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Fig. 4. Signalw(t) acting as the output of backlash hysteresis.

We should mention that it is desirable to compare the control perfor-
mance with and without considering the effects of hysteresis. Unfor-
tunately, this comparison is not possible in this case as the control law
(15)–(20) is designed for the entire cascade system.

VI. CONCLUSION

In this paper, a robust adaptive control architecture is proposed for
a class of continuous-time nonlinear dynamic systems preceded by a
backlash-like hysteresis, where the backlash-like hysteresis is mod-
eled by a dynamic equation. By showing the properties of the hys-
teresis model, a robust adaptive control scheme is developed without
constructing the hysteresis inverse. The new adaptive control law en-
sures global stability of the adaptive system and achieves both stabi-
lization and tracking with excellent precision. Simulations performed
on a simple nonlinear system illustrate and clarify the approach.
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Extremum Seeking for Limit Cycle Minimization

Hsin-Hsiung Wang and Miroslav Krstic´

Abstract—In many physical problems, equilibrium stabilization is not
possible and the controlled system is in a limit cycle. If the size of the limit
cycle depends on some of the control parameters, then a reasonable objec-
tive would be to tune this parameter to minimize the size of the limit cycle.
In this paper, we propose a method for achieving this. This method is an
extension of our earlier result [13] on extremum seeking for equilibria. We
illustrate the method with a Van der Pol oscillator example and present
analysis for it using averaging and singular perturbations.

Index Terms—Averaging, extremum seeking, limit cycles, singular per-
turbations.

I. INTRODUCTION

Limit cycles occur in numerous areas of application. In particular,
systems exist in which feedback control can only reduce the size of the
limit cycle, but cannot completely eliminate it. The inability to remove
the limit cycle and achieve equilibrium stabilization may be associated
with actuator constraints, like magnitude and rate saturation. In this
situation, the best control requirement is to enforce a stable, “smallest”
limit cycle.

The method of “extremum seeking” has traditionally been used for
searching for a minimum or a maximum of anequilibrium map. This
method was an intensely studied topic between the 1940’s and 1970’s
[2]–[5], [15], [19]–[21]. The most frequently cited references include
the works by Kazakevichet al. [6]–[10], the survey by Sternby [24],
and the book of Astrom and Wittenmark [1, Section 13.3]. Pioneering
work on stability analysis based on averaging in an example of an ex-
tremum-seeking system dates back to Meerkov [16]–[18]. The first sta-
bility analysis for a problem with ageneral nonlinear dynamical plant
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was presented in our recent work [12], [13], and it involves the use of
both averaging and singular perturbations. The methods of determin-
istic extremum seeking have similarities with the stochastic approxi-
mation methods [14], [22], [23].

In this paper, we present the first extension of the extremum-seeking
method to the case in which equilibrium operation is impossible (un-
stable) and the system is always in alimit cycle. The objective of the
scheme is to reduce the size of the limit cycle to a minimum. Our algo-
rithm is a slight variation on the standard extremum-seeking algorithm
with an excitation signal, but the analysis is novel and incorporates a
nontrivial sequence of steps involving averaging and singular perturba-
tion methods.

We start in Section II with a scheme for general feedback systems
in limit cycle. This scheme incorporates a block for detection of the
“amplitude” of the limit cycle. In Section III, we apply the scheme to a
Van der Pol oscillator example for which the simulations demonstrate
the effectiveness of the scheme. Finally, in Section IV, we present sta-
bility/performance analysis (for the scheme with the Van der Pol ex-
ample), which involves two steps of averaging with one step of singular
perturbation analysis in between. The conclusions drawn are valid on
O(1) time intervals.

II. A N EXTREMUM-SEEKING SCHEME FORLIMIT CYCLE

MINIMIZATION

We consider single-input–single-output systems of the form

_x = f(x; u)

y =h(x) (2.1)

wherex 2 n is the state,u 2 is the input,y 2 is the output, and
f : n

� !
n andh: n

! are smooth. Suppose we know a
smooth control law

u = �(x; �) (2.2)

parameterized by a scalar parameter� such that the closed-loop system

_x = f(x; �(x; �)) (2.3)

has a stable limit cycle corresponding to each�. Our objective is to tune
� to minimize the “amplitude” of the limit cycle.

