
Systems & Control Letters 21 (1993) 451-461 451 
North-Holland 

Transient-performance 
improvement with a new class 
of adaptive controllers* 

Miroslav Krsti6 and Petar V. Kokotovi6 
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA 

Ioannis Kanellakopoulos 
Department of Electrical Engineering, University of California, Los Angeles, CA 90024, USA 

Received 10 December 1992 
Revised 3 April 1993 

Abstract." Computable -~2 and La® performance bounds are derived for a recently proposed class of adaptive systems which show that, 
in addition to global stability and asymptotic tracking, a systematic improvement of transient performance can be achieved. The 
underlying linear nonadaptive controller is shown to possess a parametric robustness property, but for a large parameter uncertainty it 
requires high gain. A comparison between the adaptive and the nonadaptive performance bounds demonstrates that adaptation 
improves the overall performance without the undesirable effects of high gain. 
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1. Introduction 

In the absence of disturbances and unmodeled dynamics, the tracking error of most adaptive control 
schemes converges to zero, i.e., they satisfy the asymptotic performance requirement. In applications, 
however, the system's transient performance is often more important. Numerous simulations indicate that 
the transient response of adaptive systems may be unacceptable due to large initial swings. An example was 
presented in [12], where an extremely poor transient behavior occurs together with ideal asymptotic 
performance. It is therefore necessary that in the performance analysis of adaptive systems both transient and 
asymptotic behavior be addressed. Recently, such an analysis of transient performance has led to its 
improvement, suggested in [11] and this is further developed in [-2]. The proposed modifications of adaptive 
controllers render the tracking error arbitrarily small in terms of both mean-square and Z~'~o bounds. This 
important advance is conceptual, because the bounds derived in 1-2] depend on the normalizing signal and 
therefore are not a priori verifiable. Other efforts for estimating or improving transient performance are 
presented in 1-7, 9, 13]. 

In this paper we undertake a performance analysis for a new class of adaptive controllers [5, 6] which 
exhibited a transient behavior superior to other adaptive schemes in simulations. Here we demonstrate that 
the observed improvement of the transient performance is systematic. We prove this by deriving .~e 2 and L~'o~ 
bounds which show that all the error states of the adaptive system can be made arbitrarily small, except for 
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the parameter error 0(t), which is bounded by a constant proportional to 0(0). The performance bounds are 
computable and informative: they are explicit functions of initial conditions and design parameters. Another 
remarkable property of the new class of adaptive controllers is that for a known bound on the uncertain 
parameters the stability can be guaranteed even without adaptation [6]. When the adaptation is switched off, 
the underlying linear nonadaptive controller satisfies 5a~. bounds which can be used for a performance 
comparison with the adaptive controller. The adaptation, although not necessary for stabilization when the 
bounds on the parametric uncertainties are known, results in a smaller 5e~, bound and achieves the asymptotic 
tracking that is not possible with nonadaptive controllers• It is also important that the new adaptive controllers 
avoid the use of high gain by which the nonadaptive controllers counteract large parameter uncertainties. 

2. The new class of adaptive systems 

The control objective is to track asymptotically a reference signal yr(t) with the output y of the plant 

b,,s" + • • . + bls  + bo u(s). (2.1) 
y ( s )=  u ( S ) = s , + a . _ l s ,  l +  . . .  + a l s + a o  

We make the following assumptions about the plant and the reference signal. 

Assumption 2.1. The plant is minimum phase, i.e., the polynomial B(s) = b,.s" + • . • + bis  + bo is Hurwitz, 
and the plant order (n), relative degree (p = n - m), and high-frequency gain b,. are known. 

Assumption 2.2. The reference model is stable, has relative degree p, and its input r(t) is piecewise continuous• 
Its initial conditions y~(O), ~(0)  . . . . .  y~P u(0) are at the designer's disposal. 

