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Boundary Control of the Korteweg—de Vries—Burgers with ¢, 6 > 0 and with some initial data
Equation: Further Results on Stabilization and
Well-Posedness, with Numerical Demonstration w(z, 0) = wo(x), « € [0, 1]. @)

Andras Balogh and Miroslav Krstic
Liu and Krstic [11] proposed the control law

Abstract—We consider the Korteweg—de Vries—Burgers (KdVB) equa- 1
tion on the interval [0,1]. Motivated by simulations resulting in modest _ _ : _ -2
decay rates with recently proposed control laws by Liu and Krstic which w(0,8) =0, we(l, 1) =0, wea(l,#) = 5" (1,1, @)
keeps some of the boundary conditions as homogeneous, we propose a
strengthened set of feedback boundary conditions. We establish stability . . .
properties of the closed-loop system, prove well-posedness and illustrate @1d @n improved version of it
the performance improvement by a simulation example.

Index Terms—Global stabilization, Korteweg—de Vries—Burgers equa- w(0, t) =0, wa(1, ) =0, 4
tion, nonlinear boundary feedback control. 1 1 ) .
Wer(1, 1) == { e+ —w?(1, ) Jw(l, t), > 0. (5)
6 9¢
I. INTRODUCTION

The Korteweg—de Vries—Burgers (KdVB) equation is one of the siny!nfortunately, as we shall see in Section Ill, the choicg(1,7) =
plest nonlinear mathematical models displaying the features of bétesults in slow convergence to zero. For this reason, in this paper
dispersion and dissipation. It serves as a model of long waves in shall seek and find a more aggressive boundary condition that also uses
water and some other physical phenomena. The usual and simplest!.?) for feedback:
setting in which the controlled and uncontrolled KdVB equation or

the simpler KdV equation is considered is either the case of periodic w(0, 1) =0 (6)
boundary conditions (see, e.g. Bogtaal. [3], Russel and Zhang [15]) , N
or the case where the spatial domain is the whole real line (see, e.g. we(1, 1) = =g (w(l, 1))
Bi_ler [2], Bonaand S_mith [4]). Asa next_ gtep inthe analysi_s of a system a_l <c + iwz (1, t)) w(l, 1), @)
it is natural to consider the controllability (see, e.g. Rosier [13]) and € 9c
stabilization (see, e.g. Zhang [18]) on a bounded domain. In a recent W (1, 1) = g2(w(l, 1))
work Liu and Krstic [11] consider a boundary feedback stabilization Al 1 2

; L Al ; S le+ —w(l,t)) w(l, ). (8)
problem for a KdVB equation on a finite spatial interval. Our paper is 2 \° + o (1, ’

motivated by simulations that show opportunity for considerable im-

provement of performance relative to the controllers in [11]. In this

paper we propose a more aggressive control law that achieves béfté? clear that, since (7) a.nd (8) are invertiblle functions, .this control
performance. Our control law can be implemented via any of the fdﬁw can be implemented via any of the following three variables at the

lowing three variables actuated at one boundary witheld at zero at 1-boundary(w:, wes), (w, we), (w, wes). .
the other boundanyiu,, w..), (w, w.), (w, w.,). The uncontrolled In order to formulate our problem as an abstract initial value problem
LX) ‘za )y 7y Je fy LW ‘rw ). . . _ 2 _ 1
versions of some of these problems are known not to be asymptoticém? gon5|der Hilbert stC‘?X = L7(0.1), H = H (0. 1), operator
stable. An example of a physical problem where our control law Wouié' (D(A) C X) — X7 given by
be implementable is the water channel setup with boundary actuation
discussed in Rosier [13]. In Section Il we prove the existence and sta- Aw = —ewsp + SWawe + %(w?)x, 9)
bility of solutions of the resulting boundary controlled KdVB equation.
All the details of the calculations, including the ones omitted here due )
to space limitation, can be found at the authors’ web pages. In Sectffifl domain
Il we provide a numerical example.
D(A) = {w e H*(0, 1)|w(0) = 0, w'(1) = —gi(w(1)),
Il. STABILIZATION w' (1) = gg(w(l))}.

