Extremum Seeking for Traffic Congestion Control With a Downstream Bottleneck

This paper develops boundary control for freeway traffic with a downstream bottleneck. Traffic on a freeway segment with capacity drop at outlet of the segment is a common phenomenon that leads to traffic bottleneck problem. The capacity drop can be caused by lane-drop, hills, tunnel, bridge, or curvature on the road. If incoming traffic flow remains unchanged, traffic congestion forms upstream of the bottleneck since the upstream traffic demand exceeds its capacity. Therefore, it is important to regulate the incoming traffic flow of the segment to avoid overflowing the bottleneck area. Traffic densities on the freeway segment are described with the Lighthill–Whitham–Richards (LWR) macroscopic partial differential equation (PDE) model. The incoming flow at the inlet of the freeway segment is controlled so that the optimal density that maximizes the outgoing flow is reached and the traffic congestion upstream of the bottleneck is mitigated. The density and traffic flow relation at the bottleneck area, usually described with fundamental diagram, is considered to be unknown. We tackle this problem using extremum seeking (ES) control with delay compensation for the LWR PDE. ES control, a nonmodel-based approach for real-time optimization, is adopted to find the optimal density for the unknown fundamental diagram. A predictor feedback control design is proposed to compensate the delay effect of traffic dynamics in the freeway segment. In the end, simulation results are obtained to validate a desired performance of the controller on the nonlinear LWR model with an unknown fundamental diagram. [DOI: 10.1115/1.4048781]

1 Introduction

When there are uphills, curvature or lane-drop further downstream on freeway, a bottleneck with capacity drop appears, leading to a reduction of the total discharging flow rate from the bottleneck area and delay of travel time for the upstream traffic. Traffic congestion then forms upstream of the bottleneck as the upstream demand increases during the peak hour [1–4].

Various models have been proposed to describe the capacity drop phenomenon of the bottleneck including the first-order traffic flow models [5], discontinuous fundamental diagram in Ref. [6], and kinematic wave model in Ref. [7], which usually assume some prior knowledge of the traffic condition at the bottleneck area. The fundamental diagram of the bottleneck area is incorporated with the upstream traffic dynamics, which has been modeled with the Lighthill–Whitham–Richards (LWR) model, a first-order macroscopic partial differential equation (PDE) in Ref. [8], the cell transmission model in Ref. [2], and the link queue model in [3]. In this paper, we consider a freeway segment with a bottleneck located at the outlet where the road capacity drops in the bottleneck area. The traffic flow is conserved through the bottleneck. We adopt the LWR-based model proposed in Ref. [9] due to its neck area. The traffic flow is conserved through the bottleneck.

The traffic bottleneck congestion problem has been tackled by various traffic control approaches in recent years. Many studies focus on developing control strategies for ramp metering and variable speed limit (VSL) to avoid the capacity drop and to maximize the discharging flow rate at the bottleneck. Proportional-integrator local ramp metering strategy was developed by Wang et al. [10] to improve the performance of downstream mainline traffic flow when there is a distant downstream bottleneck. Control of lane-drop bottleneck by VSL was explored by Jin and Jin [3]. Authors approximated the LWR with discretized ordinary differential equation link queue model. A proportional-integrator-derivative controller and a three-state model with traffic control strategy was then developed for the VSL control strategy. In Ref. [2], the VSL control design was proposed to maximize the traffic flow at an active bottleneck using model predictive control approach. The density dynamics is described with the cell transmission model. The PDE boundary control of traffic with lane-drop problem was investigated by Bekiaris-Liberis and Krstic [8]. Authors approximated the LWR model with discretized ordinary differential equation link queue model. A proportional-integrator-derivative controller is then developed for the VSL control strategy. In Ref. [2], the VSL control design was proposed to maximize the traffic flow at an active bottleneck using model predictive control approach. The density dynamics is described with the cell transmission model. The PDE boundary control of traffic with lane-drop problem was investigated by Bekiaris-Liberis and Krstic [8]. The traffic dynamics on a stretch of freeway upstream of the bottleneck area is governed by the LWR model. The predictor feedback control law is designed for the ramp metering at the inlet of the freeway so that the density at bottleneck area is regulated to a desired equilibrium. The emerging Lagrangian sensing and actuation with connected autonomous vehicles have been intensively studied in recent years [3,11–15]. The new control strategies are developed to emulate and improve the traditional ramp metering and VSL through the increased mobility and connectivity of the freeway traffic. In this work, boundary control of traffic with ramp metering and VSL in the presence of downstream bottleneck is studied.

We apply extremum seeking (ES) control, a nonmodel-based real-time adaptive control technique, in order to find the unknown optimal density at the bottleneck. The delay effect of the upstream traffic is compensated in designing ES control. ES control has been intensively studied over the recent years [16–31], especially after the theoretical work by Krstic and Wang [24] proving the convergence of cost function to a neighborhood of the optimal density.
value by means of averaging analysis and singular perturbation. ES approach relies on a small periodic excitation, usually sinusoidal to disturb the parameters being tuned and the effect of the parameters is then quantified by the output of a nonlinear map. The search of the optimal value is therefore generated. Oliveira et al. [27] considered the problem of ES control in the presence of delays and proposed a predictor-based feedback for delay compensation, which is applied in this paper. The ES control algorithms have been applied to many applications including electromechanical valve actuators [32], in fuel-cell power maximization [33] and in trajectory optimization of high-degrees-of-freedom robot [34]. Despite the large number of previous work, the ES control has never been applied in traffic problem.

Our contribution lies in the following aspects: this is the first work on ES control of traffic governed by LWR PDE model in the presence of an unknown downstream bottleneck. The optimal density input at the inlet of the freeway segment is achieved by estimating the unknown nonlinear map at the outlet. ES control with delay compensation is first adapted to this traffic problem. The traffic dynamics is represented by a linearized LWR model in the theoretical analysis, but the simulation of ES control design is conducted on the nonlinear LWR model.

