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Strong stabilization of the system of linear elasticity by a
Dirichlet boundary feedback

WEI-JIU LIU† AND MIROSLAV KRSTIĆ‡
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In this paper, by using the Nagy–Foias–Foguel theory of decomposition of continuous
semigroups of contractions, we prove that the system of linear elasticity is strongly
stabilizable by a Dirichlet boundary feedback. We also give a concise proof of a theorem
of Dafermos about the stability of thermoelasticity.
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1. Introduction and main result

Throughout this paper, we denote by Ω a bounded domain in R
n with smooth boundary

Γ = ∂Ω of class C2. We write Hs(Ω) for the usual Sobolev space for any s ∈ R. For
s � 0, Hs

0 (Ω) denotes the completion of C∞
0 (Ω) in Hs(Ω), where C∞

0 (Ω) denotes the
space of all infinitely differentiable functions on Ω with compact support in Ω . Let X be a
Banach space and T > 0. We denote by Ck([0, T ]; X) the space of all k times continuously
differentiable functions defined on [0, T ] with values in X , and write C([0, T ]; X) for
C0([0, T ]; X).

We consider the following system of linear and isotropic elasticity:

u′′ − µ∆u − (λ + µ)∇ div u = 0 in Ω × (0, ∞),

u = 0 on Γ × (0, ∞),

u(0) = u0, u′(0) = u1 in Ω ,


 (1.1)

where u(x, t) = (u1(x, t), . . . , un(x, t)), λ, µ are Lamé’s constants satisfying

µ > 0, nλ + (n + 1)µ > 0. (1.2)

By ′ we denote the derivative with respect to the time variable. We let ∆, ∇, div denote
the Laplace, gradient, and divergence operators in the space variables, respectively, and
u(0) and u′(0) denote the functions x → u(x, 0) and x → u′(x, 0), respectively.

The elastic energy of (1.1) can be defined as

E(u, t) = 1

2

∫
Ω

[|u′(x, t)|2 + µ|∇u(x, t)|2 + (λ + µ)| div u(x, t)|2] dx . (1.3)
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Since

E ′(u, t) ≡ 0, (1.4)

the energy E(u, t) is conservative. Therefore, we need a feedback to stabilize system (1.1).
By stabilization we mean that the feedback makes the energy decay to zero as t → ∞.
So far, there have been a lot of contributions to the problem (even for the more general
case: anisotropic elasticity), notably (Alabau & Komornik, 1999; Lagnese, 1983, 1991;
Liu, 1998), to mention a few. However, in all the previous work, Neumann boundary
feedbacks were used. As far as we know, Dirichlet boundary feedbacks have not been
considered for the system of elasticity in the literature although they were used in the wave
equation (see (Lasiecka & Triggiani, 1987)). Therefore, we wish to fill this gap and show
that system (1.1) is strongly stabilizable by a Dirichlet boundary feedback.

In order to find a Dirichlet boundary feedback, let us first consider the system of
elasticity with non-homogeneous Dirichlet boundary condition

u′′ − µ∆u − (λ + µ)∇ div u = 0 in Ω × (0, ∞),

u = ϕ on Γ × (0, ∞),

u(0) = u0, u′(0) = u1 in Ω ,


 (1.5)

and formulate it as an abstract Cauchy problem. In doing so, we define the linear operator
A in (L2(Ω))n by

Au = −µ∆u − (λ + µ)∇ div u, (1.6)

with the domain D(A) = (H2(Ω) ∩ H1
0 (Ω))n . Obviously, A is a positive self-adjoint

operator in (L2(Ω))n . We then define the Dirichlet operator D by

Dϕ = u, (1.7)

where u is the solution of the Lamé system

µ∆u + (λ + µ)∇ div u = 0 in Ω ,

u = ϕ on Γ .

}
(1.8)

It is well known from elliptic theory that

D : Hs(Γ ) → Hs+1/2(Ω) (1.9)

is a linear continuous operator for all real s. Let D∗ denote the adjoint operator of D. Then

D∗ : H−s(Ω) → H−s+1/2(Γ ) (1.10)

is a linear continuous operator for 0 � s � 1
2 . Using the operators A and D, (1.5) can be

formulated as an abstract equation

u′′ = −A(u − Dϕ) on (L2(Ω))n,

u(0) = u0, u′(0) = u1.

