe-time track a given trajectory without overshooting, that the
fourth moment of the tracking error between states and derivatives of the reference
trajectory converges to zero in prescribed time, and that all of the states are mean-
square bounded.

For the prescribed-time mean-nonovershooting control of stochastic nonlinear sys-
tems, many important issues are still open and worth investigating. For example,
in Assumption 2, c0,1, c0,2, ci,1, and ci,2 are required to be constants. Such a re-
quirement is a bit conservative since there exist some real-world applications where
\phi (t, x) and \varphi i(t, x) don't satisfy the linear growth condition. Therefore, an impor-
tant future work is generalizing Assumption 2 to a more general form. In addition,
it would be interesting to apply the results in this paper to stochastic benchmark
systems [16].

Appendix A. Useful tools. In this appendix, we collect four lemmas which
are useful in the controller design and safety analysis.

Lemma A.1 ([17]). Let x, y be real variables; then for any positive real numbers
a, m, and n, we have

axmyn \leq b| x| m+n +
n

m+ n

\biggl( 
m+ n

m

\biggr)  - m
n

a
m+n

n b - 
m
n | y| m+n,(A.1)

where b > 0 is any real number.

Lemma A.2 (Fubini's theorem [7]). Let X(t) be a stochastic process 0 \leq t \leq T
(for all t, X(t) is a stochastic variable), with regular sample paths (for all \omega at any
point t, X(t) has left and right limits). Then\int T

0

E| X(t)| dt=E

\Biggl( \int T

0

| X(t)| dt

\Biggr) 
.(A.2)

Furthermore if this quantity is finite, then\int T

0

EX(t)dt=E

\Biggl( \int T

0

X(t)dt

\Biggr) 
.(A.3)
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1204 WUQUAN LI AND MIROSLAV KRSTIC

Lemma A.3 (Dynkin's formula [18]). Let V \in C2,1(Rn \times R+;R+), and let \tau 1, \tau 2
be bounded stopping times such that 0\leq \tau 1 \leq \tau 2 almost surely. If V (x, t) and \scrL V (x, t)
are bounded on t\in [\tau 1, \tau 2] almost surely, then

E[V (x, \tau 2) - V (x, \tau 1)] =E

\biggl\{ \int \tau 2

\tau 1

\scrL V (x, t)dt

\biggr\} 
.(A.4)

Lemma A.4 ([28]). Let x1, . . . , xn, p be positive real numbers; then

(x1 + \cdot \cdot \cdot + xn)
p \leq max\{ np - 1,1\} (xp

1 + \cdot \cdot \cdot + xp
n).(A.5)

Appendix B. Proof of Proposition 1. From (2.6), (3.6), and (3.7) we have

| x\ast 
2| \leq b2

\Bigl( 
\mu | \xi 1| +M

\Bigr) 
,(B.1) \bigm| \bigm| \bigm| \partial x\ast 

2

\partial \mu 

\bigm| \bigm| \bigm| \leq b2,0| \xi 1| ,(B.2) \bigm| \bigm| \bigm| \partial x\ast 
2

\partial \xi 1

\bigm| \bigm| \bigm| \leq b2\mu ,(B.3) \bigm| \bigm| \bigm| \partial x\ast 
2

\partial x1

\bigm| \bigm| \bigm| \leq b2,1\mu ,(B.4)

where b2,0, b2,1, and b2 are positive constants.
By (3.6), (3.25), and (3.26) we get

| x\ast 
3| \leq b3

\Bigl( 
\mu 2| \xi 1| + \mu | \xi 2| +M

\Bigr) 
,(B.5) \bigm| \bigm| \bigm| \partial x\ast 

3

\partial \mu 

\bigm| \bigm| \bigm| \leq b3,0

\Bigl( 
\mu | \xi 1| + | \xi 2| 

\Bigr) 
,(B.6) \bigm| \bigm| \bigm| \partial x\ast 

3

\partial \xi i

\bigm| \bigm| \bigm| \leq b3\mu 
3 - i, i= 1,2,(B.7) \bigm| \bigm| \bigm| \partial x\ast 