The outline of this paper: we introduce in Sec. 2 the LWR PDE model for the freeway segment upstream of bottleneck and describe density-flow relation at bottleneck with a nonlinear map. Section 3 presents the design of ES control with delay and stability analysis is conducted for the closed-loop system using backstepping transformation and averaging approach. In Sec. 4, simulation is performed on the nonlinear LWR PDE model and a quadratic fundamental diagram is considered. The conclusion and discussion of future work are given in the end.

2 Problem Statement

We consider a traffic congestion problem on a freeway-segment with lane-drop bottleneck downstream of the segment. The freeway segment upstream of the bottleneck and the lane-drop area are shown in Fig. 1, which illustrates the clear “Zone C” and the bottleneck “Zone B,” respectively. The flow is conserved through the clear Zone C to the bottleneck Zone B. The local road capacity is changed due to the lane-drop in Zone B, which could be caused by working zone, accidents, or lane closure. To prevent the traffic in Zone B overflowing its capacity and then causing congestion in the freeway segment, we aim to find out the optimal density of Zone C that maximizes outgoing flux of Zone B. Traffic dynamics in Zone C is described with the macroscopic LWR traffic model for the aggregated values of traffic density. Due to the reduction of lanes in Zone B, the fundamental diagram for the flow and density relation usually change which leads to a capacity drop in Zone B, the fundamental diagram for the flow and den-

\[Q_C(\rho) = \frac{v \rho}{\rho_m^2} + v \rho \rho \]

A critical value of density segregates the traffic into the free flow regime whose density is smaller than the critical value and the congested regime whose density is greater than the critical value. The critical density is \(\rho_c = \rho_m / 2 \) for Eq. (2). In practice, the quadratic fundamental diagram sometimes does not fit well with traffic density-flow field data. For the fundamental diagram calibrated with the freeway empirical data, the critical density usually appears at 20% of the maximum value of the density [35,36].

There are several other equilibrium models, e.g., Greenshield model, Underwood model, and diffusion model, for which the fundamental diagrams are nonlinear functions. According to Taylor expansion, second-order differentiable nonlinear function can be approximated as a quadratic function in the neighborhood of its extremum. The following assumption is made for the nonlinear fundamental diagram. The stability results derived in this paper hold locally for the general form of fundamental diagram \(Q(\rho) \) that satisfies the following assumption. Other density-flow models for the fundamental diagram can also be adopted \(Q(\rho) \) but need to satisfy Assumption 1.

Assumption 1. The fundamental diagram \(Q(\rho) \) is a smooth function, and it holds \(Q'(\rho_c) = 0, Q''(\rho_c) < 0 \).

Under Assumption 1, the fundamental diagram can be approximated around the critical density \(\rho_c \) as follows:

\[Q(\rho) = q_c + \frac{Q''(\rho_c)}{2}(\rho - \rho_c)^2 \]

where \(q_c = Q(\rho_c) \) is defined as the road capacity or maximum flow, with \(Q''(\rho_c) < 0 \).

2.2 Lane-Drop Bottleneck Control Problem

Due to the reduction of the number of the lanes from Zone C to Zone B, we consider the equilibrium density-flow relation of Zone B as shown in Fig. 2, as pointed out in Ref. [9]. There is a capacity drop of \(Q_B \) in Zone B compared to \(Q_C \) in Zone C after the congestion has formed upstream of the lane-drop area. The capacity drop caused by a sudden lane-drop is hard to measure in real-time and the traffic dynamics of Zone B are affected by the lane-changing and merging activities. Therefore, we assume that the fundamental diagram \(Q_B(\rho) \) of Zone B is unknown. In Fig. 2, the capacity is

\[\Delta C = Q_C(\rho) - Q_B((1 + \delta)\rho^*) \]

\[q^* = Q_C(\rho^*) = Q_B((1 + \delta)\rho^*) \]

where the capacity drop \(\Delta C \) is unknown. The \(\rho^* \in \mathbb{R}^+ \) represents the optimal density that keeps Zone C in the free regime while \((1 + \delta)\rho^* \) reaches the critical density of Zone B so that the discharging flow rate reaches its maximum value \(q^* \in \mathbb{R}^+ \). The ratio \(\delta \) accounts for the density discontinuity before the outlet in Zone C and after the outlet in Zone B. We assume that \(\Delta C \) and \(\delta \) are unknown and therefore the optimal density and flow rate \((\rho^*, q^*) \) are unknown.

When there is a lane-drop bottleneck appearing downstream, the density at the outlet of Zone C is \(\rho(L, t) \) governed by the PDE

\[\partial_t \rho + \partial_x (Q_C(\rho)) = 0 \]
in Eq. (1) for \(x \in [0, L] \), \(t \in [0, \infty) \). The inlet boundary flow is
\(q_{in}(t) = Q_{C}(\rho(0, t)) \). The output measurement of traffic flow in Zone B, \(q_{out}(t) \) is given by \(Q(\rho) \) with outlet density \(\rho(L, t) \),
\(q_{out}(t) = Q(\rho(L, t)) \), where the function \(Q(\rho) \) of outlet boundary x = L connecting Zone C and Zone B is defined as follows:

\[
Q(\rho(L, t)) = \begin{cases}
Q_{C}(\rho(L, t)), & \rho(L, t) < \rho^* \\
Q_{C}(\rho^*) = q^* = Q_{B}(1 + \delta)\rho^*), & \rho(L, t) = \rho^* \\
Q_{B}(1 + \delta)\rho(L, t)), & \rho(L, t) > \rho^*
\end{cases}
\]

(5)

so that the flow is conserved through the boundary connecting Zone C to Zone B. Note that when the optimal density \(\rho^* \) is reached, the flow rate at the outlet of Zone C and the input of Zone C reaches the equilibrium and its maximum value \(q^* \).

