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Abstract

While the mainstream methods of adaptive control (both linear and nonlinear) deal only with regulation to known set points or
reference trajectories, in many applications the set point should be selected to achieve a maximum of an uncertain reference-to-output
equilibrium map. The techniques of the so-called `extremum controla or `self-optimizing controla developed for this problem in the
1950}1960s have long gone out of fashion in the theoretical control literature because of the di$culties that arise in a rigorous
analytical treatment. In this paper we provide the "rst proof of stability of an extremum seeking feedback scheme by employing the
tools of averaging and singular perturbation analysis. Our scheme is much more general that the existing extremum control results
which represent the plant as a static nonlinear map possibly cascaded with a linear dynamic block * we allow the plant to be
a general nonlinear dynamic system (possibly non-a$ne in control and open-loop unstable) whose reference-to-output equilibrium
map has a maximum, and whose equilibria are locally exponentially stabilizable. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mainstream methods of adaptive control for linear
(Astrom & Wittenmark, 1995; Goodwin & Sin, 1984;
Ioannou & Sun, 1995) and nonlinear (KrsticH , Kanella-
kopoulos & KokotovicH , 1995) systems are applicable
only for regulation to known set points or reference tra-
jectories. In some applications, the reference-to-output
map has an extremum (w.l.o.g. we assume that it is a max-
imum) and the objective is to select the set point to keep
the output at the extremum value. The uncertainty in the
reference-to-output map makes it necessary to use some
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sort of adaptation to "nd the set point which maximizes
the output. This problem, called `extremum controla or
`self-optimizing controla, was popular in the 1950s and
1960s (Blackman, 1962; Drapper & Li, 1951; Frey, Deem
& Altpeter, 1966; Jacobs & Shering, 1968; Kazakevich,
1960; Morosanov, 1957; Ostrovskii, 1957; Pervozvanskii,
1960), much before the theoretical breakthroughs in
adaptive linear control of the 1980s. In fact, the emerg-
ence of extremum control dates as far back as the Leb-
lanc (1922), whose scheme may very well have been the
"rst `adaptivea controller reported in the literature.
Among the surveys on extremum control, we "nd the one
by Sternby (1980) particularly useful, as well as Section
13.3 in Astrom and Wittenmark (1995) which puts ex-
tremum control among the most promising future areas
for adaptive control. Among the many applications of
extremum control overviewed in these two references are
combustion processes (for IC engines, steam generating
plants, and gas furnaces), grinding processes, solar cell
and radio telescope antenna adjustment to maximize the
received signal, and blade adjustment in water turbines
and wind mills to maximize the generated power. A more
recent application of extremum control are anti-lock
braking systems where schemes di!erent from that in
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Fig. 1. A peak seeking feedback scheme.

this paper are currently in use (Drakunov, Ozguner, Dix
& Ashra", 1995). On the theoretical forefront, the pion-
eering averaging studies of Meerkov (1967a,b, 1967)
stand out as a precursor to the stability results presented
here.

Most of the results available on extremum control
consider a plant as a static map. A few references ap-
proach problems where the plant is a cascade of a nonlin-
ear static map and a linear dynamic system (the so-called
Hammerstein and Wiener models) (see Wittenmark
& Urquhart, 1995 and references therein). In this paper
we approach the general problem where the nonlinearity
with an extremum is a reference-to-output equilibrium
map for a general nonlinear (non-a$ne in control) sys-
tem stabilizable around each of these equilibria by a local
feedback controller.

The main contribution of our paper is that it provides
the "rst rigorous proof of stability for an extremum
seeking feedback scheme. We employ the tools of aver-
aging and singular perturbations to show that solutions
of the closed-loop system converge to a small neighbor-
hood of the extremum of the equilibrium map. The size of
the neighborhood is inversely proportional to the ad-
aptation gain and the amplitude and the frequency of
a periodic signal used to achieve extremum seeking. Our
analysis highlights a fundamentally nonlinear mecha-
nism of stabilization in an extremum seeking loop. After
stating the problem in Section 2 and giving the extremum
seeking scheme in Section 3, our proof is presented in
Sections 4 and 5.

Our two upcoming papers have motivated the present
theoretical work and, in turn, apply extremum seeking to
important industrial problems: (Wang, Yeung & KrsticH ,
1999b) to an axial-#ow/jet-engine-type compressor ex-
periment, and (Wang, KrsticH & Bastin, 1999a) to a model
of a bioreactor. We have also develped an extension of
the method to systems operating in a limit cycle (Wang
& KrsticH , 2000).