3

\partial xi

\bigm| \bigm| \bigm| \leq b3,i\mu 
3 - i, i= 1,2,(B.8)

where b3,0, b3,1, b3,2, and b3 are positive constants.
With the observation of (B.1)--(B.8), for x\ast 

k - 1, we assume that

| x\ast 
k - 1| \leq bk - 1

\biggl( k - 2\sum 
j=1

\mu k - j - 1| \xi j | +M

\biggr) 
,(B.9)

\bigm| \bigm| \bigm| \partial x\ast 
k - 1

\partial \mu 

\bigm| \bigm| \bigm| \leq bk - 1,0

k - 2\sum 
j=1

\mu k - j - 2| \xi j | ,(B.10)

\bigm| \bigm| \bigm| \partial x\ast 
k - 1

\partial \xi j

\bigm| \bigm| \bigm| \leq bk - 1\mu 
k - j - 1, 1\leq j \leq k - 2,(B.11) \bigm| \bigm| \bigm| \partial x\ast 

k - 1

\partial xj

\bigm| \bigm| \bigm| \leq bk - 1,j\mu 
k - j - 1, 1\leq j \leq k - 2,(B.12)

where bk - 1,0, bk - 1,1, . . . , bk - 1,k - 2, and bk - 1 are positive constants.
Next, we prove that (3.39)--(3.42) hold by induction.
By (3.31) we obtain

x\ast 
k = y(k - 1)

r +
2

T

\partial x\ast 
k - 1

\partial \mu 
\mu 3/2 +

k - 2\sum 
j=1

\partial x\ast 
k - 1

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1) - \mu \alpha k - 1\xi k - 1.(B.13)

It can be inferred from (B.9)--(B.13) that (3.39)--(3.42) hold.
This completes the proof of Proposition 1.
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1205

Appendix C. Proof of Lemma 1. Since y(t0)< yr(t0), from (2.3) and (3.1)
we have

\xi 1(t0) = y(t0) - yr(t0)< 0.(C.1)

By (3.6), (3.11), (4.7), and (C.1) we have

\xi 2(t0) = x2(t0) - \.yr(t0) + \alpha 1\xi 1(t0)

\leq x2(t0) - \.yr(t0) + c1\xi 1(t0)

<x2(t0) - \.yr(t0) + \v c1\xi 1(t0)

= 0.(C.2)

By (3.54), (4.5), and (4.8)--(4.9) and using an induction argument, we obtain

\xi k+1(t0) = xk+1(t0) - y(k)r (t0) - 
2

T

\partial x\ast 
k

\partial \mu 
| t=t0 + \alpha k\xi k(t0)

 - 
k - 1\sum 
j=1

\partial x\ast 
k

\partial \xi j
| t=t0( - \alpha j\xi j(t0) + \xi j+1(t0))

\leq xk+1(t0) - y(k)r (t0) - 
2

T

\partial x\ast 
k

\partial \mu 
| t=t0 + ck\xi k(t0)

 - 
k - 1\sum 
j=1

\partial x\ast 
k

\partial \xi j
| t=t0( - \alpha j\xi j(t0) + \xi j+1(t0))

<xk+1(t0) - y(k)r (t0) - 
2

T

\partial x\ast 
k

\partial \mu 
| t=t0 + \v ck\xi k(t0)

 - 
k - 1\sum 
j=1

\partial x\ast 
k

\partial \xi j
| t=t0( - \alpha j\xi j(t0) + \xi j+1(t0))

= 0, k= 2, . . . , n - 1.(C.3)

This completes the proof of Lemma 1.

Appendix D. Proof of Lemma 2. Step 1. We first prove that the plant has
an almost surely unique solution on [t0, t0 + T ).

From (3.59), for every real number T1 satisfying 0 < T1 < T and integer k \geq 1,
there exists a positive constant KT1,k such that

| u(t, x) - u(t, y)| \leq KT1,k| x - y| (D.1)

holds for all t \in [t0, t0 + T1] and all x, y \in Rn with | x| \vee | y| \leq k. Additionally, \varphi i(t, x)
is locally Lipschitz in x. Thus, the plant satisfies the local Lipschitz condition.