The control objective is to design the traffic flow input \(q_{in}(t) \) so that the outgoing flow in lane-drop area Zone B \(q_{out}(t) \) is maximized. We aim to find the optimal outlet density \(\rho(L, t) = \rho^* \) that maximizes \(q_{out}(t) \) of Zone B and then use the LWR PDE governing the dynamics of Zone C to obtain the desirable flow input \(q_{in}(t) \) from the inlet of Zone C. Here we assume that we approximate \(q_{out}(t) \) with a function that satisfies Assumption 1 and \(q_{out}(t) \) can be written as

\[
q_{out}(t) = q^* + \frac{H}{2} (\rho(L, t) - \rho^*)^2
\]

(6)

where \(H < 0 \) is the unknown Hessian of the approximated static map \(q_{out}(t) \).

Note that we use a static fundamental diagram to model the traffic in the bottleneck Zone B. The upstream propagating traffic waves from Zone B to Zone C cannot be captured by our model if Zone B is near bumper to bumper congestion. Since this result is focused on maximizing the discharging flow rate at the bottleneck area and the ES control seeks the optimal traffic density value in its neighborhood. In bottleneck Zone B, the closer the traffic density \(\rho(L, t) \) to the optimal value \(\rho^* \) where \(Q'(\rho^*) = 0 \) is satisfied, the propagating characteristic speed of the traffic waves \(Q'(\rho) \) is smaller. Therefore, the spill-back traffic propagating from Zone B to Zone C is negligible in our model.

In order to find the unknown optimal density at the bottleneck area, we design ES control for the unknown static map \(Q(\rho) \) with actuation dynamics governed by a nonlinear hyperbolic PDE in Eq. (1). For the control input design, we linearize the nonlinear PDE and then can represent the traffic dynamics with delay effect.

2.3 Linearized Reference Error System. We linearize the nonlinear LWR model around a constant reference density \(\rho_r \in \mathbb{R}^+ \), which is assumed to be close to the optimal density \(\rho^* \). Note that the reference density \(\rho_r \) is in the free regime of \(Q(\rho) \) of Zone C thus is smaller than the critical density \(\rho_c \), and therefore the following is satisfied \(\rho_r < \rho_c \). Define the reference error density as

\[
\tilde{\rho}(x, t) = \rho(x, t) - \rho_r
\]

(7)

and reference flux \(q_r \), \(q_r = Q(\rho_r) > 0 \). By the governing Eq. (1) together with Eq. (2), the linearized reference error model is derived as

\[
\partial_t \tilde{\rho}(x, t) + u \partial_x \tilde{\rho}(x, t) = 0
\]

(8)

\[
\tilde{\rho}(0, t) = \rho(0, t) - \rho_r
\]

(9)

where the constant transport speed \(u \) is given by \(u = Q'(\rho)|_{\rho=\rho_r} = V(\rho_r) + \rho_r V'(\rho)|_{\rho=\rho_r} \). The equilibrium velocity-density relation \(V(\rho) \) is a strictly decreasing function. The reference density \(\rho_r \) is in the left-half plane of the fundamental diagram \(Q(\rho) \) which yields the following inequality for the propagation speed \(u, u > 0 \). We define the input density as \(\tilde{q}(t) = \rho(0, t) \), and the linearized input at inlet is

\[
\tilde{q}(t) = q(t) - \rho_r
\]

(10)

The linearized error dynamics in (8) and (9) is a transport PDE with an explicit solution for \(t > (x/u) \) and thus is represented with input density \(\tilde{\rho}(x, t) = \tilde{q}(t - \frac{x}{u}) \).

The density variation at outlet is

\[
\tilde{\rho}(L, t) = \tilde{q}(t - D)
\]

(11)

where the time delay is \(D = (L/u) \). Therefore, the density at outlet is given by a delayed input density variation and the reference

\[
\rho(L, t) = \rho_r + \tilde{\rho}(L, t)
\]

(12)

Finally, substituting (11) and (12) into the static map (6), we arrive at the following:

\[
q_{out}(t) = q^* + \frac{H}{2} (\tilde{\rho}(t - D) + \rho_r - \rho^*)^2
\]

(13)

\[
= q^* + \frac{H}{2} (\tilde{q}(t - D) - \rho^*)^2
\]

The control objective is to regulate the input \(q_{in}(t) \) so that \(\tilde{q}(t - D) \) reaches to an unknown optimal \(\rho^* \) and the maximum of the uncertain quadratic flux-density map \(q_{out}(t) \) can be achieved. We can apply the method of extremum seeking for static map with delays developed in Ref. [27]. The extremum seeking control is designed for finding the extremum of the unknown map.

In practice, control of density at inlet can be realized with a coordinated operation of a ramp metering and a VSL at inlet, which is widely used in freeway traffic management [37–43]. The controlled density at inlet is implemented by \(\tilde{q}(t) = (q_{in}(t)/v_i) \) where \(v_i \) is the speed limit implemented by VSL and \(q_{in}(t) \) is actuated by an on-ramp metering upstream of the inlet. Note that the
linearized model is valid at the optimal density \(\rho^* \) since the reference density is assumed to be chosen near the optimal value.

3 Online Optimization by Extremum Seeking Control

In this section, we present the design of extremum seeking control with [27]. The block diagram of the delay-compensated ES algorithm applied to LWR PDE model is depicted in Fig. 3. Let \(\hat{\rho}(t) \) be the estimate of \(\rho^* \), and \(\epsilon(t) \) be the estimation error defined as

\[
\epsilon(t) = \hat{\rho}(t) - \rho^* \tag{14}
\]

where \(\hat{\rho}(t) \) is an integral of the predictor-based feedback signal \(U(t) \) as \(\hat{\rho}(t) = U(t) \). From Fig. 3, the error dynamics can be written as

\[
\dot{\epsilon}(t - D) = U(t - D) \tag{15}
\]

given the delayed estimation error dynamics modeled by \(\epsilon(x, t) = U(t - (x / u)) \). We introduce the dither signals \((M(t), N(t)) \) given by

\[
M(t) = \frac{2}{\alpha} \sin(\omega t), \quad N(t) = -\frac{8}{\alpha^2} \cos(2\omega t) \tag{16}
\]

where \(\alpha \) and \(\omega \) are amplitude and frequency of a slow periodic perturbation signal \(\alpha \sin(\omega t) \) introduced later. Using the dither signals, we calculate estimates of the gradient and Hessian of the cost function, denoted as \((G(t), H(t)) \)

\[
G(t) = M(t)q_{out}(t), \quad H(t) = N(t)q_{out}(t) \tag{17}
\]

where \(H(t) \) is to estimate the unknown Hessian \(H \). The averaging of \(G(t) \) and \(H(t) \) yields that

\[
\bar{G}_w(t) = H\bar{w}(t - D), \quad \bar{H}_w = \langle Nq_{out} \rangle \approx H \tag{18}
\]