Consider the Korteweg—de Vries—Burgers equation

With the above notation our system (1), (2), (6)—(8) can be written in
the form of
Wi — EWey + OWaer +wwz =0, x€][0,1], t>0, (1) ;
% + Aw =0, w(0) = wo. (10)
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2) Global asymptotic and semi-global exponential stability in th&he quadratic terms of (18) are integrated by parts and boundary con-

H'-sense: there exist/ > 0 such that for any) < o < 1 ditions (6)—(8) are used again. For the last cubic term we obtain the
estimate
() 1 < e s YN g (o,
N ; ,

b

-1
1 4 €
Vi > 0. (12) /U W WW .y de < %Hw_r(t)ﬂ + §||'wa,_,(f)|

The same stability statements (reported in [11]) hold with contrgjhere we used the simple inequality|| (. 1) < |lw.||, which

law (4) and (5). Since (11) and (12) are conservative energy estimatggys forw € HZ (0, 1). Introducing the notation
andM is a generic constant, they do not provide a good basis for com-

parison of the two controllers.
It is very important to understand the role of the parametén A(t) = f,wz(l, )+ 1 W (L, t) + [Jwa (8)]] (19)
the H' estimate (12}. The largero, the better the exponential decay € 18ec '
rate is. At the same time the “overshoot,” which is proportional to
1/+/1 — «, is a monotone increasing function of its argumerand e obtain
it blows up ate = 1. This decay rate dependent overshoot coefficient
dominates the estimate on short time intervals, which shows again the

need for numerical comparison. AWM + ellw.e. ()]
Proof: In order to prove the stability results we use energy esti- 4 . .
mates. " ’ Y <M (WP 0+ 0" (1 0+ 0 (1) + e (0]F)
First take theL2-inner product of (1) withu to obtain X (14 A(t)). (20)
/ (Wi = Wy + SWyry + wyw)w de = 0. (13) Omitting the nonnegative second term on the left, using definitions (19)
; - and

Using integration by parts, boundary conditions (6)—(8) and inequalit . . . S
gineg yP Y (6)-(8) a yb(t) =2 (wz(l, O+ w1, 0) +w®(1, 1) + lw(0)]I") (21)

-1
2 1 3 1 4 C 3
Wy dr = —w s < —w A — 1 L. '
/0 waw” dz 3" (L1) < 18¢ " (L 1)+ 2" (Lo (14 furthermore multiplying (20) by?““" we get
we obtain from (13) estimate d ) geet o = met
7 (e*CA(t)) < Mb(t) 4+ Mb(t)e " A(t). (22)

bc

d ‘ . 2 N
Sl + 2efe | + (— + ) w1, 1)

1 25\ .
+ (gt o) wan+

It follows now from Gronwall’s inequality, estimate (17) and the defi-
WB(1, 1) < 0. (15) nition of b(¢) that

81c2¢?

ot
As a first consequence of (15) we obtain, using Poincaré’s inequality, ¢”““A(t) < <-4(0) +/ Mb(7) dT)
0

inequality . "
X <1 —I—/ Mb(7T) exp </ Mb(s) (Is) (]T)
d . . . 0 r
e < =2eflwa (] < =2eflw(®)[, (16) < <A(0) L Mllwoll2>
) 1l—«
S - Qaet M||lwol|*\ M||wo|?
which implies (11). We now multiply (15) by**<*, where0 < a < 1 + [ A0) +
is arbitrary. Integration with respect to time and the use of (11) results l-a l-a
in the inequality x eMllwall®/(1=e) (23)
"t
/ T ((lwa (DI +w(1, 7) +w' (1, 7)) Multiplying (23) by e =2, taking the square root, and using the defi-
0

nition of A(¢) one more time we arrive at the inequality

) et 1
+w’(1, 7)) dr + ¢ *||w(f)||2§1 lwol®>.  (17)

