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We consider the viscous Burgers’ equation under recently proposed nonlinear boundary
conditions and show that it guarantees global asymptotic stabilization and semiglobal
exponential stabilization in H sense. Our result is global in time and allows arbitrary
size of initial data. It strengthens recent results by Byrnes, Gilliam, and Shubov, Ly,
Mease, and Titi, and Ito and Yan. The global existence and uniqueness of classical solu-
tions follows from the general theory of quasi-linear parabolic equations. We include a
numerical result which illustrates the performance of the boundary controller.
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1 INTRODUCTION

Burgers’ equation is a natural first step towards developing methods
for control of flows. Recent references by Burns and Kang [1], Byrnes
et al. [3,4], Ly et al. [12], and Ito and Yan [8] achieve progress in local
stabilization and global analysis of attractors. The problem of global
exponential stabilization in L2 norm was first addressed by Krsti6 [9].
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This problem is non-trivial because for large initial conditions the qua-
dratic (convective) term which is negligible in a linear/local analysis
dominates the dynamics. Linear boundary conditions do not always
ensure global exponential stability [4] or prevent finite blow-up [5] in
the case of nonlinear reaction-diffusion equations. Nonlinear bound-
ary conditions might cause finite blow-up [11], even for the simple heat
equation [7].
With the introduction of cubic Neumann boundary feedback con-

trol we obtain a closed loop system which is globally asymptotically
stable and semi-globally exponentially stable in H norm and, hence in
maximum norm whenever the initial data is compatible with the equa-
tion and the boundary conditions.
For clarity, our treatment does not include external forcing as in

[3,4,8,12]. External forcing would preclude equilibrium stability but
one could still establish appropriate forms of disturbance attenuation
and regularity of solution.

2 PROBLEM STATEMENT AND MAIN RESULTS

Consider Burgers’ equation

Wt eWx + WW O, (2.1)

where e > 0 is a constant, with some initial data

W(x, O) Wo(x). (2.2)

Our objective is to achieve set point regulation

limW(x,t)=Wa, Vx E [0, 1], (2.3)

where Wa is a constant, while keeping W(x, t) bounded for all (x, t)E
[0, 1] x [0, oc). Without loss of generality we assume that Wa >_ O. By
defining the regulation error as w(x,t)= W(x,t)-Wa, we get the
system

wt eWxx + Wawx + WWx O, (2.4)
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with initial data

w(x,O) Wo(x)- wa =_ wo(x). (2.5)

We will approach the problem using nonlinear Neumann boundary
control proposed in [9]

wx(O, t) --el(co+ --Wa + 1 w2(O, t))w(O, t) (2.6)

c,+ (1 t) w(1 t) (2.7)

where Co, c > 0.
The choice of Wx at the boundary as the control input is motivated

by physical considerations. For example, in thermal problems one
cannot actuate the temperature w, but only the heat flux Wx. This
makes the stabilization problem non-trivial because, as Byrnes et al.

[3] argue, homogeneous Neumann boundary conditions make any con-
stant profile an equilibrium solution, thus preventing not only global
but even local asymptotic stability. Even mixed linear boundary condi-
tions can introduce multiple stationary solutions [2].

DEFINITION The zero solution of a dynamical system is said to be
globally asymptotically stable in an E spatial norm if

IIw(t)ll t), vt 0, (2.8)

where 13(., .) is a class 1C. function, i.e., a function with the properties
that

forfixed t, (r, t) is a monotonically increasing continuous function of
r such that 3(0, t) =_ 0;
forfixed r, (r, t) is a monotonically decreasing continuousfunction of
such that limt+oo (r, t) 0.

The trivial solution is said to be globally exponentially stable when

/3(r, t) kr e- (2.9)
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for some k, > 0 independent ofr and t, and it is said to be semi-globally
exponentially stable when

(r, t) K(r) e-6t, (2.10)

where K(r) is a continuous nondecreasingfunction with K(O)- O.

We use the following Hi-like norm in our stability analysis

]]w(t)]] //w(0, t) 2 + w(1, t) 2 + ][Wx(t)[ 2. (2.11)

We refer to [10] for the definition of H61der type function spaces
7-/t([0, 1]) and 7-fl’/2([0, 1] x [0, T]), where/>0 is typically noninteger.
Smooth solutions of system (2.4), (2.6), (2.7) should clearly be compat-
ible with the boundary conditions at t--0 in some sense. For the
definition of compatibility conditions of different order we refer to [10]
again.
Our main result is the following theorem.