To simplify our presentation we will consider the case where the high-frequency gain is known, bm= 1. 
The closed-loop adaptive system designed in [5, 6] consists of the plant (2.1), the input and output filters 

it = Aoq + e ,u  and )t = Ao2 + e.u,  and the parameter update law (2.6) to be defined below, where 
e, v = [0 . . . . .  0,1] and P o A o + A ~ P o  = - I ,  Po = pot >0 ,  i.e., K(s) = s n + k n _ l  sn-1 + • . • + klS  + 
ko ~= d e t ( s l - A o )  is Hurwitz. In our analysis, the states of the closed-loop system are expressed in the 
error coordinates e, ~ [~", 0 ~ ~", ~ ~m, Z ¢ R o, 0 ~ It~ "+". The filter states are represented by the state 
estimation error e, and the output filter state error # = r / -  r/F: 

= Aoe,  (2.2) 

/l = aoO + e , z l ,  0(0) = 0, (2.3) 

where zl = y - YF is the tracking error. The zero dynamics ( of the plant are represented by 

= Ab~ + bbZl, 7(0) = 0, (2.4) 

where ~ = ~ - ~, and PbAb + A~Pb = - I ,  Pb = Pb v > 0. The ideal reference trajectories qr and ~ satisfy itr = 
Aorlr + e.yr and (, = Ab~r + bbyr, respectively, they are not implemented, and their initial values are chosen 
such that F/(0) = 0 and ~(0) = 0. The properties of the closed-loop adaptive system are determined by the 
following pth-order error system: 

Z1 

Z2 

Z3 

24. 

.Zp~ 

-Ol -dl 
- 1  

0 
= 

0 

0 

1 0 0 . . .  0 

- -C 2 --d2(c~oq/c~y)  2 1 + tY23Fw t r24Fto  . . .  a2pFco  

--  1 - - f f 2 3 F w  --(73 -d3(690~2/~y)  2 1 + 0 " 3 4 F ( ~  . . . 0 " 3 p F t ~  

- - t Y 2 4 F w  - 1 - t Y 3 ,  F w  - - c ,  - d , ( ~ a / ~ y )  2 . . . t r , , pFw  

- - t 72pFto  - - 6 3 p F o  - t 7 4 p F 0 9  . . .  - - c  o - dp( t~o~o_l /6~y)2  



M. Krsti~ et al. / Transient performance improvement with a new class of  adaptive controllers 453 

"z~'7 

Z21 

z_~l 
x 

z 4 !  

zp  

11 
+ . ~o~0 

-a~_ ,/ayj I ] + -O~t /Oy ~2, 

 /ey 

(2.5) 

where c~, di > 0 are design parameters, o9 is the 'regressor' to be defined later, a~ and Ooti/Oy a r e  nonlinear 
time varying functions which are smooth in all the state variables and piecewise continuous in time t. The 
parameter update law is 

{zi] I I 0 = - F ~ o  1, Oy . . . . .  Oy 

z 

where F = F r > 0. 
Global uniform stability of the origin of the adaptive system (2.2)-(2.6), and the convergence of the states 

to the manifold M = {z = 0, e = 0, ~ = 0, ~ = 0} were proved in [5] using the complete Lyapunov function 
V = lip + (1/k01~lp2o + (1/k01~l~, kn, k¢ > 0, where I 

1 1 1 
(2.7) 

and (1/do) = Y.~=l (1/dj). 
The closed-loop adaptive system is nonlinear, and is designed as such. However, with the adaptation 

turned off by setting F = 0 in the adaptive law (2.6), the uncertain parameter error 0 is constant, the 
nonlinear terms aijF~o vanish from (2.5) and, as explained in [6], the nonlinear terms Ooq/Oy reduce to known 
constants, so that the whole closed-loop system becomes linear. In Section 3 we analyze the £f2 and .~f~ 
performance of the adaptive system (2.2)-(2.6). We show that the design parameters c~, d~ can be used to 
improve the transient performance. In Section 4 we analyze the .Lf, and mean-square performance of the 
underlying linear system without adaptation. Finally, in Section 5, we use the bounds derived to evaluate the 
advantages of adaptation qualitatively. 

3. Performance of the adaptive system 

In this section we prove that both the *~2 and ~ norms of the states z, ~/, ~ of the adaptive system can be 
made arbitrarily small by a choice of the design parameters cl, dl, F. 

From (2.3) and (2.4) we define transfer functions 

W~(s)&(sI - Ao)-  l e , ,  (3.1) 

W~(s) &(sI -- Ab)- lbb, (3.2) 

and denote the respective impulse responses by wo(t), wE(t ). 