By Theorem 3.15 in [18], the plant has an almost surely unique strong solution
x(t) on [t0, \rho \infty ), where \rho \infty = (t0 + T ) \wedge lim\tau \rightarrow +\infty inf\{ t \geq t0 : | x(t)| \geq \tau \} . Next, we
prove \rho \infty = t0 + T almost surely. If this is not true, we can find positive constants \varepsilon 
and T2 (0<T2 <T ) such that

P \{ \rho \infty \leq t0 + T2\} > 2\varepsilon .(D.2)

For each integer k > 0, define

\rho k = (t0 + T )\wedge inf
\bigl\{ 
t : t0 \leq t < t0 + T, | x(t)| \geq k

\bigr\} 
.(D.3)
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1206 WUQUAN LI AND MIROSLAV KRSTIC

Since \rho k \rightarrow \rho \infty almost surely, there exists a sufficiently large integer k0 such that

P \{ \rho k \leq t0 + T2\} > \varepsilon \forall k\geq k0.(D.4)

From (2.5), (2.10), and (4.10) we have

\scrL Vn \leq n\beta n.(D.5)

Fix k\geq k0. For any t0 \leq t\leq t0 + T2, by (D.5) we have

EVn(t\wedge \rho k, x(t\wedge \rho k)) = Vn(t0) +E

\biggl\{ \int t\wedge \rho k

t0

\scrL Vn(\tau ,x(\tau ))d\tau 

\biggr\} 
\leq Vn(t0) + n\beta n(t - t0),(D.6)

where Vn(t0, x(t0)) is abbreviated as Vn(t0).
By (D.6) we get

EVn((t0 + T2)\wedge \rho k, x((t0 + T2)\wedge \rho k)))\leq Vn(t0) + n\beta nT2,(D.7)

which shows that

E\chi \rho k\leq t0+T2Vn(\rho k, x(\rho k))\leq Vn(t0) + n\beta nT2 <+\infty .(D.8)

Define

bk = inf
\Bigl\{ 
Vn(t, x) : | x| \geq k, t\in [t0, t0 + T2]

\Bigr\} 
.(D.9)

By (2.6), (3.1), (3.11), (3.31), (3.32), and (3.62) we have

lim
| x| \rightarrow +\infty 

inf
t\in [t0,T3]

Vn =+\infty \forall T3 \in (t0, t0 + T ),(D.10)

from which, together with (D.9), we obtain

lim
k\rightarrow +\infty 

bk =+\infty .(D.11)

From (D.4) and (D.8) we obtain

Vn(t0) + n\beta nT2 \geq bkP \{ \rho k \leq t0 + T2\} > \varepsilon bk.(D.12)

Letting k\rightarrow +\infty in both sides of (D.12), from (D.11) we obtain

Vn(t0) + n\beta nT2 =+\infty ,(D.13)

which is a contradiction with (D.8). Thus, we have \rho \infty = t0 + T .

Step 2. We then prove (4.12)--(4.14). Choose

V = e
c0

\int t
t0

\mu (s)ds
Vn.(D.14)

From (4.10) and (D.14) we have

\scrL V = e
c0

\int t
t0

\mu (s)ds
(\scrL Vn + c0\mu Vn)\leq \beta n

n\sum 
j=1

\nu 4\sigma j+8j - 6e
c0

\int t
t0

\mu (s)ds
.(D.15)
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1207

Let k be a positive integer. Define the stopping time

mk = inf\{ t : t0 \leq t < t0 + T, | x| \geq k\} .(D.16)

From Step 1, the plant has an almost surely unique solution on [t0, t0 + T ). Thus,
mk \rightarrow +\infty almost surely as k\rightarrow +\infty .

Let tk =mk \wedge t for any t\in [t0, t0 + T ). Noting V (t0, x(t0)) = Vn(t0), with (D.15),
and using Lemma A.3 on the interval [t0, tk], we get

EV (tk, x(tk)) = Vn(t0) +E

\biggl\{ \int tk

t0

\scrL V (\tau ,x(\tau ))d\tau 

\biggr\} 
\leq Vn(t0) + \beta nE

\biggl\{ \int tk

t0

n\sum 
j=1

\nu 4\sigma j+8j - 6(\tau )e
c0

\int \tau 
t0

\mu (s)ds
d\tau 

\biggr\} 

\leq Vn(t0) + \beta n

\int t

t0

n\sum 
j=1

\nu 4\sigma j+8j - 6(\tau )e
c0

\int \tau 
t0

\mu (s)ds
d\tau .(D.17)