—

lw(®)llsr < k(a)|Jwol| e Nwolzn oot (24)
Next, we take the.?-inner product of (1) with-w,., to obtain

o wherek(«) = M/+/1 — «. This proves (12), the semi-global ex-
_/ (Wi — €Wap + SWapy + WWy )Wy dw = 0. (18) ponential stability in thefl '-sense. Due to the general Sobolev em-
0 bedding theorenH ‘() C C*(Q), which holds fork < ¢ — n/2,

We thank a reviewer and associate editor for suggesting the use of this faC R”, the solutionw(t, «) is continuous and bounded for al> 0
rameter. Our original analysis was fer= 1/2. and allz € [0, 1].
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For completeness we include here an existence proof based onlthderiving (29) we used integration by parts, the boundary conditions
theory of monotone operators with locally Lipschitz perturbations [1and the Cauchy—Schwarz inequality. We exploited the Lipschitz conti-

[6], [16] following the arguments in [10}. nuity of fx, along with Young's inequality and the simple inequality
We consider two operatorsl;: (D(A;) C X) — X given by |0*(1)] < 2|l¢.| |l¢]l. We were able to drop a term containipg
Aiw = —€jwar + dw,. With domain from the estimates due to the monotonicitygef Choosingy = €2 /2

in (29) we obtain thatd, x is monotone both oX and onH x H*
. : for Ax large enough [for example forr > 2K (4K + 1)/e.]. It also
=J{w 3 1 = h . . - .

D(fl‘) ={weH(0. 1) |If”(0) 0 follows that A, x is hemicontinuous. Putting togethdn and.As. x
w(l) =—gi(w(l)), w'(l)=g2(w(l))} we obtain thatdx = A, +A-, x is monotone ok andH x H* and
hemicontinuous o x H™ for largews . The operatotdk is also

and As: (D(A2) C X) — X given by Asw = Aw — eswns + coercive ond x H™ since (28) and (29) imply (with = 0) that

d/dx f(w) with domain

lim 7@&'1'1{ TT’ w) > lim —<'Ar|’ jjiw’ w)
< . wl|—oo w v||—oc w
D(Az) = {w € H*(0, 1) |w(0) = 0 w'(1) = —gs (w(1))}. Il e .
S iz
: 2
) > lim -=——— =
Hereer, e2 > 0O withe; + e2 = e andf(w) = 11)2/2. llell—ee  [wl|
Next we introduce a cut-off function ¢f(y) = y*/2 and obtain the
globally Lipschitz continuous function As aresult, by [1, Corollary 1.3, page 46), the operater: H — H*
(as well asdx — AT) is surjective. Due to this result and the inclusion
v2/2 iy < K H C X C H™,in order to show that the range @f- — A is all of
frly) =< o (25) X, itsuffices to show that if € X andw € H satisfies
K?/2 if|ly| > K

L . . . Agw —dw = f (30)
with Lipschitz constanf.x = K. We define the nonlinear operator

As - corresponding to the cut-off version gf, as
thenw € D(Ag). Expanding and rearranging (30) we get

d
Ao gw = Al — eswyy + TfK(uJ) (26)
dx

d .
—€Wyp + OWans = f+ (A= Ar)w — Eff((u]) €X (31)

for somelx € R with domainD( Az, k) = D(As2).