1 Notation: The weighted Euclidean norms for vectors will be denoted by ix 12 = x T Px. The ~o~, ~ 2  and truncated .~°2 norms for signals 
will be denoted by I1" bl~, I1" ll2 and I1 ll2., respectively. The a~f® norms for transfer functions will be denoted by I1" IIo~, and the ,,~O 1 

norms of their impulse responses by II " U l. 
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Theorem 3.1 (ZP2 performance). 
bounded by 

1 
II ll  <_ 

ll will 

1 v,/ o(o}ll 
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The ~ 2  norms o f  the states z, ~l, ~ of  the adaptive system (2.2)-(2.6) are 

(3.3) 

(3.4) 

(3.5) 

1 
IIzll2 ~< ~ 10(0)1, (3.11) 

1 
II qll2 -< ~ 10(0)l II W~ tl ~ ,  (3.12) 

1 
ll~ll2 -< ~ 10(0)1 II w~ II o~. (3.13) 

where II 811 oo, II Will o~ are independent o f  Co = mini <_ k <_ pCk. 

Proof. As shown in [5], the derivative of ~ along the solutions of (2.2)-(2.6) is 

3 
<_ - c o l z l  z - ~ I~12 _< - c o l z l  2 . (3.6) 

Since ~ is nonincreasing, we have 

Io 1 II z I122 = [z(z)[ 2 dr _< - -  [ Vp(O) - Vp(oo)] _< - -  Vp(O), (3.7) 
CO CO 

which implies (3.3). F rom (2.3) and (3.1) we get 

1 
II q 112 -< II w~ II ~ IP zx II 2 -< ~CoCo ~ It w~ II o~ (3.8) 

and, from (2.4) and (3.2) we get 

1 
x/~A0) II W~ II (3.9) - -  o0.  11~[12 -< II W~ll~ IIz1112 - x/~o 

Remark 3.1. We point out  that, al though the initial states z2(0) . . . . .  zp(0) may depend on ci, dl, F (see [5]), 
they are at the designer's disposal. As explained in [5], by appropriately initializing the reference model or the 
filter states, z(0) can be set to zero. The values used in such initialization and e(0), 0(0) are independent of 
c~, d~, F. Therefore, by setting z(0) = 0, we see that 

~(0)  = ~ le(0)l~o + 10(0)It 2 , (3.10) 

is a decreasing function of do and F, independent of Co. 

The possibility to improve performance with the adaptat ion gain is particularly clear in the case e(0) = 0 
and F = ?I, when the 5e2 bounds  of Theorem 3.1 become 
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The error states z, q, ~, e are guaranteed to have good ~e2 performance. This is an improvement over [2-1, 
where only the mean-square tracking error (I/t) Sto [y(z) - yr(z)]2 dr of a modified MRAC scheme was proved 
to be arbitrarily small. 

Another advantage of the bounds derived is that they are computable. The bound for II z IL 2 is explicit, while 
the bound for 11~112 involves II I'V~ II ~ which is known from (3.1). Only the factor II W~II o0 in the bound for the 
zero dynamics II ~112 depends on the unknown parameters bo . . . . .  bin-1. When these parameters belong to 
known intervals, II ~ II ~o can be computed using [1]. 

For a more complete characterization of the performance achieved, we proceed to derive L ~  norm bounds 
for the error states of the adaptive system (2.2)-(2.6). These bounds are also useful for a comparison with 
nonadaptive systems. 

We first give simple bounds on II z II oo and II 0 II o~: 

IIz II ~ < x/2Vp(0), (3.14) 

I[ 0 II ~ < ~ x/~p(O).  (3.15) 

Since ~ _< O, the bound (3.14) follows immediately from 

2 2 
2Vp(t) = Iz(t)l 2 + ~ le(t)leo + 10(t)l~--, -< 2Vp(0), (3.16) 

and the bound (3.15) is obtained by noting that 

1 - 2  
~(-F) 101 -< 101~-~ -< 2Vo(0). (3.17) 

For F = yI, it further follows from (3.15) and (3.16) that 

II011~o -< v/~lz(0)l + I~(0)b,o + 10(0)1. (3.18) 

In this way, II 0 II ~ is explicitly related to initial conditions and design parameters. 