Taking average of Eq. (15), we have \(\dot{\bar{w}}(t - D) = \bar{w}(t - D) \), where \(\bar{U}_w(t) \) is the averaged value for \(U(t) \) designed later. Substituting the above equation into Eq. (18) gives that

\[
\bar{G}_w(t) = \bar{H}U_w(t - D) \tag{19}
\]

The motivation for predictor feedback design is to compensate for the delay by feeding back future states in the equivalent averaged system \(\bar{G}_w(t + D) \). Given an arbitrary control gain \(k > 0 \), we aim to design

\[
U_w(t) = k\bar{G}_w(t + D), \quad \forall t \geq 0 \tag{20}
\]

which requires knowledge of future states. Therefore, we have the following by plugging Eq. (20) into Eq. (15):

\[
\dot{\epsilon}_w(t) = U_w(t) = k\bar{H}w(t + D), \quad \forall t \geq D \tag{21}
\]

Reminding that \(k > 0, H < 0 \), the equilibrium of the average system \(\epsilon_w(t) = 0 \) is exponentially stable. Applying the variation of constants formula \(\bar{G}_w(t + D) = \bar{G}_w(t) + \bar{H}_w(t) \int_0^D U_w(t) dt \) and, from Eq. (20), one has

\[
U_w(t) = k\bar{G}_w(t) + \bar{H}_w(t) \int_0^D U_w(t) dt \tag{22}
\]

which represents the future state \(\bar{G}_w(t + D) \) in Eq. (19) in terms of the average control signal \(U_w(t) \) for \(t \in [0, D] \). The control input is infinite-dimensional due to its use of history over the past \(D \) time units.

For the stability analysis in which the averaging theorem for infinite dimensional systems is used, we employ a low-pass filter for the above basic predictor feedback controller and then derive an infinite dimensional and averaging-based predictor feedback given by

\[
U(t) = \mathcal{F} \{ k(G(t) + \bar{H}(t) \int_0^D U(t) dt \} \tag{23}
\]

where \(k > 0 \) is an arbitrary control gain, and the Hessian estimate \(\bar{H}(t) \) is updated according to Eq. (17), satisfying average property in Eq. (18). \(\mathcal{F} \{ \} \) is the low pass filter operator defined by

\[
\mathcal{F} \{ q(t) \} = \mathcal{L}^{-1} \left\{ \frac{e^{-st}}{s + \epsilon} \right\} \ast q(t) \tag{24}
\]

where \(e \in \mathbb{R}^+ \) is the corner frequency, \(\mathcal{L}^{-1} \) is the inverse Laplace transformation, and \(\ast \) is the convolution in time.

Theorem 1. Consider the closed-loop system in Fig. 3. There exist \(c_0 > 0 \) such that \(\forall c \geq c_0 \) and \(c_0 \omega_0 > 0 \) such that \(\forall \omega > \omega_0 \), the closed-loop system has a unique exponentially stable periodic solution in period \(T = (2\pi/\omega) \), denoted by \(\epsilon(t), U(t), \forall t \in [0, T] \), satisfying \(\forall t > 0 \)

\[
\left(|\epsilon(t)|^2 + |U(t)|^2 \right) + \int_0^T |U(t)|^2 dt \leq C(1/\omega) \tag{25}
\]

Furthermore

\[
\lim_{t \to +\infty} \sup_{t \in [0, T]} |\epsilon(t)| = C(a + 1/\omega) \tag{26}
\]

\[
\lim_{t \to +\infty} \sup_{t \in [0, T]} |q_{out}(t) - q^*| = C(a^2 + 1/\omega^2) \tag{27}
\]

The detailed proof of Theorem 1 is carried out in the Appendix, following Ref. [27]. First, we show the exponential stability of the average error-dynamics system using a backstepping
transformation. Then the averaging theorem for infinite-dimensional systems [44] is invoked to show the exponential stability of the original error-dynamics system (A4)–(A6). Using Lyapunov analysis, we show the convergence of \((q(t), q_{\text{out}}(t))\) to a neighborhood of the extremum \((\rho^*, q^*)\).

4 Simulation Result

In simulation, we choose Greenshield’s model for equilibrium velocity–density relation. For the clear section Zone C, the fundamental diagram of traffic flow-density relation is given by
\[
Q(\rho) = -\left(\frac{\rho}{\rho_u}\right)^3 + \rho_u \rho.
\]
We choose our model parameters based on the data-fitted LWR model in Ref. [36]. The maximum density is chosen to be \(\rho_u = 6 \text{ lanes}/7.5 \text{ m} = 0.8 \text{ veh/m} = 800 \text{ veh/km}, \) where the 7.5 m equals to the average vehicle length 5 m plus 50% safety distance. The maximum velocity is \(v_f = 16.7 \text{ m/s} = 60 \text{ km/h}.\) This \(Q(\rho)\) is used in the nonlinear LWR PDE model simulation which describes the traffic dynamics upstream of bottleneck area. The maximum output flow also known as road capacity of Zone C is \(q_c = \max_{\rho \leq \rho_u} Q(\rho) = 3.2 \text{ veh/h/s} = 1920 \text{ veh/h lane}.\) The length of freeway segment is \(L = 100 \text{ m}.\) If we consider a linearized LWR for Zone C, the characteristic speed is \(u = Q'(\rho) = 8.4 \text{ m/s}.\) The time delay for input to reach the bottleneck area is \(D = L/\mu = 12 \text{ s}.\)