First we consider the abstract, truncated Cauchy problem and since we already know that; is maximal monotone for
all e, &6 > 0, we obtain thatw € D(A;) = D(Ax). Hence,
dw by Minty’'s Theorem [12] Ax is maximal monotone onY and

— 4+ (Arx = AxDw =0, t>0, w(0)=0 (27) by the Crandall-Liggett Theorem [6] problem (27) has a unique
dt strong solutionwy € C(0, oo; D(Ar)) NC' (0, so; L3(0, 1))

C C(0, oo; H3(0, 1)) NC*(0, oc; L*(0, 1)) forall K > 0.

where Axw = A%w T Ak w = Agw = ewep H0Wase +  Next, we establish the uniform boundedness of the sequence
d/dxfr(w). We will show that problem (27) has a strong solutiony,, . in the same way as thee priori estimates were obtained.
wg forall ¥ > 0, then we obtain a variational solution of the Originabtarting with the identity

problem as the limit ofv, in an appropriate sense, As— . .

We have to show thatlx is m-accretive (maximal monotone or, / (Wit — €WEK po + WK pwe + ([ (WK ))o)wi de =0 (32)
with other words— A is maximal dissipative) oiX in order to use o
the Crandall-Liggett Theorem. First we show the monotonicitylgf W€ estimate the last term as

for somelx € R by showing the monotonicity ofl; and.A., x sep- /1 (fr(wg))wi dx
arately. 0

Using the explicit form of;; andy-, and the fact that they are mono- _ / (Fre (i) ww da
tone functions we obtain |w g | <K

'l / (wh)e de < *lwic (1, 6)
|wg |<K

(Arw — Ao, w—v) > erflw, — v > erlJw—of>.  (28) ] . . ) ) o
and with this we obtain the uniform i a priori estimate (17) forw

-t
As a result we obtain that the operatdr is monotone onX’ and on / T (lwreo (M +wi (1, ) +wk (1, ) +wk (1, 7)) dr
H x H*. Itis also maximal monotone, since its restriction to homo- ~°
. . . . 2avet 2
geneous boundary conditions is a linear, maximal monotone operator. + e ““|Jwk (t)||” <

[|wol|®. (33)

11—«

Similarly We obtain estimate (12) similarly.
Consider now two parametefs, L and the corresponding two so-
(As gw — Ao, kv, w—v) lutionswx , wr, of (27). For their differencer = wx — wr we have
P I" 2-[/'2 : lt — €Wgy 6/ lexx K\ WK v w v = 4
> (e2 = llws = e + (A - ) o —of2. @o) T e B F (i) = (rlwn))e =0 (34)

2See Acknowledgment section at the end of the paper. w(x, 0) =0, w(0, t) =0, (35)
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wy (L, 1) = g1(wr(l, 1)) — g1 (wi (L, t))

=w(l, t)g, (36)
'wx:c(]-p t) IQZ(UJK(lv t)) - gg(’ll.’j_,(l, t))

forall z € [0, 1], ¢ > 0, where

g1 = —9—66 (9 + 11)12{(1, t)+wr (1, Hwr (L, t) + mi(l, 7‘))

(38)
and
N 2 L2
g2 = 31 (9+1L1L(1 t)) +81F21Lv;\»(1, t)
x (wic (L, t) + wr(1, 1)) (wik (1, ) + 18 + w}).
(39)
After taking the inner product of (34)—(37) with we calculate
1
€ / wepw de < CF7||w|]” - —||wr||
0
and

-1
6/ Wepew da
0

-1
§ 1 .
= bwywlyg — 6 / Weply dr
0

2

122 sw(1,1) (81 418 (wi (1, 1) + wi(1, 1))
S¢ 2

+ 162 Fw w?(1, t) (H’A (1, ) —wi(1, t))
bc? 5

+ 16; B} (1 t)lUR(]. f)w (1, t) §UJ (0 t)

2
- g;w (1, Hwi (1, Hwe (1, t).
€2

Here only the last term is not positive definite and it can be estimatadnerew(«, t) € C(

as
2

0 2
92

(1, Hwr (1, Hwr(1, t)
< Cllwel|+ e

Using the notation
Li(t) =C (i + llwka|* + ez |l lwzel))

+ C(lwrell + [l D* (lwors || + llwes )

. . . € .
)l |+ lwze D ] *+ lewzllz-

(40)
we get

d .
Lol + el 1)

-1
< Lo+ [ (s = (Fuwi)))
0
X (wr — wr) dx.
From here, using Gronwall's inequality we have

(I + / g ()] d
0
ot o1
< (Wi )z — g ) (wr —wp)ded
—/0 /0 ((fx(wi)) (fr(we))s) (wy wy,) da dr

x <1+/: Li(7)exp UUT Li(s) (Is} dr).