Theorem 3.2 (.~a performance). The ~ norms of the states z, ~, "( of the adaptive system (2.2)-(2.6) are 
bounded by 

1 
Iz(t)[ < ~ M + Iz(0)le -c°', (3.19) 

If/(t)l < M + Iz(0)le -c°' IIw~lll, (3.20) 

I~(t)l < M + Iz(0)l e-C°' IIw~lll, (3.21) 

where 

M = ~  2 x / ~ x / ~ ( 0 )  [llh,oll,(x/2Vo(0) + HYrlloo) + x~,] + ~ I~(0)b,o , (3.22) 

and II wq II1, II w~ I1~, II h,o IIx, xo, are independent of Co, do. 
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Proof. Differentiating ½[z[ 2 = ½zTz along the solutions of (2.5) we get 

[ZI2 = __ ~ CkZ2- ~ dkZ2 (~0~/-1~ 2 P ~ k - 1  
k=l k=l \ ~Y J k=l 

= -- ~ ckz~-- ~ d k [ ( ? ~ ' - ' k = ,  k=x L c~y z, ~dk ~ ]1 ( ~ 1  ) + + 
k=l 

1 
-< -c°lzl  + (3",0 + 

Upon multiplication by e 2¢°t, the last inequality becomes 

d 1 ~T e2)ZeZCot. dt (IzlZe z¢°') < ~o(0  o) + 

Integrating (3.24) over [0, t], we arrive at 

1 fo Iz(t)12 < [z(0)12e-2~°' + ~ 0  e -2~°(' ~) 1-3To9(27) "t- e2(17)'] 2 dr ,  

and from this we obtain 

(3.23) 

(3.24) 

(3.25) 

]z(t)]2 <- Iz(O)12e-ZC°' + 2~o e-2C°" ~ldr sup ]0Too(t) + ez(t)] 2 
t e [0, oc) 

1 
< Iz(0)lZe-2~°' + 4C-~o II~w(° + e2tl2' (3.26) 

which in view of [~2(t)l < [1/_2x/~o)] I~(0)lpo, gives 

1 ( 1 ) 
Iz(t)l _< 2 ~  II011~ Ilcoll~ + ~  I~(0)lPo + Iz(0)le -~°'. (3.27) 

It was shown in [6] that 

[s + kl [sn-1 1], (s + kl)A(s) ~ 1] y + COo(t)gHo,(s)y + ooo(t), (3.28) 
(o = L - 2 i  . . . . .  s, K(s)B(s) Es"- . . . . .  s, 

where I(oo(t)[ _< x,oe -~t is the response due to the initial conditions of the filters q(0), 2(0). Observe that K,o, a 
depend only on the plant and filter parameters and not on Co, do, F. Now, using y = Zl + Yr and (3.14), we get 

I1~o11~ < Ilho, llx(llz~ I1~o + ]lYrllo~) + xo, e -~' < IIh,olll(x/~A0) + IlYrll~o) + Ko,. (3.29) 

Substituting (3.29) into (3.27), and using (3.15) we obtain 

Iz(t)l < 1 ~  21 2-(fJx/~o(0) [ltho, l l , ( x /~ (0 )  + tlYrll~) + ~,o] + - - ~  le(0)leo + Iz(0)le co, 

1 
- -  M + Iz(0)le -¢°'. (3.30) 

From (2.3) we have 

I1~11~ -< Itw~lll HZl Iioo < M + Iz(0)le -c°' IIw~lll, 
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and from (2.4) we have 

II~lf~ -< IIw~l[l Ilzl PI~ --< M + Iz(0)le -c°* Ilwilll. (3.32) 

With the initialization z(0) = 0, the expression (3.10) for Vo(0 ) and (3.22) show that M is a decreasing 
function of do independent of Co~ 

Thus, the entire state z, 0, e, 4, ( is guaranteed to have good ~oo performance. This is an improvement over 
[2-1, where only the tracking error of a modified MRAC scheme was proved to be arbitrarily small. 

Since M in (3.30) depends on Jl ho, II 1, the bounds (3.19)-(3.21) require computation of II ho, Ir 1, II wq JI1 and 
II w~ II 1. Although II h~, II1 and II w~ II 1 depend on uncertain parameters, we can employ the procedure of [1] to 
compute their o~o~ norms and then apply the well-known inequality fly II1 < (2n + 1)ll G II ~, where G(s) is 
a stable transfer function, n its McMillan degree, and #(t) its impulse response. 

Let us now give a special but more revealing form of the above Ne w bounds. 