Letting k\rightarrow +\infty , using Fatou's lemma, (D.17) can be rewritten as

EV (t, x(t))\leq Vn(t0) + \beta n

\int t

t0

n\sum 
j=1

\nu 4\sigma j+8j - 6(\tau )e
c0

\int \tau 
t0

\mu (s)ds
d\tau .(D.18)

From (D.14) and (D.18) we have

E \{ Vn(t, x(t))\} \leq f(t) \forall t\in [t0, t0 + T ),(D.19)

where

f(t) = e
 - c0

\int t
t0

\mu (s)ds

\left(  Vn(t0) + \beta n

\int t

t0

n\sum 
j=1

\nu 4\sigma j+8j - 6e
c0

\int \tau 
t0

\mu (s)ds
d\tau 

\right)  .(D.20)

By L'Hospital's rule we get

f(t)\sim \beta n

c0

n\sum 
j=1

\nu 4\sigma j+8j - 4 as t\rightarrow t0 + T.(D.21)

This completes the proof of Lemma 2.

Appendix E. Proof of Lemma 3. By (3.62) and Schwarz's inequality we get

\int t

t0

E
\bigm| \bigm| e - \int t

s
\alpha k\mu (\tau )d\tau \xi k+1(s)

\bigm| \bigm| ds= \int t

t0

e - 
\int t
s
\alpha k\mu (\tau )d\tau E| \xi k+1(s)| ds

\leq 
\int t

t0

e - 
\int t
s
\alpha k\mu (\tau )d\tau (E\xi 4k+1)

1/4ds

\leq 
\surd 
2

\int t

t0

\mu ke - 
\int t
s
\alpha k\mu (\tau )d\tau (EVn)

1/4ds.(E.1)

From (2.10) and Lemma 2 we obtain that EVn is bounded on [t0, t0 + T ), which,
together with (E.1), shows that\int t

t0

E
\bigm| \bigm| e - \int t

s
\alpha k\mu (\tau )d\tau \xi k+1(s)

\bigm| \bigm| ds <+\infty (E.2)

holds \forall t\in [t0, t0 + T ), where k= 1, . . . , n - 1.
By (E.2) and Fubini's theorem, in Lemma A.2 we get (4.15).
This completes the proof of Lemma 3.
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1208 WUQUAN LI AND MIROSLAV KRSTIC

Appendix F. Proof of Lemma 4. The proof includes two steps.
Step 1. We first prove E\{ M1(t)\} = 0.
By (3.4) we get

E

\biggl\{ \int t

t0

e - 2
\int t
s
\alpha 1\mu (s)ds| \varphi 1| 2ds

\biggr\} 
=

\int t

t0

e - 2
\int t
s
\alpha 1\mu (s)dsE| \varphi 1| 2ds

\leq 2c21,1

\int t

t0

e - 2
\int t
s
\alpha 1\mu (s)ds\nu 2\sigma 1E\xi 21ds

+ 2(c1,1M + c1,2)
2

\int t

t0

e - 2
\int t
s
\alpha 1\mu (s)ds\nu 2\sigma 1ds

\leq 4c21,1

\int t

t0

e - 2
\int t
s
\alpha 1\mu (s)ds\nu 2\sigma 1

\sqrt{} 
EVn

+ 2(c1,1M + c1,2)
2

\int t

t0

e - 2
\int t
s
\alpha 1\mu (s)ds\nu 2\sigma 1ds.(F.1)

By (2.10) and Lemma 2 we obtain that EVn is bounded on [t0, t0+T ), which, together
with (F.1), shows that

E

\biggl\{ \int t

t0

e - 2
\int t
s
\alpha 1\mu (s)ds| \varphi 1| 2ds

\biggr\} 
<+\infty (F.2)

holds \forall t\in [t0, t0 + T ).
By (4.3) and (F.2) we get E\{ M1(t)\} = 0.
Step 2. We then prove E\{ Mk(t)\} = 0, k= 2, . . . , n.
From (3.45) we get