THEOREM Consider the system (2.4),(2.6),(2.7). For any T>0,
> O, andfor any wo E 7-/2+([0, 1]) satisfying the compatibility condition

of order [(/+ 1)/2] there exists a unique classical solution w(x,t)
7-/2+’1+/2([0, 1] x [0, T]) C C2’1 ([0, 1] x [0, T]) with thefollowing stabil-
ity properties.

(1) Global exponential stability in the Lq
sense." for any q [2, xz) there

exists 5(q) > 0 such that

w(t)] Ilwol e-6, Vt 0. (2.12)

(2) Global asymptotic and semi-global exponential stability in the H
sense." there exist k, 5 (0, cxz) such that

Ilw(t)l] < kllwollekllwlt e-6t, Vt O. (2.13)

Since 7-/n- Cn for n integer, the theorem assumes initial data
smoother than C2 (but not necessarily as smooth as C3). Specifically,
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the initial data need to satisfy

sup
Iwg(x)- wg(y)l

< (2.14)
x,yE[0,1l IX yl

for some > 0.
For solutions to be classical, besides C2+ smoothness of initial data,

it is required that they satisfy the compatibility condition of order
zero, i.e.,

0+ + wg(0) w0(0)w0(0) -, 5-

e,-+- w(1) wo(1)w(1)
e

(2.15)

(2.16)

3 GLOBAL ASYMPTOTIC STABILITY

While irrelevant for finite-dimensional systems where all vector norms
are equivalent, for PDEs, the question of the type of norm with
respect to which one wants to establish stability is a delicate one. Any
meaningful stability claim should imply boundedness of solutions. We
first establish global exponential stability in Lq for any q E [2, ),
which does not guarantee boundedness. Then we show global asymp-
totic (plus local exponential) stability in an Hi-like sense which, by com-
bining Agmon’s and Poincar6’s inequalities, guarantees boundedness.

Consider the Lyapunov function

V(w(t)) w: dx ]lwp(t)ll 2 IIw(t)ll 2pL2p, P-> 1. (3.1)

Its time derivative is

2p+l] ]2P +lw 0
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=-e2p(2p- 1)llwp-l (t)Wx(t)ll 2

2pwP (O, t) [co + ( ;) Wd2 w(O, t) + (o, )2p+

Wd 22pw2P(1,t) C1 "-[--p-+" 2p+ 1W(1, t)+ --Cl w (1, t)

_<-e2p(2p- 1)llwp-l (t)Wx(t)ll 2 [.w:(,)(_ +2p
co

w2(O’ t))18

(3.2)

From Poincar6’s inequality it follows that

ItwP(t)]l 2 <_ 2(wP(O, t) -+- wP(1, t)) -+-(2p)llwP-(t)Wx(t)ll. (3.3)

Thus we get

< 2p e’V, (3.4)2p

where e’ =min{e, Co, cl}. It then follows that

(3.5)

Thus the solution w(x, t)=_ 0 is globally exponentially stable in an Lq

sense for any q E [2, ). Letting p z in (3.5), we get

ess sup Iw(x, t)l _< ess sup Iw(x,O)l,
xc[0,1l xc[0,1]

Vt > O. (3.6)

This result is not particularly useful for two reasons:

(1) The above estimate does not guarantee convergence to zero (it
guarantees stability but not asymptotic stability).

(2) Without additional effort to establish continuity, with ess sup we
cannot guarantee boundedness for all (but only for almost all)
xE[O, 1].
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For this reason, we turn our attention to the norm defined in (2.11).
By combining Agmon’s and Poincar6’s inequalities, it is easy to see
that

max Iw(x, t)l < x/l w(t)ll.
x[0,1]

(3.7)

We will now prove global asymptotic stability in the sense of the
B-norm. Let us start by rewriting (3.2) for p as

d 2 2 < 0, (3.8)k IIw(t)[I + IIw(t)ll

where k is a generic positive constant independent of initial data and
time, and by writing (3.5) as

iiw(t)ll. e_/llw012. (3.9)

Multiplying (3.8) by et/2k), we get

d (e/<=lllw(t)ll 2) <k + e/<=>llw(t)ll
_< 1/2e-/(l]w011.