Corollary 3.1. In the case z(O) = O, e(O) = O, xo, = 0 and F = 71, the ~o~ bounds o f  Theorem 3.2 become 

10(0), ,,h,~llx ( 1 ) 
lizll~ < 2 cx/~odo [[Yrll~o + ~ 1 0 ( 0 ) l  , (3.33) 

10(0)1 "ho, l'l ( 1 ) 
11'711~-< 2 c,,/~o~ Ily, l l ~ + ~ / 0 ( 0 ) l  IIw~lll, (3.34) 

,0(0)l Ilh,ol, l ( ~ ) (3.35, 
II~'lJ~-< 2 c,,/-~odo IlYrll~ + 10(0)1 IIw~/ll. 

The assumption z(0) = 0, e(0) = 0, x,~ = 0 is satisfied in the particular case where the initial conditions of 
the plant and the filter states are zero and the system is driven by r(t). 

The form of bounds in Corollary 3.1 clarifies the dependence of the £~0 performance on the parameter 
uncertainty 10(0)1 and the design parameters Co, do and ?). Any increase in those parameters results in an 
improvement of the Aa~ performance. It is of interest to observe that do, present in the ~o~ bounds 
(3.33)-(3.35), is absent from the La2 bounds (3.11)-(3.13). This is consistent with the 'peak-shaving' ability of 
the nonlinear damping terms observed in [5]. 

4. Performance of the nonadaptive system 

It is of interest to evaluate the performance achievable with the underlying linear controller resulting from 
setting F = 0 in the adaptive system (2.2)-(2.6). Here we investigate the A a  performance and the mean- 
square performance of this nonadaptive system. 

Since the nonadaptive system is linear, without loss of generality we assume that all the initial conditions 
are zero. It is clear that this will not affect the conclusions about stability, and in the performance bounds this 
only amounts to neglecting the exponentially decaying terms. 

Using Theorem 6.1 of [6], the following result is immediate. 

Theorem 4.1 (stability and Nero performance). The nonadaptive (NA)  system (2.2)-(2.5) is asymptotically 
stable for  

2 ~ c o d o  > 101 [Ih~]ll • (4.1) 
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The ~q'~ norms of the states of this system are bounded by 

IOI iLh,olll 
II zNA II oO ~-~ II yr II ~ ,  

2x/codo - [OI  II h,~ II, 

10111h~,lll 
II #NA II ~ ~ 2 cx/~odo _ 10{ [1 ho I{x II Yr 11 oo II w~ II1, 

10111ho, II ~ II ~NA II ~ < II Yr H ~ II W~ II1' 
2x/e0do -10111holl, 

(4.2) 

(4.3) 

(4.4) 

The nonadaptive controller does not, in general, achieve asymptotic tracking, so we cannot  talk about  t~O 2 

performance in this case. However, it is possible to prove that the mean-square performance can be made 
accurate to the desired extent. 

Theorem 4.2 (stability and mean-square performance). The nonadaptive (NA) system (2.2)-(2.5) is asymp- 
totically stable for 

2 cx/~o~o~ > 10111no II ~. (4.5) 

The mean-square values of z, ~, "( are bounded by 

1 ; i  'xl/2 t IzNA(z)I 2 d r )  _< 

({fil~NA(r)12dr)l/2 ~ 

({ fl  I~NA(z)I2 dz) 1/2 , 

10t II/-/~ II ~ 

IIw~llll0111n,o II ~ 

IIw~llll01 ilHo, IIo~ 

II Yr II ~ ,  (4.6) 

II .Yr II ~ ,  (4.7) 

LI yr l[ ~ .  (4.8) 

Proof. For  F = 0, with initial conditions z(0) = 0, e(0) = 0, we proceed from (3.25): 

1Ii Iz(t)l 2 _< ~ e- 2c°(t-t)[OT(D(T)]2 dr .  

Now, integrating (4.9) over [0, t], we get 

fl 'z(Ol2 dr <-2@o fi  [f~ e 2Co(r s)[OT~(s)]2 ds]dr. 