}
(1.11)
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If A is extended, with the same symbol, as an operator (L2(Ω))n → [D(A)]′, then (1.11)
can be written in the following perturbation form:

u′′ = −Au + ADϕ on [D(A)]′,
u(0) = u0, u′(0) = u1.

}
(1.12)

In what follows, we denote by (·, ·) and ‖ · ‖ the scalar product and norm of (L2(Ω))n ,
respectively. Set

H = (L2(Ω))n × [D(A1/2)]′. (1.13)

Obviously, we have

[D(A1/2)]′ = (H−1(Ω))n, (1.14)

and the usual norm ‖u‖(H−1(Ω))n is equivalent to ‖A−1/2u‖.
Obviously, in order to stabilize the open loop system (1.12), we have to find a feedback

such that

d

dt
‖(u, u′)‖2

H � 0. (1.15)

But,

d

dt
‖(u, u′)‖2

H = 2Re((u, u′)′, (u, u′))H

= 2Re((u′, −Au + ADϕ), (u, u′))H
= 2Re(u′, u) − 2Re(A−1/2 Au, A−1/2u′)

+2Re(A−1/2 ADϕ, A−1/2u′)
= 2Re(Dϕ, u′). (1.16)

Therefore, the feedback we are looking for should be taken as

ϕ = −D∗u′, (1.17)

since in this case we have

d

dt
‖(u, u′)‖2

H = −2‖D∗u′‖2
L2(Γ )

� 0. (1.18)

By using this feedback, the open loop system (1.12) becomes the following closed loop
system:

u′′ = −Au − ADD∗u′ on [D(A)]′,
u(0) = u0, u′(0) = u1.

}
(1.19)

Setting

Φ = (u, u′), (1.20)

AΦ = (u′, −Au − ADD∗u′), (1.21)
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we can write (1.19) as the following first-order form:

Φ′ = AΦ,

Φ′(0) = (u0, u1)

}
(1.22)

on H, where the domain of the operator A is given by

D(A) = {(u, v) ∈ H : A(u, v) ∈ H}. (1.23)

We define the weak energy Ew(u, t) of (1.19) by

Ew(u, t) = 1
2‖(u(t), u′(t))‖2

H = 1
2 [‖u(t)‖2 + ‖A−1/2u′(t)‖2]. (1.24)

In comparison with definition (1.3) of energy, it is easy to see that there exists a constant
c > 0 such that

Ew(u, t) � cE(u, t). (1.25)

Thus, we call Ew(u, t) weak energy.
The main result of this paper is as follows.

THEOREM 1.1

(i) (Well-posedness) The operator A defined by (1.21) generates a strongly continuous
semigroup eAt of contractions on H and the resolvent operator R(ω,A) is compact
on H for Re ω � 0. Therefore, for any (u0, u1) ∈ H, the feedback system (1.19)
has a unique solution u with

(u, u′) ∈ C([0, ∞);H). (1.26)

Further, the solution orbit

γ (u0, u1) =
⋃
t�0

(u(t), u′(t)) (1.27)

is precompact.
(ii) (Strong stabilization) For any (u0, u1) ∈ H, we have

Ew(u, t) → 0, as t → +∞ (1.28)

for the corresponding solution of the feedback system (1.19).

REMARK 1.1 Due to (1.25), Theorem 1.1 does not imply that the energy E(u, t) defined
by (1.3) is strongly stable. Whether E(u, t) is strongly stable by a Dirichlet boundary
feedback is an interesing open problem.

The rest of the paper is organized as follows. For completeness, in Section 2, we recall
some definitions and theorems from the Nagy–Foias–Foguel theory of decomposition of
continuous semigroups of contractions. Then, in Section 3, we give the proof of our
main result. Finally, in Section 4, as another interesting application of Nagy–Foias–
Foguel theory, we give a concise proof of a theorem of Dafermos: The energy in linear
thermoelasticity converges to zero asymptotically if and only if the eigenvalue problem of
the Lamé system with divergence free has no nontrivial eigenfunction.
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2. Nagy–Foias–Foguel decomposition

For completeness, we recall some definitions and theorems from the Nagy–Foias–Foguel
theory of decomposition of continuous semigroups of contractions.

Let H be a Hilbert space. We denote by (·, ·) and ‖ · ‖ the inner product and norm of
H , respectively.