E

\biggl\{ \int t

t0

e - 2
\int t
s
\alpha k\mu (s)ds

\bigm| \bigm| \bigm| \varphi T
k  - 

k - 1\sum 
j=1

\partial x\ast 
k

\partial xj
\varphi T
j

\bigm| \bigm| \bigm| 2ds\biggr\} 

=

\int t

t0

e - 2
\int t
s
\alpha k\mu (s)dsE

\bigm| \bigm| \varphi T
k  - 

k - 1\sum 
j=1

\partial x\ast 
k

\partial xj
\varphi T
j

\bigm| \bigm| 2ds
\leq \~bk,1

\int t

t0

e - 2
\int t
s
\alpha k\mu (s)ds

k\sum 
j=1

\mu 2(k - j)E\xi 2j ds

+\~bk,1(M + 1)2
\int t

t0

e - 2
\int t
s
\alpha k\mu (s)ds

k\sum 
j=1

\nu 2\sigma j+4j - 4k(s)ds.(F.3)

From (3.62) and Schwarz's inequality we have

k\sum 
j=1

\mu 2(k - j)E\xi 2j \leq 
k\sum 

j=1

\mu 2(k - j)
\sqrt{} 
E\xi 4j \leq 2k\mu 2k - 2

\sqrt{} 
EVn.(F.4)

By Lemma 2 we obtain that EVn is bounded on [t0, t0 + T ), which, together with
(2.10) and (F.3)--(F.4), shows that

E

\biggl\{ \int t

t0

e - 2
\int t
s
\alpha k\mu (s)ds

\bigm| \bigm| \bigm| \varphi T
k  - 

k - 1\sum 
j=1

\partial x\ast 
k

\partial xj
\varphi T
j

\bigm| \bigm| \bigm| 2ds\biggr\} <+\infty (F.5)

holds \forall t\in [t0, t0 + T ).
By (4.4) and (F.5), we get E\{ Mk(t)\} = 0, k= 2, . . . , n.
This completes the proof of Lemma 4.
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PRESCRIBED-TIME MEAN-NONOVERSHOOTING CONTROL 1209

Appendix G. Proof of Theorem 1. By Lemma 2, conclusion (1) holds.
Next, we prove conclusions (2)--(4).
Step 1. We first prove conclusion (2).
By (3.1), (3.32), (3.39), and Assumption 1 we obtain

x2
1 \leq 2(\xi 21 +M2),(G.1)

x2
k \leq 2(\xi 2k + x\ast 2

k )\leq 2kb2k

k - 1\sum 
j=1

\mu 2k - 2j\xi 2j + 2\xi 2k + 2kb2kM
2, k\geq 2.(G.2)

From (G.1)--(G.2), (3.62), and Lemma A.4 we have

| x| 2 \leq \=b

\biggl( n\sum 
j=1

\mu 2n - 2j\xi 2j +M2

\biggr) 

\leq \=b

\biggl( \surd 
n

\biggl( n\sum 
j=1

\mu 4n - 4j\xi 4j

\biggr) 1/2

+M2

\biggr) 
\leq \=b
\bigl( 
2
\surd 
n\mu 2n - 2

\sqrt{} 
Vn +M2

\bigr) 
,(G.3)

where \=b is a positive constant.
By (G.3) and Lemma 2 we get

E| x| 2 \leq 2\=b
\surd 
n\mu 2n - 2E

\sqrt{} 
Vn +\=bM2

\leq 2\=b
\surd 
n\mu 2n - 2

\sqrt{} 
EVn +\=bM2

\leq 2\=b
\surd 
n\mu 2n - 2

\sqrt{} 
f(t) +\=bM2.(G.4)

By (2.10) and Lemma 2 we obtain that \mu 2n - 2
\sqrt{} 
f(t) is bounded on [t0, t0 +T ). From

(G.4) we obtain that the mean-square of the state is bounded. Similarly, with As-
sumption 2, Proposition 1, (3.59), and (G.4) we can prove that the mean-square of
the controller is bounded. Thus, conclusion (2) holds.