2. Extremum seeking = problem statement

Consider a general SISO nonlinear model

x5 "f (x, u), (1)

y"h(x), (2)

where x3Rn is the state, u3R is the input, y3R is the
output, and f : Rn]RPRn and h : RnPR are smooth.
Suppose that we know a smooth control law

u"a(x, h) (3)

parameterized by a scalar parameter h. For simplicity, we
assume that we have a static state-feedback control law;
it would be trivial to extend the result to dynamic output
feedback. The assumption that h and y are scalars is also
for simplicity; it can be trivially removed by using vectors
of appropriate dimensions in Fig. 1. The closed-loop
system

x5 "f (x, a(x, h)) (4)

then has equilibria parameterized by h. We make the
following assumptions about the closed-loop system.

Assumption 2.1. There exists a smooth function l : RPRn

such that

f (x, a(x, h))"0 if and only if x"l(h). (5)

Assumption 2.2. For each h3R, the equilibrium x"l(h) of
the system (4) is locally exponentially stable with decay and
overshoot constants uniform in h.

Hence, we assume that we have a control law (3) which
is robust with respect to its own parameter h in the sense
that it exponentially stabilizes any of the equilibria that
h may produce. Except for the requirement that Assump-
tion 2.2 holds for any h3R (which we impose only for
notational convenience and can easily relax to an interval
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Fig. 2. If perturbation a sinut is slow, the plant can be viewed as a static map.

in R), this assumption is not restrictive. It simply means
that we have a control law designed for local stabilization
and this control law need not be based on modeling
knowledge of either f (x, u) or l(h).

The next assumption is central to the problem of peak
seeking.

Assumption 2.3. There exists hH3R such that

(h " l)@(hH)"0, (6)

(h " l)A(hH)(0. (7)

Thus, we assume that the output equilibrium map
y"h(l(h)) has a maximum at h"hH. Our objective is to
develop a feedback mechanism which maximizes the
steady-state value of y but without requiring the knowl-
edge of either hH or the functions h and l. Our assumption
that h"l has a maximum is without loss of generality
* the case with a minimum would be treated identically
by replacing y by !y in the subsequent feedback design.

3. A peak seeking scheme

Our feedback scheme is shown in Fig. 1. It is an
extension of a simple method for seeking extrema of static
nonlinear maps (Blackman, 1962). Before we engage in
extensive e!orts to prove stability of the scheme, we
explain its basic idea. It employs a slow periodic per-
turbation a sinut which is added to the signal hK , our best
estimate of hH. If the perturbation is slow, then the plant
appears as a static map y"h"l(h) (see Fig. 2) and its
dynamics do not interfere with the peak seeking scheme.
If hK is on either side of hH, the perturbation a sinut will
create a periodic response of y which is either in phase or
out of phase with a sinut. The high-pass "lter s/(s#u

h
)

eliminates the `DC componenta of y. Thus, a sin ut
and s/(s#u

h
)y will be (approximately) two sinusoids

which are

f in phase for hK (hH
f out of phase for hK 'hH.

In either case, the product of the two sinusoids will have
a `DC componenta which is extracted by the low-pass
"lter u

l
/(s#u

l
). The DC component m can be argued to

be approximately the sensitivity (a2/2)(h " l)@(hK ). Then the
integrator hK "(k/s)m is approximately the gradient up-
date law hKQ "k(a2/2)(h " l)@(hK ) driven by the sensitivity
function, which tunes hK to hH.

Despite its apparent simplicity, the proof of `stabilitya
of this feedback scheme has not appeared in the literature
even for the static case in Fig. 2. As we shall see in the
sequel, both the analysis of the scheme and the selection
of design parameters are indeed intricate. These para-
meters are selected as

u
h
"uu

H
"udu@

H
"O(ud), (8)

u
l
"uu

L
"udu@

L
"O(ud), (9)

k"uK"udK@"O(ud), (10)

where u and d are small positive constants and u@
H
, u@

L
,

and K@ are O(1) positive constants. As it will become
apparent later, a also needs to be small.