DEFINITION 2.1 Let H be a Hilbert space. Let S be a linear bounded operator in H and
S∗ its adjoint. We say that a subspace V ⊂ H reduces S if and only if

SV ⊂ V and S∗V ⊂ V . (2.1)

DEFINITION 2.2 A linear bounded operator S in H is

(i) Unitary if

S∗S = SS∗ = I, (2.2)

(ii) Completely non-unitary (cnu) if there exists no subspace other than {0} reducing S
to a unitary operator.

The following is the Nagy–Foias decomposition theorem.

THEOREM 2.3 (Benchimol, 1978) Let H be a Hilbert space and S(t) a continuous
semigroup of contractions on H . Let A be the infinitesimal generator of S(t) with domain
D(A). Then H can be decomposed into an orthogonal sum

H = Hu ⊕ Hcnu, (2.3)

where Hu and Hcnu are reducing subspaces for S(t), such that

(i) the restriction Su(t) = S(t)|Hu of S(t) to Hu is a unitary semigroup;
(ii) the restriction Scnu(t) = S(t)|Hcnu of S(t) to Hcnu is a cnu semigroup;

(iii) this decomposition (where, of course, Hu or Hcnu can be trivial) is unique and Hu
can be characterized by

Hu = {x ∈ H : ‖S(t)x‖ = ‖S∗(t)x‖ = ‖x‖ for all t � 0}. (2.4)

Moreover

Hu = D(A) ∩ Hu. (2.5)

DEFINITION 2.4 A continuous semigroup S(t) on a Hilbert space H is said to be

(i) weakly stable if (S(t)x, y) → 0 as t → +∞ for any x, y ∈ H ;
(ii) strongly stable if ‖S(t)x‖ → 0 as t → +∞ for any x ∈ H .

Set

W = {x ∈ H : S(t)x ⇀ 0 (weakly) as t → +∞}, (2.6)

where S(t)x ⇀ 0 (weakly) as t → +∞ means that (S(t)x, y) → 0 as t → +∞ for any
y ∈ H .

The following is the Nagy–Foias–Foguel decomposition theorem.
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THEOREM 2.5 (Benchimol, 1978) Let H be a Hilbert space and S(t) a continuous
semigroup of contractions on H . Then H can be decomposed into an orthogonal sum

H = Wu ⊕ W ⊥ ⊕ Hcnu, (2.7)

where Wu, W ⊥ and Hcnu are reducing subspaces for S(t), such that

Hu = Wu ⊕ W ⊥, (2.8)

W = Wu ⊕ Hcnu. (2.9)

Further, we have

(i) S(t) is completely nonunitary and weakly stable on Hcnu;
(ii) S(t) is unitary and weakly stable on Wu;

(iii) S(t) is unitary on W ⊥, and ∀x ∈ W ⊥, S(t)x �⇀ 0 and S∗(t)x �⇀ 0 as t → +∞.

Let S(t) be a continuous semigroup on a Banach space X . We define the set γ (x) =⋃
t�0 S(t)x to be the positive orbit corresponding to the initial state x ∈ X . Set

Xb = {x ∈ X : γ (x) is bounded}, (2.10)

Xc = {x ∈ X : γ (x) is precompact}. (2.11)

THEOREM 2.6 (Walker, 1980, p. 179, Theorem 5.2) Let a linear operator A : D(A) → X
be the infinitesimal generator of a continuous semigroup S(t) on a Banach space X .

(i) If there exists a compact linear operator P : X → X such that

Px ∈ D(A) and P Ax = APx for all x ∈ D(A), (2.12)

then x ∈ Xb implies Px ∈ Xc; further, if Xb = X , then R(P) ⊂ Xc, where R(P)

denotes the range of P .
(ii) If Jω = (I − ωA)−1 is compact for some ω > 0, then Xc = Xb.

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we first give some basic properties about the domain D(A)

and the Dirichlet operator D. By (1.9) and (1.10), we deduce that

DD∗ : (L2(Ω))n → (H1(Ω))n . (3.1)

If (u, v) ∈ D(A), then we have v ∈ (L2(Ω))n and A(u + DD∗v) ∈ (D(A1/2))′, and then
u + DD∗v ∈ D(A1/2) = (H1

0 (Ω))n . It therefore follows from (3.1) that u ∈ (H1(Ω))n .
In conclusion, we have

D(A) ⊂ (H1(Ω))n × (L2(Ω))n . (3.2)

On the other hand, we have for u ∈ D(A)

D∗ Au = −µ
∂u

∂ν
− (λ + µ)ν div u on Γ . (3.3)
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In fact, we have

(v, D∗ Au)L2(Γ ) = (Dv, Au)

= −
(

v, µ
∂u

∂ν
+ (λ + µ)ν div u

)
L2(Γ )

− (ADv, u)

= −
(

v, µ
∂u

∂ν
+ (λ + µ)ν div u

)
L2(Γ )

, (3.4)

which implies (3.3).