Since the first factor above converges to zero according to Lemma 1

and the second factor is bounded according to (33), we obtain
l(wr = wr) (B
t 9 K, L—oo
+ / |lwio(T) — wre(7)]]” dT ————— 0.
0
With (41) we obtain that

K—oo

wg ——winC (0, T; L*(0, 1))NL* (0. T5 H'(0, 1)). (42)

(41)
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Taking the inner product of (34)—(37) withw ., we obtain
S|
—/ WiWar do = Glwy, LLL) (||wr|| +w?(1, f)) (43)
0

where0 < G(wx, wr,) depends also on the sign@f/dt)||w..||* and
(d/dl‘,)'wz(l7 t). We also haveé fol WogalWae do = (5/2)102(1, t)go
—(8§/2)w2.(0, t). We obtain

d .
G(wr, mf,)E (||11)vr(7“)||2 +w’(1, 1))

5 N -
< Fw (1, t)g2 +/ (fx(wi))e — (frlwe))e)Wes da
0
which can, in turn, be written as
1 5 .
= (lw= (O +w? (1, 1)
< Lo(t) (Jlwz (O + w* (L, 1))

gl
+ [ Gntwn) = (e do
Q
From here, using Gronwall’s inequality we obtain
s ()17 + w(L. 1)

S /0 /0 ((fl{(u)[())r - (fL(wL))x)w” dx dr

x <1+/: Lo(7) exp UU Lz(s)ds:| dr).

Since the first factor converges to zero according to Lemma 2 and the
second factor is bounded, we obtain

[(wie = wea) (D)]]F =0,
With this we obtain that

S winC (0. T: L*0, 1)) C (0. T; H'(0.1)). (45)

0, T; L*(0, 1)) nC(0, T; H*(0, 1)) is a vari-
ational solution of problem (10) satisfying stability estimates (11) and
(12).

The uniqueness is obtained taking two assumed solutieradw:
and subtracting the corresponding two systems from each other. Then,
using the notatiomw = w; — w» we obtain

ask, L — . (44)

Wi

€,1], t>0,

Wi — €Wgp + Wz + WW1z +wow, =0, =

w(0, t =0,
WL 1) = gr (wa(1. 1)) — g1 (w1 (L, 1) = w(L, 1)
Jxa 17 t) =92 ( 1 t)) - QQ(UJQ(]% t)) = lU(l, t)g?

whereg, andg. have the same form as in (38) and (39) exeeptand

wy, are now replaced by, andw, respectively. The calculations are
also very similar to that of (38) and (39) except the cubic terms that can
be estimated afol wrwi, doe < (|0 jwiel] < Cllwie | |lw])?
+(e/8)|Jw.|? andj(']‘ wowzwdr < Cllwal| [Jwz.] |Jw]|® + (¢/8)
|lw.||*. Then, using notation (40) withv;x andw,, are replaced by

wy andwy we obtain

d
EHw(t)ll2 < Lid)Jw ()] (46)
From here Gronwall's inequality implies
"t
o < ol e ([ 217y ). @7
0

InspectingL; (¢) we observe that it is integrable and sirjeey|| = 0

we obtain that|w(t)|| = 0 for all ¢ > 0, i.e. the solution of (10) is

unique. O
Lemma 1: Under the hypotheses of Theorem 1

bl K, L—x
/ / (fx(wi))e = (fr(we))e)(wx —wy) de dr ———— 0
o Jo
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LTI
W\\egeess
N\