The fundamental diagram in the bottleneck area \(Q_B(\rho), \) optimal/critical density \(\rho^*,\) and maximum output flow \(q^*\) are assumed to be unknown when there is sudden lane-closure due to an accident or lane closure. The following function and parameters are chosen for simulation purpose. For the bottleneck section Zone B, we consider the situation that only four out of six lanes still function. As a result, the road capacity reduces and we define the capacity reduction rate as \(C_d = 40\%\) and compared with Zone C: The outgoing flow \(q_{\text{out}}(t) = Q(\rho(L, t))\) of the bottleneck area is approximated with
\[
q_{\text{out}}(t) = q^* + \frac{H}{2}(q(t-D)-\rho^*)^2
\]
where \(q_m = 0.48 \text{ vehicles/m}\) is the maximum density for reduced lanes in the bottleneck area and the same maximum velocity \(v_f\) is considered. The optimal/critical density \(\rho^*\) and maximum output flow \(q^*\) are
\[
\rho^* = \frac{1}{2} q_m = 0.24 \text{ veh/m} \tag{29}
\]
\[
q^* = (1-\Delta c)q_c = 1.92 \text{ veh/s} \tag{30}
\]

Compared with the capacity of Zone C \(q_c,\) there is a capacity drop \(\Delta c\) for optimal flow rate \(q^*\) of the bottleneck area. The Hessian is obtained by taking second derivative of \(q_{\text{out}}(t)\)

\[
H = -\frac{2v_f}{q_m} = -69.5 \tag{31}
\]

The Godnov scheme is employed for simulation of nonlinear LWR model. The method is derived from the solution of local Riemann problems. The road segment is divided into spatial cell \(\Delta x\) and the solution is advanced in time-step \(\Delta t,\) which satisfy the following Courant–Friedrichs–Lewy condition \(u_{\text{max}} \leq \frac{\Delta t}{\Delta x} < 1,\) where \(u_{\text{max}}\) is the maximum characteristic speed. We choose the spatial cell \(\Delta x = 0.05 \text{ m} \) sufficiently small so that numerical errors are negligibly small relative to the errors of the model.

The simulation result of the closed-loop system with ES control is shown in Figs. 4–7. The parameters of the sinusoidal input and the designed controller are chosen to be \(\omega = 2.75\pi, a = 0.05, c = 50, K = 0.005.\) The adaptation gain is \(k,\) while \(a\) and \(\omega\) are used in the computation of the frequencies and amplitudes for the perturbation signals \(M(t), N(t)\) in Eq. (16) and \(S(t)\) in Eq. (A2). The speed of convergence and the ultimate residual sets of the ES algorithm are influenced by the values of \(k, a,\) and \(\omega.\)

The evolution of the density PDE state \(p(x, t)\) modeled by the LWR model (1) is shown in Fig. 4. The inlet density boundary input and output boundary values and the initial condition are highlighted. One can observe that density value \(p(L, t)\) in Fig. 5 converges to a neighborhood of the optimal value \(\rho^* = 0.24 \text{ veh/m}\) and the output flow of the bottleneck in Fig. 6 converges to a neighborhood of the extremum point \(q^* = 1.92 \text{ veh/s}.\) The Hessian estimate converges to the prescribed value \(-69.5\) in Fig. 7. The convergence to optimal values is achieved in 40 s. In contrast, if we do not employ ES control for input density and the incoming flow depends only on upstream traffic. The open-loop system is shown in Fig. 8. The evolution of outgoing flow at the bottleneck area is run for 150 s. The outgoing flow of the bottleneck area keeps decreasing and therefore congestion at the bottleneck area is getting worse till a bumper-to-bumper jam as shown in Fig. 9.

As mentioned in the stability analysis of Sec. 4, the performance of the proposed ES is guaranteed only locally, i.e., the initial density state must be sufficiently close to the optimal density. We investigate how far the initial density can be from the optimal density by trying some initial density profiles. In particular, first we investigate the simulation with the initial density profile as a uniform distribution, namely
\[
\rho(x, 0) = \rho_0, \quad \forall x \in [0, L] \tag{32}
\]

where \(\rho_0 \in (0, \rho^*_L)\) for the traffic in Zone C to be free regime in the fundamental diagram. Through trying several values for \(\rho_0 \in (0, \rho^*_L)\) in simulations, we observe that the convergence of the output density to the optimal density is achieved for the range of \(\rho_0 \in (\rho_L, \rho_B),\) where \(\rho_L = 0.16 \text{ veh/m}\) and \(\rho_B = 0.24 \text{ veh/m}.\)
Compared with the initial reference density we use
$q_r = 0.2 \text{ veh/m}$, the range of variation is $\pm 20\%$. In the following, we show the convergence results for an initial density profile that reaches both the upper and lower limits shown in Fig. 9.

We set a “soft shockwave” in Fig. 9, given by

$$
\rho(x, 0) = \frac{\rho_h - \rho_l}{2} + \frac{\rho_h + \rho_l}{2} \sin \left(\frac{\pi x}{L} \right) + \frac{\rho_h + \rho_l}{2} \quad (33)
$$

where $0 < \rho_l < \rho_h < \rho_c$. Note that the soft shock wave defined above is a smooth and monotonically increasing function satisfying $\rho(0, 0) = \rho_l$ and $\rho(L, 0) = \rho_h$. We investigate the simulation results through varying the parameters (ρ_l, ρ_h) satisfying $0 < \rho_l < \rho_h < \rho_c$. Such a sensitivity of initial condition can be regarded as a domain of attraction under specific condition. In Figs. 10 and 11, we show the convergence results of the input density and the outgoing flow when $\rho_l = 0.16 \text{ veh/m}$ and $\rho_h = 0.24 \text{ veh/m}$. These results illustrate a relatively large sensitivity of initial condition, which validates the performance of the proposed ES control for the lane-drop traffic model we consider. While it is difficult to survey the domain of attraction rigorously, semiglobal convergence could be guaranteed by adapting the amplitude of the dither signals [29], and nearly a global stability could be also achieved by choosing tuning parameters as time-varying [45].