LEMMA 3.1

(i) The operator A defined by (1.21) is dissipative on H.
(ii) The resolvent operator R(ω,A) of A is compact as an operator on H for any ω with

Re ω � 0.
(iii) The operator (I + ω2 A−1 + ωDD∗) is boundedly invertible on (L2(Ω))n for any ω

with Re ω � 0.

Proof. (i) For any (u, v) ∈ D(A), we have

Re(A(u, v), (u, v)) = Re((v, −Au − ADD∗v), (u, v))H
= Re(v, u) − Re(A−1/2 Au, A−1/2v)

−Re(A−1/2 ADD∗v, A−1/2v)

= −‖D∗v‖2
L2(Γ )

. (3.5)

Thus, A is dissipative.
(ii) We first show that the resolvent R(ω,A) of A exists as an operator on H for any

ω � 0.
If ω = 0, then the resolvent of

A =
(

0 I
−A −ADD∗

)
(3.6)

is given by

A−1 =
( −DD∗ −A−1

I 0

)
. (3.7)

We now consider the case where ω > 0. Since(
I 0

−(1/ω)A I

)
(ωI − A) =

(
I 0

−(1/ω)A I

) (
ωI −I
A ωI + ADD∗

)

=
(

ωI −I
0 (1/ω)A + ωI + ADD∗

)
, (3.8)

we deduce that ωI −A is boundedly invertible on H if and only if (1/ω)A+ωI + ADD∗ is
boundedly invertible on (L2(Ω))n , and then if and only if I +ω2 A−1+ωDD∗ is boundedly
invertible on (L2(Ω))n because A is boundedly invertible on (L2(Ω))n . The latter is true
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since I +ω2 A−1 +ωDD∗ is strictly positive bounded and ω2 A−1 +ωDD∗ is compact on
(L2(Ω))n .

We next show that the resolvent operator R(ω,A) of A exists as an operator on H for
any ω with Re ω > 0. By the dissipativeness of A, we deduce that

‖(ωI − A)(u, v)‖H � ω‖(u, v)‖H, ∀ ω > 0, (3.9)

which implies that

‖R(ω,A)‖ � 1

ω
∀ ω > 0. (3.10)

It therefore follows from (Pazy, 1983, Remark 5.4, p. 20) that

‖R(ω,A)‖ � 1

Re ω
∀ Re ω > 0. (3.11)

It remains to show that R(ir,A) exists for any real number r . By (3.8), it suffices to
show that I + (ir)2 A−1 + ir DD∗ is boundedly invertible on (L2(Ω))n for any real number
r . For this, we first show that the equation

(I + (ir)2 A−1 + ir DD∗)u = 0 (3.12)

has only solution 0. In fact, taking inner product with u, we obtain

‖u‖2 − r2(A−1u, u) + ir‖D∗u‖2
L2(Γ )

= 0. (3.13)

Since ‖u‖2 − r2(A−1u, u) is real, we have

D∗u = 0. (3.14)

It therefore follows from (3.12) that

Au = r2u, u ∈ D(A). (3.15)

By (3.3), we deduce that

µ
∂u

∂ν
+ (λ + µ)ν div u = −D∗ Au = r2 D∗u = 0 on Γ . (3.16)

Consequently, it follows from the unique continuation property of the Lamé system (see
Ang et al., 1998, Corollary, p. 373) that u = 0. Thus, I + (ir)2 A−1 + ir DD∗ is injective.
Further, (ir)2 A−1 + ir DD∗ is compact. Therefore, I + (ir)2 A−1 + ir DD∗ is boundedly
invertible on (L2(Ω))n for any real number r .

Finally, compactness of R(ω,A) follows from the compactness of the embedding of
D(A) into H.

(iii) This is the direct consequence of (ii) and (3.8). �

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1 Part (i) of Theorem 1.1 follows immediately from the Lumer–
Phillips theorem (Pazy, 1983, Theorem 4.3, p. 14), Theorem 2.6 and Lemma 3.1.