From (8) and (9) we see that the cut-o! frequencies of
the "lters need to be lower than the frequency of the
perturbation signal. In addition, the adaptation gain
k needs to be small. Thus, the overall feedback system has
three time scales:

f fastest * the plant with the stabilizing controller,
f medium * the periodic perturbation,
f slow * the "lters in the peak seeking scheme.

The analysis that follows treats "rst the static case
from Fig. 2 using the method of averaging (Section 4).
Then we use the singular perturbation method (Section 5)
for the full system in Fig. 1.
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Before we start our analysis, we summarize the system
in Fig. 1 as

x5 "f (x, a(x, hK #a sinut)), (11)

hKQ "km, (12)

mQ "!u
l
m#u

l
(y!g)a sin ut, (13)

g5 "!u
h
g#u

h
y. (14)

Let us introduce the new coordinates

hI "hK !hH (15)

g8 "g!h"l(hH). (16)

Then, in the time scale q"ut, the system (11)}(14) is
rewritten as

u
dx

dq
"f (x, a(x,hH#hI #a sin q)), (17)

d

dqC
hI
m

g8 D"dC
K@m

!u@
L
m#u@

L
(h(x)!h"l(hH)!g8 )a sin q

!u@
H
g8 #u@

H
(h(x)!h"l(hH)) D. (18)

4. Averaging analysis

The "rst step in our analysis is to study the system in
Fig. 2. We `freezea x in (17) at its `equilibriuma value

x"l(hH#hI #a sin q) (19)

and substitute it into (18), getting the `reduced systema

d

dqC
hI
3

m
3

g8
3
D" dC

K@m
3

!u@
L
m
3
#u@

L
(l(hI

3
#a sin q)!g8

3
)a sin q

!u@
H
g8
3
#u@

H
l(hI

3
#a sin q) D,

(20)

where

l(hI
3
#a sin q)"h"l(hH#hI

3
#a sin q)!h"l(hH). (21)

In view of Assumption 2.3, it is obvious (from the chain
rule for di!erentation) that

l(0)"0, (22)

l@(0)"(h"l)@(hH)"0, (23)

lA(0)"(h"l)A(hH)(0. (24)

System (20) is in the form to which the averaging method
is applicable. The average model of (20) is [see, for

example, Eqs. (8.17)}(8.19) in Khalil (1996) for the de"ni-
tion of an average model].

d

dqC
hI !
3

m!
3

g8 !
3
D" dC

K@m!
3

!u@
L
m!
3
#

u@
L

2p
a:2p

0
l(hI !

3
#a sinp)sinp dp

!u@
H
g8 !
3
#

u@
H

2p
:2p
0

l(hI !
3
#a sinp) dp D.

(25)

First we need to determine the average equilibrium
(hI !,%

3
, m!,%

3
, g8 !,%

3
) which satis"es

m!,%
3
"0, (26)

P
2p

0

l(hI !,%
3

#a sinp) sin pdp"0, (27)

g8 !,%
3
"

1

2p P
2p

0

l(hI !,%
3

#a sinp) dp. (28)

By postulating hI !,%
3

in the form

hI !,%
3
"b

1
a#b

2
a2#O(a3), (29)

substituting in (27), using (22) and (23), integrating, and
equating the like powers of a, we get lA(0)b

1
"0 and

lA(0)b
2
#1

8
lA@(0)"0, which implies that

hI !,%
3
"!

lA@(0)

8lA(0)
a2#O(a3). (30)

Another round of lengthy calculations applied to (28)
yields

g8 !,%
3
"

lA(0)

4
a2#O(a3). (31)

Thus, the equilibrium of the average model (25) is

C
hI !,%
3

m!,%
3

g8 !,%
3
D"C

!

lA@(0)

8lA(0)
a2#O(a3)

0
lA(0)

4
a2#O(a3) D. (32)

The Jacobian of (25) at (hI , m, g8 )!,%
3

is

Ja
3
"dC

0 K@ 0

u@
L

2p
a:2p

0
l@(hI !,%

3
#a sinp)sinpdp !u@

L
0

u@
H

2p
:2p
0

l@(hI !,%
3

#a sin p) dp 0 !u@
H
D.
(33)

Since J!
3
is block-lower-triangular we easily see that it will

be Hurwitz if and only if

P
2p

0

l@(hI !,%
3

#a sinp)sinp dp(0. (34)
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More calculations that use (22) and (23) give

P
2p

0

l@(hI !,%
3

#a sinp)sinp dp"plA(0)a#O(a2). (35)

By substituting (35) into (33) we get

det(jI!J!
3
)"Aj2#du@

L
j!

d2u@
L
K@

2
lA(0)a2#O(d2a3)B

](j#du@
H
), (36)

which, in view of (24), proves that J!
3

is Hurwitz for
su$ciently small a. This, in turn, implies that the equilib-
rium (32) of the average system (25) is exponentially
stable for a su$ciently small a. Then, according to the
averaging theorem [Theorem 8.3 in Khalil (1996)]2 we
have the following result.