Changing the sequence of integration, (4.10) becomes 

1 ' dz )  ds ~lz(z)lZdZ<~ofoeZC°s[OTog(s)]2(f;e-2C°~ 

1 fo ~1  e-2C°Sds' < ~o eZ~°'[Ox°9(s)]Z 2Co 

because 

(4.9) 

(4.10) 

(4.11) 

fl 1 2cos 1 (e_2CO~e_2~ot)_<~Co e- e-  2co, dr  = 2Co 
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Now, the fact that e2C°Se - 2cos = 1 used in (4.11) yields 

Iz(x)l 2 dr < ~ Io~(z)l 2 dr .  (4.12) 

On the other hand, since H,~(s) is stable and proper, the truncated .ia2 norms of to and z are related as 

]]tol]2.t < [In,ol[o~llYll2,t < [In,o[l~(llzll2,t + [[Yrl[2.,). (4.13) 

From (4.12) and (4.13), by the small-gain theorem, .£a 2 stability is guaranteed for 2 c,~-o~o~ > 101 [[Ho, II ~, and 
the asymptotic stability is argued as in the proof of Theorem 6.1 of [-6]. Substituting (4.13) into (4.12) and 
solving for II z II 2,, = (.[olz(~)l 2 d~) "2, we get 

( f l  Iz(z)[2 ] -< 10[ IIH~, I1o~ II Yr l[ 2., (4.14) 
d~/l/z 2x/codo - 101 ling, l[ 

and (4.6) follows because [I Yr II ~,t = ~o lY~(Z)I 2 dr < Ilyr II ~t. Inequalities (4.7) and (4.8) are immediate from 
(4.6) (recall that ~(0) = 0, ((0) = 0). [] 

Theorems 4.1 and 4.2 provide two different stability conditions (4.1) and (4.5), of which (4.5) is directly 
computable [1] and less conservative because Pl H~, II o0 < II ho, 111. 

Another usual way of expressing performance properties of a linear system is to examine the difference 
between the actual and the desired closed-loop transfer function. In the case of tracking, the desired transfer 
function is y(s)/yr(s) = 1. The actual closed-loop transfer function of the nonadaptive system was derived in 
[6] as 

y(s) 1 
- G ¢ ( s ) =  (4.15) 

fl~(s) ~T Ho,(S) yr(s) 1 + ~z(S) 

In this expression, flz(s)/~:(s) is the transfer function from ~rto to zl in (2.5) when r = 0. This transfer 
function is stable, relative degree one, and with deg a~ = p. Its poles can be placed arbitrarily by using the 
design parameters ci, di. 

Theorem 4.3 (tracking performance). In the nonadaptive system (4.15), the design parameters ci, dl, 1 < i < p 
can be chosen to satisfy, for any 3¢ > O, the following tracking performance specification: 

IG¢(jto) - 1J < 6¢ Vto e R. (4.16) 

Proof. By setting t = go in (4.12) we see that the induced La 2 norm of flz(s)/~z(s) is not greater than 

1/2x/~odo. This in turn means that II/L/~zllo~ -< 1 / 2 ~ ,  which implies I/~z(jto)/~(jto)l-< 1/2x/~odo, 
Vto e R. From (4.15) we now have 

IG¢(jto)- 11 = 

fl~(jog) ~THo(j~) 
~:(jto) 

fl'(Jto) ~TH,o(jgo) I + ~  

1 
2 C~odo I~11[n~'ll~ 

1 ~ 
1 - 2  ~----101Ccodo liB,oil® 

which is less than any 6¢ provided that codo is sufficiently large: 

(1) 
2 cx/~o~o~ > 1 + ~  101rln~ll~. 

(4.17) 

(4.18) 
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As expected, the tracking condition (4.18) is more stringent than the corresponding stability condition (4.5). 

The required value of 2 cx/c~odo is increased by the factor 1 + (1/6~) and tends to infinity as 6~ ~ 0. In this 
sense the underlying linear controller is a 'high-gain' controller which achieves a good tracking performance 
at the expense of an increase of the bandwidth of the dosed-loop system. 

5. Performance improvement due to adaptation 

The global stability and tracking properties of the adaptive system established in [5, 6] and the bounds 
derived in the preceding sections, provide us with a data base for a semiquantitative performance comparison 
of the nonlinear adaptive system and its linear nonadaptive counterpart. 

The stability of the adaptive system is guaranteed to be global for any positive values of the design 
parameters Co, do and F. No a priori information is required about the parameter uncertainty. In contrast, 
the linear controller guarantees stability only if a bound on the parameter uncertainty is known and the value 
of codo is large enough to satisfy the stability condition (4.5). 