To prove part (ii), we apply Nagy–Foias–Foguel’s theory. By Theorem 2.5, H can be
decomposed into an orthogonal sum

H = Wu ⊕ W ⊥ ⊕ Hcnu (3.17)

such that S(t) = eAt is

(i) completely non-unitary and weakly stable on Hcnu;
(ii) unitary and weakly stable on Wu;

(iii) unitary on W ⊥, and for all x ∈ W ⊥, S(t)x �⇀ 0 and S∗(t)x �⇀ 0 as t → +∞.
Since the positive orbit γ (u0, u1) is precompact for every (u0, u1) ∈ H, it follows
that eAt is actually strongly stable on Hcnu. To complete the proof, it suffices to
prove that Hu = Wu ⊕ W ⊥ = {0}. If Hu �= {0}, then, by Stone’s theorem (Pazy,
1983, Theorem 10.8, p. 41), iA is self-adjoint on Hu since eAt is unitary on Hu.
In addition, A−1 is compact on H. Therefore, A must have eigenvalues and the
eigenvalues must be on the imaginary axis. This contradicts Lemma 3.1 (ii). �

REMARK 3.1 It was shown in (Lasiecka & Triggiani, 1987) that the wave equation is
uniformly stabilizable by a Dirichlet boundary feedback. When we tried to apply the
method of (Lasiecka & Triggiani, 1987) to the system of elasticity, we encountered some
difficulties that cannot be handled. Therefore, whether the system of elasticity is uniformly
stabilizable by a Dirichlet boundary feedback or not is an open problem.

4. Proof of Dafermos’s theorem

Consider the system of equations of thermoelasticity

u′′ − µ∆u − (λ + µ)∇ div u + α∇θ = 0 in Ω × (0, ∞),

θ ′ − ∆θ + β div u′ = 0 in Ω × (0, ∞),

u = 0, θ = 0 on Γ × (0, ∞),

u(0) = u0, u′(0) = u1, θ(0) = θ0 in Ω ,




(4.1)

in the absence of external forces and heat sources, where α, β > 0 are the coupling
parameters.

The thermoelastic energy of (4.1) can be defined as

E(u, θ, t) = 1

2

∫
Ω

[
|u′(x, t)|2 + µ|∇u(x, t)|2

+(λ + µ)| div u(x, t)|2 + α

β
|θ(x, t)|2

]
dx . (4.2)

Here we have used the notation

|∇u(x, t)|2 =
n∑

i, j=1

∣∣∣∣ ∂ui

∂x j

∣∣∣∣
2

. (4.3)
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It is easy to verify that

E ′(u, θ, t) = −α

β

∫
Ω

|∇θ(x, t)|2 dx . (4.4)

Therefore, the energy E(u, θ, t) decreases on (0, ∞), but, in general, does not tend to
zero as t → ∞. In fact, Dafermos in his pioneering work Dafermos (1968) obtained the
following famous theorem.

THEOREM 4.1 (Dafermos, 1968) The energy E(u, θ, t) of every solution of (4.1)
converges to zero as t → ∞ if and only if the following eigenvalue problem of the Lamé
system has no non-trivial eigenfunction:

−µ∆φ − (λ + µ)∇ div φ = ω2φ in Ω ,

div φ = 0 in Ω ,

φ = 0 on Γ .


 (4.5)

Theorem 4.1 was originally proved by using LaSalle’s invariance principle. We give
here a new concise proof via Nagy–Foias–Foguel theory.

We introduce a function space as follows:

H = (H1
0 (Ω))n × (L2(Ω))n × L2(Ω). (4.6)

In the sequel, we use the following energy norm on H:

‖(u, v, θ)‖H =
(∫

Ω

[
µ|∇u|2 + (λ + µ)| div(u)|2 + |v|2 + α

β
|θ |2

]
dx

)1/2

(4.7)

for (u, v, θ) ∈ H, which is equivalent to the usual one induced by (H1(Ω))n ×(L2(Ω))n ×
L2(Ω) when (1.2) is satisfied.