In order to employ the extremum-seeking scheme from [12], [13]
to the problem of limit cycle minimization, only a small modification
is needed. We add a detector block shown in Fig. 4 to the overall ex-
tremum seeking scheme in Fig. 1. The idea of the detector is simple,
and we explain it first, before explaining the operation of the overall
scheme in Fig. 1. We assume that the output of the system in a limit
cycle is sinusoidal,1 y(t) = Y0+r sin(!0t+�), whereY0; � are con-
stants andr; !0 are positive constants. The high-pass filter is supposed
to eliminate the DC componentY0. The expected result,r sin(!0t+�),
is squared to get(r2=2)(1+cos(2!0t+�)), and then passed through a
low-pass filter to extract onlyr2=2. The last block results in the ampli-
tude of the limit cycler. This idea is, of course, based on an assumption
that!0 � 
h;
l.

The overall extremum-seeking scheme in Fig. 1 functions as follows.
Suppose the limit cycle transients and the limit cycle oscillations are
fast, so that the cascade of the plant and the limit cycle amplitude de-
tector block can be regarded as a static nonlinear mapr(�) with a local
minimum at��. The excitationa sin!t will then create a periodic re-
sponse inr. The high-pass filters=(s+ !h) would eliminate the “DC

1Assume that the limit cycle is almost purely harmonic; for a multiharmonic
limit cycle, the method of this paper would result only in minimization of the
first mode.

Fig. 1. Extremum-seeking scheme for limit cycle minimization. Thex-system
is assumed to be in a limit cycle for any constant� [despite the use of feedback
�(x; �)].

Fig. 2. Detector of limit cycle amplitude.

Fig. 3. Characteristic of the limit cycle “amplitude”r with respect to�.

component” ofr. Then, the multiplication bya sin!t would result in
a signal that has a slow component proportional to(a2=2)(@y=@�̂),
whereas the fast component would be eliminated by the low-pass filter
!l=(s+ !l). Then, the integratork=s would be acting approximately
as a gradient update law driven by the sensitivity function, which tunes
�̂ to ��.

The design parameters of the entire scheme are selected as!0 �


h;
l � ! � !h; !l; k.

III. A V AN DER POL EXAMPLE

Consider a Van der Pol equation parameterized by� as follows:

�x+ �[(x� x0)
2
� 1� (� � ��)2] _x+ �2(x� x0) = 0 (3.1)

where� � �� is a parameter that controls the amplitude of oscillation
andx0 is a parameter for the offset ofx. The parameter� controls the
frequency of limit cycle oscillations, and� controls the speed of the
limit cycle transients (the attractivity of the limit cycle). We assume
that �� is constant and� is available as the input to the system. The
system (3.1) will be in a limit cycle for any� and�� [11]. This example
is contrived to emulate problems in which feedback control can only
reduce the size of a limit cycle, but cannot completely eliminate it.

We first study the relationship between the limit cycle amplitude and
the parameter� for the system (3.1). The relationship is shown in Fig. 3.
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Fig. 4. Time response of statex of the Van der Pol system with largê�(0).

Fig. 5. Time response of parameter� of the Van der Pol system with large
�̂(0).

Because the characteristic has a minimum, we feed�r to the input of
the extremum-seeking block (see Fig. 1).

We perform simulations from both sides of the extremum. In both
cases, we seta = 0:1, 
h = 0:75, 
l = 0:02, ! = 0:1, !H = 0:02,
k = 4, x0 = 6, �� = 3, and� = � = 1. In the first case, we set the
initial value of the integrator̂�(0) = 5. We run the simulation without
extremum seeking for 100 s and then start the extremum-seeking con-
troller. The oscillation ofx is shown in Fig. 4, and the process of con-
vergence of the parameter� to �� = 3 is shown in Fig. 5. In the second
case, we consider the initial valuê�(0) = 1. The oscillation ofx is
shown in Fig. 6, and the process of convergence of� to �� = 3 is
shown in Fig. 7. In both cases, the limit cycle is reduced to its minimal
possible size.

IV. A NALYSIS

To simplify the analysis, we replace the amplitude detector block
with a quadratic function. We also drop the low-pass filter from the
extremum-seeking scheme to make the proof as simple as possible.2

The resulting extremum-seeking scheme with the Van der Pol system

2The conclusions of the analysis without these simplifications would be the
same, but the analysis would be much more complicated.

Fig. 6. Time response of statex of the Van der Pol system with small�̂(0).