10 t-axis
x-axis x-axis ¥
(©) (d)
Fig.1. Comparison of norms. - uncontrolled,coo controlled second derivative (quadratic), - - - controlled second derivative (cubic), — two derivatives
controlled
. 1/2
for anyt > 0. < t s ()12 dr
Proof: Let us use the notation = wx — w; andQx = {z € =\, "
[0, 1]: [wk (2)| > K}. The measure d can be estimated as . 1/2
mesQic < K *flwrcllfs < 4K Jlwrc.|*lwx®.  (48) ‘ </ / [0l onda dT) '
. . . . . . . 0 K L
where we used the classical multiplicative inequality (55) with=  The poundedness of the first factor above can be obtained integrating
m = 2 andg = 6. We have (20) which holds for alku s uniformly in K. For the second factor we
ot pl
have
/ / (fr(wr))e—(fr(wr))z) (wr —wr,) de dr - [ [
oo / / lwp | |wpe|? da dr
ot N 1/2 it p . 1/2 o Jog\op
< 2</ [|wrz| dT) </ / |wr|* da (lT) (49) 1/2 12
0 0 JQy -t 4 ot . 2
. . . . < lwr|" dedr lwrellpe dr .
where, without loss of generality, we assumed tfaatf“K wi dedr 0 Jag\aL 0
> [0 [, wi dxdr.In (49) the first factor on the right-hand side is (51)
boundedaccording to estimate (33). For the second factor we haveyye already know from inequality (50) of Lemma 1 that the first factor
T lwrc|! da dr on the right hand side of inequality (51) converges to zerf ag —
0 Ja " ' oo. The second factor is estimated with the help of inequality (54) as
K o
-t
= [ llwlfa(mestuey” ar [ el dr < 30w (ol
’ t K—oo rt . 1/2 -
L T ) 0 +M ( [ lweso® dr) Vi max eI 62)
0 0 T ;
Lemma 2: Under the hypotheses of Theorem 1 whereM is a generic constant. Since each expression is finite in (52)
ot gl c for anyt > 0, the result of Lemma 2 follows. O
. K, e
/ / (Fx(wi))e—(fr(we))z)Wwee de dT ————— 0 (50) Lemma3: Foranyw € H'(0, 1) and2 < ¢ < oo we have
0 JO0 «@ —a
for anyt > 0. [wllze < yillwl] + vallwe |* (|l oo (53)
Proof: We have, similarly as in Lemma 1 wherea = 1/2 — 1/¢, v = 2'7* and~, = 2(1/26(*/2) We also

el have
(\WK ) ) — 1 z)Wzxzx d”d B o c X oo 2 2— 2«
// (U (wr)e=(fr(wL))s)wss de dr lwllZa < 22 ]2 4 2537w [P ]2, (54)
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Proof: This is a one-dimensional extension of a classical
inequality (see, e.g., [9, Theorem 2.2, pp 62])

lwlze < Bllws |7 mllwll7*, (55)

which holds forw € W [a, b], m > 1 with w(a) = 0, wherer <
¢ < oo, = ((1/r) = (1/q)) (1 = (1/m) + (1/r)) " andg =
(14 ((m —1)/m)r)~. The proof is very similar to that of [5, Lemma

2.2] and hence it is omitted. O

I1l. A N UMERICAL EXAMPLE

In this section we compare three controllers through a numerical ex-
ample: controller (3), controller (4) and (5) and controller (6)—(8). A
comparison is also made relative to the uncontrolled system consisting
of the KdVB equation (1) and boundary conditions

w(0,t =0, wy(1,t)=wo(l), wex(l,t)=wg(1).