Proof of Theorem 4.1 We define the linear operator A on H by

A(u, v, θ) = (v, µ∆u + (λ + µ)∇ div u − α∇θ, ∆θ − β div u′) (4.8)

with domain

D(A) = (H2(Ω) ∩ H1
0 (Ω))n × (H1

0 (Ω))n × (H2(Ω) ∩ H1
0 (Ω)). (4.9)

It is well known that A generates a continuous semigroup S(t) of contractions on H. Thus,
by Theorem 2.5, H can be decomposed into an orthogonal sum

H = Wu ⊕ W ⊥ ⊕ Hcnu, (4.10)

such that S(t) is

(i) completely nonunitary and weakly stable on Hcnu;
(ii) unitary and weakly stable on Wu;
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(iii) unitary on W ⊥, and for all x ∈ W ⊥, S(t)x �⇀ 0 and S∗(t)x �⇀ 0 as t → +∞. Since
Jω = (I −ωA)−1 is compact on H for all ω > 0, by Theorem 2.6, the positive orbit
γ (u0, u1, θ0) is precompact for every (u0, u1, θ0) ∈ H. Therefore, S(t) is actually
strongly stable on Hcnu and Wu. But S(t) is also unitary on Wu. This implies that
‖S(t)(u0, u1, θ0)‖H ≡ ‖(u0, u1, θ0)‖H for all t � 0 and (u0, u1, θ0) ∈ Wu. Thus,
we have Wu = 0. Consequently, Hu = W ⊥. Hence, the energy E(u, θ, t) of every
solution of (1.1) converges to zero as t → ∞ if and only if Hu = {0}.

We now want to identify Hu and Hcnu. Let the energy E(t) = E(u, θ, t) of system (4.1)
be defined by (4.2). By a straightforward calculation, we obtain

E ′(t) = −α

β

∫
Ω

|∇θ(x, t)|2 dx . (4.11)

It follows therefore from Theorem 2.3 that

Hu = {(u0, u1, θ0) ∈ H : E(t) ≡ E(0)}
= {(u0, u1, θ0) ∈ H : E ′(t) ≡ 0}
= {(u0, u1, θ0) ∈ H : ∇θ ≡ 0 on Ω × (0, ∞)}
= {(u0, u1, θ0) ∈ H : θ ≡ 0 on Ω × (0, ∞)}. (4.12)

Thus, by (4.1), we deduce that (u0, u1, θ0) ∈ D(A) ∩ Hu if and only if

u′′ − µ∆u − (λ + µ)∇ div u = 0 in Ω × (0, ∞),

θ = div u′ = 0 in Ω × (0, ∞),

u = 0 on Γ × (0, ∞),

u(0) = u0, u′(0) = u1, θ(0) = θ0 in Ω ,




(4.13)

and then

−(λ + 2µ)∆ div u = 0 in Ω × (0, ∞)· (4.14)

From (4.13) and (4.14), we conclude that

D(A) ∩ Hu = {(u0, u1, 0) ∈ D(A) ∩ H : ∆ div u0 = 0, div u1 = 0}. (4.15)

We denote by ν the unit normal on Γ directed towards the exterior of Ω . It therefore follows
from (Temam, 1977, Theorem 1.4, p. 15) that

Hu = D(A) ∩ Hu

= {(u0, u1, 0) ∈ H : ∆ div u0 = 0, div u1 = 0, u1 · ν|Γ = 0}, (4.16)

and

Hcnu = {(u0, u1, θ0) ∈ H : curl u0 = 0, u1 = ∇ p, p ∈ H1(Ω)}. (4.17)

It is clear that Hu = {0} if and only if D(A) ∩ Hu = {0}, and if and only if (4.13) has no
non-trivial solution. Further, it is easy to see that (4.13) has no non-trivial solution if and
only if the eigenvalue problem (4.5) has no non-trivial eigenfunction. This completes the
proof of Theorem 4.1. �
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As a by-product of the above proof, we obtain the following.

THEOREM 4.2 Let S(t) be the continuous semigroup of contractions generated by system
(4.1) on H. Let Hu and Hcnu be given by (4.16) and (4.17), respectively. Then H can be
decomposed into an orthogonal sum

H = Hu ⊕ Hcnu

such that Hu and Hcnu are reducing subspaces for S(t) and

(i) the restriction Su(t) = S(t)|Hu of S(t) to Hu is a unitary semigroup and
conservative;

(ii) the restriction Scnu(t) = S(t)|Hcnu of S(t) to Hcnu is a cnu semigroup and strongly
stable.

Theorem 4.2 shows that if the initial data (u0, u1, θ0) ∈ Hu, then θ ≡ 0. Hence
no thermal damping exists in the elastic body, and consequently the energy E(t) is
conservative.

In Dafermos (1968), it was pointed out that (4.5) has no non-trivial eigenfunction
‘generically’ for smooth domains. However, when Ω is a ball, (4.5) does have non-trivial
eigenfunctions (see (Lions & Zuazua, 1996, p.228)).
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