Theorem 4.1. Consider system (20) under Assumption 2.3.
There exist dM and a6 such that for all d3(0, dM ) and a3(0, a6 )
system (20) has a unique exponentially stable periodic solu-
tion (hI 2p

3
(q), m2p

3
(q), g8 2p

3
(q)) of period 2p and this solution

satisxes

KC
hI 2p
3

(q)#
lA@(0)

8lA(0)
a2

m2p
3

(q)

g8 2p
3

(q)!
lA(0)

4
a2 DK4O(d)#O(a3), ∀q50. (37)

This result, along with the triangle inequality, implies
that all solutions (hI

3
(q),m

3
(q),g8

3
(q)), and, in particular,

their hI
3
(q)-components, converge to an O(d#a2)-

neighborhood of the origin. It is important to interpret
this result in terms of the system in Fig. 2. Since
y"h"l(hH#hI

3
(q)#a sin q) and (h"l)@(hH)"0, we have

y!h"l(hH)"(h"l)A(hH)(hI
3
#a sin q)2

#O((hI
3
#a sin q)3), (38)

where

hI
3
#a sin q"(hI

3
!hI 2p

3
)#AhI 2p

3
#

(h"l)A@(hH)
8(h"l)A(hH)

a2B
!

(h"l)A@(hH)
8(h"l)A(hH)

a2#a sin q. (39)

Since the "rst term converges to zero, the second term is
O(d#a3), the third term is O(a2) and the fourth term is

2This theorem requires boundedness in a subsset of the state space
around the equilibrium of interest. Since the functions l and h are
assumed to be smooth, the right-hand side of (20) is bounded and has
bounded derivatives on any compact set, thus the condition of [The-
orem 8.3 in Khalil (1996)] is trivially satis"ed.

O(a), then

lim sup
q?=

DhI
3
(q)#a sin qD"O(a#d). (40)

Thus, (38) yields

lim sup
q?=

Dy(q)!h"l(hH)D"O(a2#d2). (41)

The last expression characterizes the asymptotic per-
formance of the peak seeking scheme in Fig. 2 and ex-
plains why it is not only important that the periodic
perturbation be small but also that the cut-o! frequencies
of the "lters and the adaptation gain k be low.

Another important conclusion can be drawn from (37).
The solution hI

3
(q) will converge

O(d#a3)-close to !

(h"l)A@(hH)
8(h"l)A(hH)

a2.

Since (h"l)A(hH)(0, the sign of this quantity depends on
the sign of (h"l)A@(hH). If (h"l)A@(hH)'0 (respectively, (0),
then the curve h"l(h) will be more `#ata on the right
(respectively, left) side of h"hH. Since hI

3
will have an

o!set in the direction of sgnM(h"l)A@(hH)N, then hI
3
(t) will

converge to the `#attera side of h"l(h). This is precisely
what we want * to be on the side where h"l(h) is less
sensitive to variations in h and closer to its maximum
value.

5. Singular perturbation analysis

Now, we address the full system in Fig. 1 whose state
space model is given by (17) and (18) in the time scale
q"ut. To make the notation in our further analysis
compact, we write (18) as

dz

dq
"dG(q,x, z), (42)

where z"(hI , m, g8 ). By Theorem 4.1, there exists an expo-
nentially stable periodic solution z2p

3
(q) such that

dz2p
3

(q)
dq

"dG(q,¸(q, z2p
3

(q)), z2p
3

(q)), (43)

where ¸(q, z)"l(hH#hI #a sin q). To bring the system
(17) and (42) into the standard singular perturbation form,
we shift the state z using the transformation

z8 "z!z2p
3

(q) (44)

and get

dz8
dq

"dGI (q,x, z8 ), (45)

u
dx

dq
"FI (q,x, z8 ), (46)
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where

GI (q, x, z8 )"G(q,x, z8 #z2p
3

(q))!G(q,¸(q, z2p
3

(q)), z2p
3

(q)),

(47)

FI (q,x, z8 )"fAx, aAx, hH#hI !hI 2p
3

(q)
hgigj

z8 1

# hI 2p
3

(q)#a sin qBB . (48)

We note that

x"¸(q, z8 #z2p
3

(q)) (49)

is the quasi-steady state, and that the reduced model

dz8
3

dq
"dGI (q,¸(q, z8

3
#z2p

3
(q)), z8

3
#z2p

3
(q)) (50)

has an equilibrium at the origin z8
3
"0 (cf. (47) with (49)).