Fig. 6 Outgoing traffic flow of the bottleneck area $q_{out}(t)$ which is also the output flow for bottleneck area and the optimal value of outgoing flow q^*

Fig. 7 Hessian estimate $\dot{H}(t)$ of the ES control and prescribed Hessian value H

Fig. 9 The shape of the density initial profile for Zone C is a soft shockwave with higher density near the bottleneck and lower density closer to the inlet of the Zone C

Fig. 10 The evolution of the outgoing traffic flow of the bottleneck area $q_{out}(t)$ for the soft-shockwave initial density profile

Fig. 11 The evolution of the traffic density $\rho(L, t)$ for the soft-shockwave initial density profile
5 Conclusion

In this paper, we employ ES control to find an optimal density input for freeway traffic when there is a downstream bottleneck. To prevent traffic flow in bottleneck area overflowing the road capacity and furthermore causing congestion upstream in the freeway segment, the incoming traffic density at inlet of the freeway segment is regulated. The control design is achieved with delay compensation for ES control considering the upstream traffic is governed by the linearized LWR model. The optimal density and flow are achieved in the bottleneck area. The theoretical result is validated in simulation with the control design being applied to the nonlinear LWR PDE model along with an unknown fundamental diagram.

For future work, multiple distinct delays existing in the multilanes are going to be considered when regulating the distant downstream traffic bottleneck. It would also be interesting for authors to develop ES control with bounded update rates [46] under input delays exhibited through the LWR model and to develop a stochastic version of the algorithm presented in the paper by applying the results from Refs. [25] and [28]. To further demonstrate the impact of this work for traffic application and understand how the proposed extremum seeking controller works in practice, it is of research interest to validate this result with traffic field data [47] and test it with microscopic simulator.

Acknowledgment

The third author would like to thank the Brazilian funding agencies CNPq, CAPES, and FAPERJ for the financial support.

Appendix: Proof of Theorem 1

The proof Theorem 1 is carried out through the following steps.

A.1 Closed-Loop System. The estimate \(\hat{q}(t) \) of the unknown optimal outgoing \(\rho^* \) is an integrator of the predictor-based feedback signal \(U(t) \) as \(\hat{q}(t) = U(t) \), and it follows that \(\epsilon(t - D) = U(t - D) \). The input \(q(t) \) to LWR PDE model is given by

\[
q(t) = \hat{q}(t) + S(t) \tag{A1}
\]

where the dither signal \(S(t) \) is the inverse operator of a delayed perturbation signal \(a \sin(\omega t) \), described as

\[
S(t) = a \sin(\omega t + D) \tag{A2}
\]

Substituting \(S(t) \) into Eq. (A1), we have

\[
q(t) = \hat{q}(t) + a \sin(\omega t + D) \tag{A3}
\]

The delayed estimation error dynamics can be written as transport PDE system, \(x \in [0, L] \)

\[
\begin{align*}
\dot{\epsilon}(t - D) &= \epsilon(L, t) \tag{A4} \\
\partial_x \epsilon(x, t) &= -u \partial_t \epsilon(x, t) \tag{A5} \\
\epsilon(0, t) &= U(t) \tag{A6}
\end{align*}
\]

where it is straightforward to obtain that \(\epsilon(x, t) = U(t - (x/u)) \). Combining Eqs. (13) and (14), the relation among the estimation error \(\epsilon(t) \), the input density \(\hat{q}(t) \), and optimal outlet density \(\rho^* \) is given by

\[
\epsilon(t) + a \sin(\omega t) = \hat{q}(t) - \rho^* \tag{A7}
\]

Substituting the above relation into the output map in Eq. (13), we obtain the following equation:

\[
q_{\text{out}}(t) = q^* + H \left(\epsilon(t - D) + a \sin(\omega t) \right)^2 \tag{A8}
\]

Plugging \(M(t) \) and \(G(t) \) into Eq. (17) and representing the delayed input with PDE state \(\epsilon(x, t) \), we have

\[
U(t) = \mathcal{F} \{ k(G(t) + H(t) \int_0^L \epsilon(\tau, t) d\tau) \} \tag{A9}
\]

\[
G(t) = \frac{2}{a} \sin(\omega t) q_{\text{out}}(t) \tag{A10}
\]

\[
H(t) = -\frac{8}{a^2} \cos(2\omega t) q_{\text{out}}(t) \tag{A11}
\]

It yields

\[
U(t) = \mathcal{F} \left\{ k q_{\text{out}}(t) \left(\frac{2}{a} \sin(\omega t) - \frac{8}{a^2} \cos(2\omega t) \int_0^L \epsilon(\tau, t) d\tau \right) \right\} \tag{A12}
\]

and by substituting \(q_{\text{out}} \) with Eq. (A8) and combining with transport PDE in Eqs. (A4)–(A6), we can write the closed-loop system as

\[
\begin{align*}
\dot{\epsilon}(t - D) &= \epsilon(L, t) \tag{A13} \\
\partial_x \epsilon(x, t) &= -u \partial_t \epsilon(x, t) \tag{A14} \\
\epsilon(0, t) &= \mathcal{F} \left\{ k \left[q^* + H \left(\epsilon(t - D) + a \sin(\omega t) \right)^2 \right] \right. \\
& \left. + \frac{2}{a} \sin(\omega t) - \frac{8}{a^2} \cos(2\omega t) \int_0^L \epsilon(\tau, t) d\tau \right\} \tag{A15}
\end{align*}
\]