t-axis
The local existence of a solution to the uncontrolled system is obvious @)
and can be proven for example using Galerkin’s method.
As a consequence of the third derivativeriand first derivative irt, 12 T T T T
itis necessary to use very small time step$(~?) in order to balance : f i
the very small number in the denominator resulting from the cube of 10__1‘;',.-;?.,.,,?,‘ o R e

the spatial step. We are able to compensate in a certain extent the very
small time steps by rescaling the equation, i.e. compressing the time . : ; : 5
domain. We consider, from the above reason, the scaled equation ) O S0 0O 15 000N RTINS

e — € gy + 6 Uz + puu, =0, x€[0,1], t>0 (56)
with some initial data

w(x, 0) = uo(x), uw(0) =0 (57)

and in the controlled case with boundary condition

u(0,t) =0 (58)
ug(1,4) = —g <c + %1/2(1, f)) u(l, t) (59)
_r 1 5 : (b)
Uee(1, 1) =5 (et o—u™ (1, 8) ) u(l, 1) (60)
€ 9c

Fig. 2. Comparison of Solutions
where ¢/, &', ¢ and p are positive constants. The transformation
u(x, t) = w(x, pt) shows the equivalence of system (1), (2), (6)—(8)
to (56)—(60) withe = €' /p ands = §'/p.

Our numerical simulation is based on a fully discrete, implicit The authors would like to thank Associate Editor I. Lasiecka for sug-
scheme of second order accuracy, using three time level quadr@@sting, and providing them with detailed technical insight on, the use
approximation in time and central difference scheme in space, deri@cthe method of monotone operators with locally Lipschitz perturba-
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Il. PRELIMINARIES

Let X be Hilbert space anti = R™. We consider abstract linear
continuous-time system defined éh and described by the following
differential equation:

Constrained Approximate Controllability

Jerzy Klamka

x'(t) = Ax(t) + Bu(t) (2.2)
Abstract— In the paper, constrained approximate controllability for
linear dynamical systems described by abstract differential equations \yhere4: X 5 D(A) — X is a generator of a strongly continuous

with unbounded control operator is considered. Using methods of spec- . . v -
tral analysis for linear self-adjoint operators and general constrained semigroup of bounded linear operatéigt): X — X, for¢ > 0.

controllability results given in the paper [20], necessary and sufficient ~ 1he linear control operatdB = [b1, bz, -+, b, -+ -, bu] where
conditions of the constrained approximate controllability for the piecewise b, € X_1,form =1, 2, ---, M is bounded fromR™ into X_;.
polynomial controls with values in a given cone are formulated and proved. Here, X _, isthe completion oX with respectto the norhz|| -1 =
Moreover,_ as |||ustrat|ve_ examples cc_Jns_tramed approximate boun_dary (sI — 44_)71;(,”»{, for somes € p(A), wherep(A) is a resolvent set
controllability of one-dimensional distributed parameter dynamical )

systems described by partial differential equations of parabolic type [OF the operatori. The operator! extends to a generator of a strongly
with Dirichlet and Neumann boundary conditions are investigated. The ~continuous semigrou(¢) on X_,. Furthermore, X C X_, with
constrained controllability conditions obtained in the paper represent an continuous and dense embedding, antl— A)*l is an isomorphism

extension of the unconstrained controllability results given in [5] and [6].  petween the spacéé_; andX . Notice that the above equality defines

Index Terms—Controllability, discrete—time systems, distributed param- ~ €quivalent norms for different € p(A4) and soX—, is independent of
eter systems, linear systems. s. Also, we have the scalar product &h ; given by [19]:

(fo ) x o =((sT = A)7"f. (sI — )" g)peay.
forf,ge X

. INTRODUCTION

In recent years, controllability problems for different kinds of dy-
namical systems have been considered in many publications. The ex- . - . -
L L o " nd it satisfies the identities
tensive list of publications containing more than 500 positions can be

<fe g>X_1 = <f (SI— A)_1g>«\' - <(8I— ‘4)_1]‘.5 g>«\"
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