This equilibrium has been shown in Section 4 to be
exponentially stable for su$ciently small a.

To complete the singular perturbation analysis, we
also study the boundary layer model (in the time scale
t!t

0
"q/u):

dx
"

dt
"FI (q, x

"
#¸(q, z8 #z2p

3
(q)), z8 ),

"f (x
"
#l(h), a(x

"
#l(h), h)), (51)

where h"hH#hI #a sin q should be viewed as a para-
meter independent from the time variable t. Since
f (l(h), a(l(h), h)),0, then x

"
"0 is an equilibrium of (51).

By Assumption 2.2, this equilibrium is exponentially
stable uniformly in h (and hence l(h)).

By combining exponential stability of the reduced
model (50) with the exponential stability of the boundary
layer model (51), using Tikhonov's Theorem on the In"-
nite Interval [Theorem 9.4 in Khalil (1996)], we conclude
the following:

f The solution z(q) of (42) is O(u)-close to the solution
z
3
(q) of (50), and therefore, it exponentially converges

to an O(u)-neighborhood of the periodic solution
z2p
3

(q), which is O(d)-close to the equilibrium z!,%
3

. This,
in turn, implies that the solution hI (q) of (18) expo-
nentially converges to an O(u#d)-neighborhood
of !M[(h"l)A@(hH)]/[8(h"l)A(hH)]Na2#O(a3). It follows
then that h(q)"hH#hI (q)#a sin q exponentially con-
verges to an O(u#d#a)-neighborhood of hH.

f The solution x(q) of (46) (which is the same as (17))
satis"es

x(q)!l(hH#hI
3
(q)#asinq)!x

"
(t)"O(u), (52)

where hI
3
(q) is the solution of the reduced model (20)

and x
"
(t) is the solution of the boundary layer model

(51). From (52) we get

x(q)!l(hH)"O(u)#l(hH#hI
3
(q)#a sinuq)

! l(hH)!x
"
(t). (53)

Since hI
3
(q) exponentially converges to the periodic

solution hI 2p
3

(q), which is O(d)-close to the average
equilibrium M[(h"l)A@(hH)]/[8(h"l)A(hH)]Na2#O(a3), and
since the solution x

"
(t) of (51) is exponentially

decaying, then by (53), x(q)!l(hH) exponentially
converges to an O(u#d#a)-neighborhood of zero.
Consequently, y"h(x) exponentially converges to
an O(u#d#a)-neighborhood of its maximal equi-
librium value h"l(hH).

We summarize the above conclusions in the following
theorem.

Theorem 5.1. Consider the feedback system (11)}(14) under
Assumptions 2.1}2.3. There exists a ball of initial conditions
around the point (x, hK , m, g)"(l(hH), hH, 0, h " l(hH)) and con-
stants u6 , dM , and a6 such that for all u3(0,u6 ), d3(0, dM ),
and a3(0, a6 ), the solution (x(t), hK (t), m(t), g(t)) exponentially
converges to an O(u#d#a)-neighborhood of that point.
Furthermore, y(t) converges to an O(u#d#a)-neighbor-
hood of h"l(hH).

A considerably more elaborate analysis would lead to
the following stronger result which we give without
proof.

Theorem 5.2. Under the conditions of Theorem 5.1, there
exists a unique exponentially stable periodic solution of
(11)}(14) in an O(u#d#a)-neighborhood of the point
(x, hK , m, g)"(l(hH), hH, 0, h " l(hH)).

6. Conclusions

We hope that the proof of stability of the extremum
seeking scheme will revive interest in this practically
important but regrettably neglected area of adaptive con-
trol research. Our proof covers only one implementation
of extremum control * the method with a periodic
perturbation. Other implementations, such as, for
example, those where a relay provides self-excitation,
would also be worth studying.
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