A.2 Average System. Expanding Eq. (A15) and taking average of the closed-loop system, we obtain average model by setting the averages of sine and cosine functions of \(n \omega t, (n = 1, 2, 3, 4) \) to zeros. Note that the averaged controller satisfies

\[
\dot{U}_{av}(t) + c U_{av}(t) = c k G_{av}(t) + H \int_0^L \epsilon_{av}(\tau, t) d\tau \tag{A16}
\]

where \(c > 0 \) is the corner frequency of the low pass filter and \(k > 0 \) is the control gain. Denoting

\[
\theta(t) = \epsilon(t - D) \tag{A17}
\]

the average system of (A13)–(A15) is rewritten by

\[
\dot{U}_{av}(t) = \epsilon_{av}(L, t) \tag{A18}
\]

\[
\partial_x \epsilon_{av}(x, t) = -u \partial_t \epsilon_{av}(x, t) \tag{A19}
\]

\[
\partial_t \epsilon_{av}(0, t) = -c \epsilon_{av}(0, t) + c k H \theta_{av}(t) + \int_0^L \epsilon_{av}(\tau, t) d\tau \tag{A20}
\]

A.3 Backstepping Transformation. We apply backstepping transformation [48] for the averaged delay state

\[
w(x, t) = \epsilon_{av}(x, t) - c k \theta_{av}(t) + \int_0^L \epsilon_{av}(\tau, t) d\tau \tag{A21}
\]

where \(k > 0 \) and \(H < 0 \). The average system is mapped into the target system
\[\dot{\theta}_w(t) = kH\theta_w(t) + w(L, t) \]
(A22)

\[\partial w(x, t) = -u \partial w(x, t) \]
(A23)

\[\partial w(0, t) = -(c + kH)w(0, t) - \langle kH \rangle \int_0^t e^{-\frac{u}{2} t} \theta_w(t) + \int_0^t e^{-\frac{u}{2} \tau} w(\tau, t) d\tau \]
(A24)

Combining Eqs. (A20) and (A21), we will have \(w(0, t) = -(1/c)\dot{\theta}_w(0, t) \). Taking time derivative on Eq. (A21) for \(w(0, t) \), we obtain

\[\dot{\theta}_w(0, t) = \dot{\theta}_w(0, t) - kH\dot{\theta}_w(0, t) \]
(A25)

The inverse transformation is given by

\[\epsilon_{w}(x, t) = w(x, t) + kH \int_0^t e^{-\frac{x}{2} t} \theta_w(t) + \int_0^t e^{-\frac{x}{2} \tau} \epsilon_w(\tau, t) d\tau \]
(A26)

Plugging Eqs. (A26) and (A20) into Eq. (A25), we obtain Eq. (A24) in the target system.

A.4 Lyapunov Functional. Now consider the following Lyapunov functional for the target system

\[V(t) = \frac{a^2 \theta_w^2(t)}{2} + \frac{a}{2b} \frac{\partial^2 \theta_w}{\partial z^2} + \frac{(ab - we^{-L})}{2} w^2(L, t) \]
(A27)

where the parameter \(a > 0 \) is chosen later. Taking time derivative of the Lyapunov function, we have

\[\dot{V}(t) \leq akH\theta_w^2(t) + \frac{a}{2b} \frac{\partial^2 \theta_w}{\partial z^2} + \frac{(ab - we^{-L})}{2} w^2(L, t) \]
(A28)

where the positive constant \(b \) satisfies the following, \(b = (ue^{-L}/a) \) so that \(ab - we^{-L} = 0 \). The positive constant \(a \) is chosen as \(a = -kH e^{-L} \). Substituting \(\dot{w}(0, t) \) by Eq. (A24) and using Young’s, Cauchy–Schwarz inequalities, the last term in Eq. (A28) is bounded by

\[w(0, t) \leq w(0, t) + \frac{u}{2} w(0, t) \leq \left(c - \frac{u}{2} + kH \right) w^2(0, t) \]
(A29)

\[+ \frac{\epsilon_0 a^2}{4a} \frac{\partial^2 \theta_w}{\partial z^2}(t) + \frac{ue^{-L}}{a} \left(kH \right) \frac{\epsilon_m}{\epsilon_n} w^2(0, t) \]
\[+ \frac{ue^{-L}}{4} \left\| w(t) \right\|^2 + \frac{\epsilon_0 a^2}{4a} \frac{\partial^2 \theta_w}{\partial z^2}(t) + \frac{ue^{-L}}{a} \left(kH \right) \frac{\epsilon_m}{\epsilon_n} w^2(0, t) \]
(A29)

Plugging Eq. (A29) into Eq. (A28), one can arrive at

\[\dot{V}(t) \leq -\frac{\epsilon_0 a^2}{4a} \frac{\partial^2 \theta_w}{\partial z^2}(t) - \frac{ue^{-L}}{4} \int_0^t w^2(x, t) dx \]
\[-(c - e_0) w^2(0, t) \]
(A30)

where \(\epsilon_0 \) is defined as \(\epsilon_0 = \frac{1}{2} kH + \frac{ue^{-L}}{a} \left(kH \right) \frac{\epsilon_m}{\epsilon_n} \) and \(c_0 = \frac{u}{2} - kH + \frac{ue^{-L}}{a} \left(kH \right) \frac{\epsilon_m}{\epsilon_n} \) where \(\epsilon \in [0, L] \). An upper bound for \(c_0 \) can be obtained from lower and upper bounds of the unknown Hessian \(H \). Therefore, by choosing \(c > c_0 \), we obtain

\[\dot{V}(t) \leq -\mu V(t) \]
(A31)

for some \(\mu > 0 \). Thus, the closed-loop system is exponentially stable in the sense of the \(L^2 \) norm \((\dot{\theta}_w(t))^2 + \int_0^t w^2(x, t) dx + w^2(0, t))^{1/2} \). By the invertibility of the transformation, we can see that there exist constants \(z_1 \) and \(z_2 \) such that the following inequality is obtained

\[z_1 \Psi(t) \leq V(t) \leq z_2 \Psi(t) \]
(A32)

where \(\Psi(t) = |\theta_w(t)|^2 + \int_0^t \epsilon^2_{w}(x, t) dx + \epsilon^2_{w}(L, t) \), or equivalently

\[\Psi(t) = |\theta_w(t - D)|^2 + \int_0^{t-D} U^2_{w}(\tau) d\tau + U^2_{w}(t) \]
(A33)

Hence, with Eq. (A31), we get

\[\Psi(t) \leq \frac{z_2}{z_1} e^{-\mu t} \Psi(0) \]
(A34)

which completes the proof of exponential stability of the averaged system.