Fig. 7. Time response of parameter� of the Van der Pol system with small
�̂(0).

is shown in Fig. 8. Denoting~� = �̂ � �� andy = x � x0, the system
can be written as

�y � � 1 + (~� + a sin!t)2 � y2 _y + �2y = 0 (4.1)

_� =(y2 � �)!h (4.2)

= � ka(y2 � �) sin!t: (4.3)

Before we start the analysis, we outline its intended main result. It
is well known [11, Sect. 8.4] that, for~� = 0 anda = 0, if �=� is
sufficiently large, we have

y(t)2 +
_y(t)2

�2
=2 +O

�

�
+ exp. decaying terms (4.4)

over andO(1) time interval. In this section, we will show that the ex-
tremum-seeking scheme guarantees that (4.4) holds with an

O a+
ka

!
+

!h
!

+
!

�
error (4.5)

provided (x(0)� x0)2 + _x(0)2=�2 � 2, �̂(0)� ��, �(0)� 2� a2

and the quantities

�

�
;
!

�
;
ka

!
;
!h
!

(4.6)
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Fig. 8. Simplified extremum-seeking scheme for limit cycle minimization.

are all sufficiently small, which means that, over anO(1) time interval,
the solutions will be locally exponentially converging to a small neigh-
borhood of the “smallest” limit cycle. The smallness condition (4.6)
implies that the adaptation gainka and the filter cutoff frequency!h
should be an order of magnitude smaller than the excitation frequency
!, which should be an order of magnitude smaller than the limit cycle
damping�, which should be an order of magnitude smaller than the
limit cycle frequency�. This ordering of�; �; !; k; a, and!h ensures
the following separation of time scales:

• limit cycle oscillations faster than;
• limit cycle transients faster than;
• excitation signal oscillations faster than;
• extremum-seeking filter transients.

For notational simplicity, in this section, we take� = O(1).
We are now ready to commence our analysis. To represent the Van

der Pol system (4.1) in polar coordinates, let

y = r sin�; _y = �r cos�: (4.7)

Then, we have

_r = �r cos2 � 1 + ~� + a sin!t
2

� r2 sin2 � (4.8)

=�� � cos� sin� 1 + ~� + a sin!t
2

� r2 sin2 � : (4.9)

The overall system is shown in (4.2) and (4.3) and (4.8) and (4.9). We
treatt as a state and use� as an independent variable. Then, the whole
system can be represented as

dr

d�
=

�

�

r cos2 � 1 + ~� + a sin!t
2

� r2 sin2 �

1��
(4.10)

d~�

d�
= �

k

�

a(r2 sin2 �� �) sin!t

1��
(4.11)

d�

d�
=

!h
�

r2 sin2 �� �

1��
(4.12)

dt

d�
=

1

�

1

1��
(4.13)

where

�
�
=

�

�
cos� sin� 1 + ~� + a sin!t

2

� r2 sin2 � : (4.14)

Now, averaging with respect to� for 1=� small, we obtain

dra

d�
=

�

�
ra

1 + (~�a + a sin!ta)2

2
�

(ra)2

8
(4.15)

d~�a

d�
= �

k

�
a sin!ta

(ra)2

2
� �a (4.16)

d�a

d�
=

!h
�

(ra)2

2
� �a (4.17)

dta

d�
=

1

�
: (4.18)

Note thatta = (�=�) in this average system. Denote�� = (!�=�).
By using the relationship! � !h; k, (4.15)–(4.17) can be expressed
as

!
dra

d��
= �ra

1 + (~�a + a sin�� )
2

2
�

(ra)2

8
(4.19)

d~�a

d��
= �

k

!
a sin��

(ra)2

2
� �a (4.20)

d�a

d��
=

!h
!

(ra)2

2
� �a : (4.21)

This system is in the standard singular perturbation form [recall the
smallness condition (4.6)].

The next step in our analysis is to study the system (4.19)–(4.21).
We freezera in (4.19) at its “quasi-steady-state” value

(ra)2 = 4 1 + (~�a + a sin�� )
2 : (4.22)

Substituting (4.22) into (4.20) and (4.21), we obtain the “reduced
model”

d~�ar
d��

= �
k

!
a sin�� 2 + 2(~�ar + a sin�� )

2
� �ar (4.23)

d�ar
d�r

=
!h
!

2 + 2(~�ar + a sin�� )
2
� �ar : (4.24)

Because!h; k � !, the system (4.23) and (4.24) is in the form to
which the averaging method is applicable [11, Sect. 8.3]. The average
model of (4.23) and (4.24) is

d~�aar
d��

= � 2
k

2�!
a

2�

0

sin��

� 2 + 2(~�aar + a sin�� )
2
� �aar d�� (4.25)

d�aa

d��
=

!h
2�!