Asymptotic tracking is achieved by the adaptive controller for any initial condition, any parameter 
uncertainty and any positive Co, do and F. The tracking error of the linear system can be reduced, but, in 
general, does not converge to zero. To make the tracking error small, the value of codo is required to be large. 
It can be shown that the increase of codo increases the bandwidth, which may be undesirable. 

Transient performance of the adaptive system can be improved over that of the linear system without an 
increase of codo. Performance improvement due to adaptation follows as a corollary from the bounds 
(3.33)-(3.35) and (4.2)-(4.4). We use the superscripts A and NA to denote the quantities in the adaptive and in 
the nonadaptive system, respectively, and assume the same parameter uncertainty, ~NA = ~A(0 ) ~ 0. Then we 
measure the performance improvement due to adaptation using the performance ratio 

10A(0), IIh,oH~ ( 1 ) 
2 CX/7~oA ~ II Yr H ~c,-'b ~ 10A(0)I 

R ~  (5.1) 
[0NA[ [Ih~,[ll 

II y,  JI 
2 ~ x~ c i f a ~ ;  - -  [0NA I II h~ Ill 

between the ~e~ bounds (3.33)-(3.35) and (4.2)-(4.4). The improvement is achieved if the performance ratio is 
small: R u, < R.~, < 1. 

Corollary 5.1. Let the initial conditions of z, g, rl, ), be zero. Then with adaptation gain 

[ 2 ~  - 101 Hho, l,l 12 [012 

R ~ < -  ( 2 ~ - / 0 [  IIh,olll)liYrtl~ ' 

A A _NA,JNA the performance ratio R~e is no greater than [~e < 1. and 2 ~  Rze > 2 ~  - ]OI Hho, lll . . . . .  

(5.2) 

From this corollary we can deduce two further advantages of the adaptive controller. First, the adaptation 
gain ? provides an additional degree of freedom with which the performance can be improved when cAd A and 
cNA~/NA o ~,o are the same. Second, and more important, performance improvements can be achieved even with 

A A ~NA.4NA co do smaller than ~o -o • In the presence of a large parameter uncertainty 0, the nonadaptive controller 
,, _NA/-S-ffKS~ > 0, thus increasing the bandwidth. ,NA~NA sufficiently large to satisfy zx/ci f -ais-  101Llh,,,Ihl must use ~o -o 

From Corollary 5.1 it is clear that with the adaptive controller such an undesirable bandwidth increase can 
be avoided, because when both 0 and ~NA./NA " ~ A  ~o ,,o are large, the condition 2 ~ R . ~  > z x / c i s a i 5  - 
101 tl h,o Ill can be satisfied with cAd A much smaller than cNAdr~ A. This confirms that adaptation is an efficient 
tool for reducing the effects of large parametric uncertainty without unacceptable widening of system 
bandwidth. For small parametric uncertainty, the linear controller is effective. 
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c o d o  The improvemen t  of  pe r fo rmance  due to a d a p t a t i o n  was i l lus t ra ted by s imula t ions  in [6]  for A A = 
c N A 2 N A  0 uo • Whi le  (5.2) shows the per formance  improvemen t  only  beyond  a cer ta in  ~, the s imula t ions  indicate  
that  the per formance  improvemen t  is present  for any  7 > 0. 

6. Conclusions 

O u r  ~2 and  £~'~ bounds  show that  the per formance  of  the new class of  adap t ive  contro l lers  p r o p o s e d  in 
[5, 6] can be made  as good  as desired.  The use of  design pa rame te r s  for improvemen t  of  the t rans ient  
per formance  is systematic .  It is crucial  that  with a d a p t a t i o n  this per formance  improvement ,  in the presence of  
large p a r a m e t e r  uncer ta in ty ,  can be achieved wi thout  large bandwid th  required by the n o n a d a p t i v e  l inear  
control ler .  

The  per fo rmance  b o u n d s  der ived in this p a p e r  are  for the ideal case, i.e., in the absence of  d i s tu rbances  and 
unmode led  dynamics .  The p rob l em of  robus tness  with respect  to such model ing  errors  is yet to be addressed,  
and  robus t  upda te  laws for the new class of  adap t ive  systems will have to be developed.  As in [ 2 - 4 ,  8], it is of  
interest  to s tudy  the pe r fo rmance  of  the new adap t ive  contro l lers  in the presence of  unmode led  dynamics .  
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