A.5 Averaging Theorem. The closed-loop system is written as

\[\dot{e}(t - D) = U(t - D) \]
(A35)

\[U(t) = -cU(t) + c[k(G(t) + \dot{H}(t) \int_{t-D}^t U(\tau) d\tau)] \]
(A36)

Defining the state vector \(z(t) = [e(t - D), U(t)]^T \), and noting that \(\int_{t-D}^t U(\tau) d\tau = \int_0^\infty U(\tau) d\tau \), we can write the dynamics of \(z \) as a functional differential equation described by \(z(t) = f(ot, z) \), where \(z(t) = (z(t + \tau)) \) for \(-D \leq \tau \leq 0 \). According to Eq. (A34), the origin of the average closed-loop system with transport PDE is exponentially stable. Applying the averaging theorem for infinite dimensional systems developed in Ref. [44], for \(\omega \) sufficiently large, Eqs. (A13)–(A15) has a unique exponentially stable periodic solution around its equilibrium satisfying (25).

A.6 Asymptotic Convergence to a Neighborhood of the Extremum \((\rho^*, q^*)\). By using the change of variables (A17) and then integrating both sides of Eq. (A13) with respect to the interval \([t, \sigma + D]\), we have

\[\theta(\sigma + D) = \theta(t) + \int_t^{\sigma + D} \epsilon(L, s) ds \]
(A37)

From (A.1), we can rewrite (A37) in terms of \(U \), namely

\[\theta(\sigma + D) = \theta(t) + \int_{t-D}^\sigma \epsilon(U(\tau) d\tau \]
(A38)

We define \(\theta(\sigma) = \theta(\sigma + D) \), \(\forall \sigma \in [t - D, t] \). Applying Eq. (A38) to the above equation, we get

\[\theta(\sigma) = \theta(\sigma + D) + \int_{t-D}^{\sigma} \epsilon(U(\tau) d\tau \]
(A39)

By applying the supremum norm in both sides of Eq. (A39) and using Cauchy–Schwarz inequality, we have

\[\theta(\sigma) \leq \theta(t) + \int_{t-D}^{\sigma} \epsilon(U(\tau) d\tau \]
(A39)
Hence convergence and thus From Eq. (A40), it is straightforward to conclude that

\[
\sup_{t-D \leq s \leq t} |\sigma(s)| \leq \sup_{t-D \leq s \leq t} |\sigma(t-D)| + \sup_{t-D \leq s \leq t} \left| \int_{t-D}^{s} U(\tau) d\tau \right|
\]

\[
\leq |\sigma(t-D)| + \sqrt{D} \left(\int_{t-D}^{t} U^2(\tau) d\tau \right)^{1/2}
\]

\[
\leq (1 + \sqrt{D}) |\sigma(t-D)|^2 + \int_{t-D}^{t} U^2(\tau) d\tau
\]

(A40)

From Eq. (A40), it is straightforward to conclude that

\[
\sup_{t-D \leq s \leq t} |\sigma(s)| \leq (1 + \sqrt{D}) |\sigma(t-D)|^2 + \int_{t-D}^{t} U^2(\tau) d\tau
\]

(A41)

and thus

\[
|\sigma(t)| \leq (1 + \sqrt{D}) |\sigma(t-D)|^2 + \int_{t-D}^{t} U^2(\tau) d\tau
\]

(A42)

The above inequality (A42) can be given in terms of the periodic solution \(\varphi'(t-D), U(t), \forall t \in [t-D, t]\) as follows:

\[
|\sigma(t)| \leq (1 + \sqrt{D}) |\sigma(t-D) - \varphi'(t-D)|^2 + |\varphi'(t-D)|^2
\]

\[
+ \int_{t-D}^{t} [U(\tau) - U(t-D)^2 d\tau + \int_{t-D}^{t} [U(t-D)^2 d\tau
\]

(A43)

Applying Young’s inequality, the right-hand side of Eq. (A43) and \(|\sigma(t)|\) can be majorized by

\[
|\sigma(t)| \leq \sqrt{2} (1 + \sqrt{D}) |\sigma(t-D) - \varphi'(t-D)|^2 + |\varphi'(t-D)|^2
\]

\[
+ \int_{t-D}^{t} [U(t) - U(t-D)^2 d\tau + \int_{t-D}^{t} [U(t-D)^2 d\tau
\]

(A44)

From the averaging theorem [44], we have the exponential convergence

\[
\varphi(t-D) - \varphi'(t-D) \to 0
\]

(A45)

\[
+ \int_{t-D}^{t} [U(\tau) - U(t-D)^2 d\tau \to 0
\]

(A46)

Hence

\[
\limsup_{t \to +\infty} |\sigma(t)| = \sqrt{2} (1 + \sqrt{D}) \times \left(|\varphi'(t-D)|^2 + \int_{t-D}^{t} [U(t-D)^2 d\tau \right)^{1/2}
\]

(A47)

From Eqs. (25) and (A47), we can write

\[
\limsup_{t \to +\infty} |\sigma(t)| = \varepsilon (1/\omega)
\]

(A48)

From Eq. (14) and recalling that \(q(t) = \rho(t) + a \sin(\omega t + D)\) and \(\theta(t) = \rho(t) - \rho^* = \rho(t) + a \sin(\omega t + D)\), one has that

\[
|\sigma(t)| = |\rho(t) - \rho^*| = \epsilon (1/\omega)
\]

(A49)

Since the first term in the right-hand side of Eq. (A49) is ultimately of order \(\epsilon(1/\omega)\) and the second term is of order \(\epsilon(\omega)\), then

\[
\limsup_{t \to +\infty} |\sigma(t)| = \epsilon (a + 1/\omega)
\]

(A50)

Finally, from Eq. (13), we get Eq. (27) and the proof is complete.