Step 2. We now prove conclusion (3).
When k= 1, from (3.1) and Lemma 2 we obtain

E| x1  - yr| 4 \leq E\xi 41 \leq 4EV1 \leq 4f(t).(G.5)

By (2.10), (4.14), and (G.5) we get

lim
t\rightarrow t0+T

E| x1  - yr| 4 = 0.(G.6)

When k\geq 2, by (3.31)--(3.32) and (3.40)--(3.41) we get

| xk  - y(k - 1)
r | \leq 

\bigm| \bigm| \bigm| \xi k + 2

T

\partial x\ast 
k - 1

\partial \mu 
\mu 3/2 +

k - 2\sum 
j=1

\partial x\ast 
k - 1

\partial \xi j
( - \alpha j\mu \xi j + \xi j+1) - \mu \alpha k - 1\xi k - 1

\bigm| \bigm| \bigm| 
\leq \~bk

k\sum 
j=1

\mu k - j | \xi j | ,(G.7)

which, together with Lemma A.4, shows that

E| xk  - y(k - 1)
r | 4 \leq \~b4kk

3
k\sum 

j=1

\mu 4k - 4jE\xi 4j \leq 4\~b4kk
3\mu 4k - 4EV \leq 4\~b4kk

3\mu 4k - 4f(t),(G.8)

where \~bk is a positive constant independent of M .
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1210 WUQUAN LI AND MIROSLAV KRSTIC

It follows from (2.10), (4.14), and (G.8) that

lim
t\rightarrow t0+T

E| xk  - y(k - 1)
r | 4 \leq 4\~b4kk

3 lim
t\rightarrow t0+T

\mu 4k - 4f(t)

\leq 4\~b4kk
3\beta n

c0
lim

t\rightarrow t0+T

n\sum 
j=1

\nu 4\sigma j+8j+4 - 8n

= 0,(G.9)

which shows that

lim
t\rightarrow t0+T

E| xi  - y(i - 1)
r | 4 = 0, 1\leq i\leq n.(G.10)

Step 3. We finally prove conclusion (4).
Noting \alpha n > 0 is a constant, from (2.4), (4.2), and Lemma 4 we get

E\{ \xi n(t)\} = e
 - 

\int t
t0

\alpha n\mu (s)ds\xi n(t0) = e - \alpha nT
2( 1

t0+T - t - 
1
T )\xi n(t0).(G.11)

By Lemma 1 we know that \xi n(t0)< 0, which, along with (G.11), implies that E\{ \xi n\} 
is a nonpositive function satisfying

lim
t\rightarrow t0+T

E\{ \xi n(t)\} = 0.(G.12)

From (4.1) and Lemma 4 we have

E\{ \xi n - 1(t)\} = e
 - 

\int t
t0

\alpha n - 1\mu (s)ds\xi n - 1(t0) +E

\biggl\{ \int t

t0

e - 
\int t
s
\alpha n - 1\mu (\tau )d\tau \xi n(s)ds

\biggr\} 
,(G.13)

which, in view of (2.4), (G.11), and Lemma 3, can be expressed as

E\{ \xi n - 1(t)\} = e
 - 

\int t
t0

\alpha n - 1\mu (s)ds\xi n - 1(t0) +

\int t

t0

e - 
\int t
s
\alpha n - 1\mu (\tau )d\tau E\{ \xi n(s)\} ds

= e - \alpha n - 1T
2( 1

t0+T - t - 
1
T )\xi n - 1(t0) +

\int t

t0
e
\int s
t0

(\alpha n - 1 - \alpha n)\mu (\tau )d\tau \xi n(t0)ds

e
\int t
t0

\alpha n - 1\mu (\tau )d\tau 
.(G.14)

Since \alpha n - 1 and \alpha n are positive constants, by using (G.14) we get

lim
t\rightarrow t0+T

E\{ \xi n - 1(t)\} = lim
t\rightarrow t0+T

\int t

t0
e
\int s
t0

(\alpha n - 1 - \alpha n)\mu (\tau )d\tau \xi n(t0)ds

e
\int t
t0

\alpha n - 1\mu (\tau )d\tau 

= lim
t\rightarrow t0+T

\xi n(t0)

\alpha n - 1\mu (t)e
\int t
t0

\alpha n\mu (\tau )d\tau 

= lim
t\rightarrow t0+T

\xi n(t0)

\alpha n - 1\mu (t)e
\alpha nT 2( 1

t0+T - t - 
1
T )

= 0.(G.15)

From Lemma 1 we obtain that E\{ \xi n - 1\} is a nonpositive function.
By using induction we conclude that E\{ \xi 1(t)\} is a nonpositive function with

lim
t\rightarrow t0+T

E\{ \xi 1(t)\} = 0.(G.16)

Thus, (4.17) and (4.19) hold.
This completes the proof of Theorem 1.
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