Integrating from 0 to yields

2 d- < kllw0119e’l w(-)ll

where 6-- 1/(2k) > 0.
Now we take the L2-inner product of (2.4)with -Wxx,

2 dx Wd WxWxx dxWtWxx dx + e Wxx WWxWxx dx O.
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The estimation of the various terms follows:

WtWxx dx

mWtWx] q-- WxtWx dx

=- d Ilwx(t)ll + e’ cw(1, t)+ w (1, t)

w(O,) ( w w3 )+ ow(O, t) + w(O, t) + (o, t)

(_ (2c0+ Wa)d w4(1 t) + w 2(0, t)2 dt
W2 (1’ t) +

18Cl e 2e

+ i 8coel W4(0 t)+ []Wx(t)ll 2)
1.1Wa WxWxxdx _<_ wdllwx(t)ll Ilwxx(t)ll <_ w ilwx(t)ll

WWxWxx dx <_ IIw(t)l IWxWxxl dx

IIw(t)llllwx(t)llllwxx(t)ll
2 2_< -IIw(t)l llwx(t)ll /-gl Wxx(t)[l

2 2<-Ilwx(t)lll w(t)ll + Ilwxx(t)[I 2

(3.13)

-+-- Wxx(t)[

(3.14)

Using the notation

A(t) c’ w2(1 t)+
e 18ce

(2co + Wa) 2(0,W
4 (1, t) + 2e

w

W4(0, t)+ Ilwx(t)ll,18coe
and substituting (3.13)-(3.15) into (3.12) we obtain

ld
2 dt

e W 2 2
--A(t) + - Ilwxx(t)ll <_ IIw(t)ll / -IIw(t)ll4,

(3.16)

(3.17)
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and hence

;(t) < llw(t)ll + kll w(t)I[A (t). (3.18)

Multiplying by et we get

(3.19)

By Gronwall’s inequality, we get

e6tA(t) < A(O) + k e6llw(_)ll &_ ekfo
<_ [A(0) + kllwoll2]ltwoll. (3.20)

Thus

A(t) < (A(0) + kllwoll)ellwll=e-t
k(llwoll2 + Ilwolln)ellwtte-t

_< kll wol ekllwlle-6t, (3.21)

which implies

ekllwolle-6t/2IIw(t)ll _< kllwolt (3.22)

This proves global asymptotic stability in the sense of the B-norm with

(r, t)= kre’r2e-6t/2. It also shows semi-global exponential stability.
The last estimate also guarantees that

sup max Iw(x, t)l <
t_O xG[O,1]

(3.23)

whenever w(0, 0), w(1,0), and fd Wx(X, 0)2 dx are finite.
The existence of classical solutions follows from Theorem 7.4 in [10],

Chapter V. This Theorem establishes, for a more general quasi-linear
parabolic boundary value problem, the existence of a unique solution
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in the H61der space of functions -[2+l’1+l/2([0, 1] x [0, T]) for some
/>0. Since 7-/2+l’1+t/2([0, 1] x [0, T])c C2’1([0, 1] x [0, T]), we obtain
the existence of classical solutions for time intervals [0, T], where T> 0
is arbitrarily large. The proof in [10] is based on linearization of the sys-
tem, and on application ofthe Leray-Schauder theorem on fixed points.
It is important to note that a crucial step in the proof is establishing
uniform a priori estimates for the system. These estimates are for the
H61der norms of solutions and hence are different from our Sobolev
type energy estimates. The H61der estimates establish boundedness of
solutions, while our energy estimates establish stability. The existence
of strong (but not necessarily classical) solutions was proved in [8]
using a different method.

4 SIMULATION EXAMPLE

It is well known (see, e.g. [2,6]) that nonlinear problems, especially
fluid dynamical problems, require extremely careful numerical analy-
sis. Typically there is a trade-off between convergence, accuracy and
numerical oscillation. This is the case in particular when the initial
data is large relative to the viscosity coefficient e in Burgers’ equation.
Higher order methods are preferred to lower order methods only when
the time and/or spatial step sizes are sufficiently small, where the small-
ness is a delicate question. It is not the purpose of our paper to find the
best approximation scheme for our problem, simply to demonstrate
our theoretical results. Our numerical simulation is based on an uncon-
ditionally stable, fully implicit scheme of second order accuracy, using
three time level quadratic approximation in time and central difference
scheme in space. The simulations were carried out on various plat-
forms using several different numerical packages (OCTAVE, SCILAB,
MATLAB), and they show grid independence for sufficiently small
time and spatial grid.
We consider first Burgers’ equation (2.1) with zero Neumann bound-

ary condition (uncontrolled system) and then the regulation error
system (2.4)-(2.7) with e 0.1 and with initial data Wo(X) Wo(x) Wa,
where Wa= 3 and W0(x)= 20(0.5- x)3. The uncontrolled system is
shown in Fig. l(a). The solution seems to converge to a nonzero
"equilibrium" profile, although it eventually approaches zero, which
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FIGURE Simulations of Burgers’ equation with e--0.1.

could be seen only for >> (in fact, for some initial data, the numer-
ical solution gets trapped into this profile and never converges to zero

[2]). This unsatisfactory behavior is remedied by applying boundary
feedback, as shown in Fig. (b).
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