2�

0

� 2 + 2(~�aar + a sin�� )
2
� �aar d�� : (4.26)

Performing the integrations, the average system becomes

d~�aar
d��

= � 2
ka2

!
~�aar (4.27)

d�aar
d��

=
!h
!

� �aar � 2� a2 + 2 ~�aar
2

: (4.28)

Define

~�aar = �aar � (2 + a2): (4.29)
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Then, the average system is

d~�aar
d��

= � 2
ka2

!
~�aar (4.30)

d~�aar
d��

=
!h

!
�~�aar + 2 ~�aar

2

: (4.31)

The Jacobian at the average equilibrium~�aar = ~�aar = 0 is

Jaa
r =

�2
k

!
a2 0

0 �

!h

!

: (4.32)

Obviously,Jaa
r is Hurwitz, which implies that the average equilibrium

is exponentially stable. Then, according to the averaging theorem [11,
Theorem 8.3], all solutions(~�ar (��); ~�

a
r (��)) exponentially converge

to anO(�)-neighborhood of the origin, where

� =
maxfka; !hg

!
: (4.33)

Because (4.23)–(4.24) is the reduced model of the singularly perturbed
system (4.19)–(4.21), by the Tikhonov-type theorem on the infinite in-
terval [11, Theorem 9.4], we have that

~�a(��)� ~�ar (��) =O(!) (4.34)

ra(��)� 2 1 + ~�ar (��) + a sin��
2

1=2
exp�!O (!) (4.35)

because it is easy to verify that the boundary layer model

drb
dt

= � rb + 2
p
1 + �2

1 + �2

2
� rb + 2

p
1 + �2

2

8
(4.36)

has an exponentially stable equilibrium atrb = 0 for all �. The above
conclusions imply that

~�a(��)
exp:�!O (� + !) (4.37)

ra(��)
exp:�! 2 +O (a+ � + !) : (4.38)

Because (4.19)–(4.21) is the average system of (4.10)–(4.13), from
the averaging theorem, it follows that

~�(�) �!O � + ! +
1

�
(4.39)

r(�) �! 2 +O a+ � + ! +
1

�
(4.40)

[at least on anO(�) interval for�]. By an argument similar to that
in [11, Theorem 8.4], we establish the same properties for~� andr as
functions of time; i.e.,

~�(t) �!O � + ! +
1

�
(4.41)

r(t) �! 2 +O a+ � + ! +
1

�
(4.42)

[at least on anO(1) interval fort]. This result, in turn, implies that

y(t)2 +
_y(t)2

�2
�! 2 +O a+ � + ! +

1

�
: (4.43)

The last statement means that extremum seeking brings the limit cycle
amplitude to withinO (a+ � + ! + (1=�)) of its minimum.

A comment is in order about the statement that the results of this
section are valid over anO(1) time interval. Although this interval
contains several periods of oscillation of the Van der Pol limit cycle,
it contains only a fraction of a period of the excitation signal because
!� 1, which would seem to weaken the results of the presented anal-
ysis. For this reason, it is important to understand where theO(1) lim-
itation on the time interval comes from. This limitation is typical for
“weakly nonlinear oscillators” (see, e.g., [11, Sect. 8.4]). It is because
the average model of the Van der Pol system is not exponentially stable,
so that the approximation� � �t is valid only onO(1) time intervals.
This time interval can be extended by taking into account higher order
terms in1=� (in our analysis, this would be done in the first averaging
step). Because all of the rest of the analysis holds for infinite time (be-
cause the respective reduced models are all exponentially stable), the
results can be made valid over time intervals of the order of the slowest
time constants in the extremum-seeking loop. The simulation results
presented in the previous section confirm that the conclusions of the
analysis are valid for a time interval much longer thanO(1).

ACKNOWLEDGMENT

The authors gratefully acknowledge discussions with C. Jacobson,
A. Banaszuk, and A. Khibnik.

REFERENCES

[1] K. J. Astrom and B. Wittenmark,Adaptive Control, 2nd ed. Reading,
MA: Addison-Wesley, 1995.

[2] P. F. Blackman, “Extremum-seeking regulators,” inAn Exposition of
Adaptive Control, J. H. Westcott, Ed. New York: Macmillan, 1962.

[3] C. S. Drapper and Y. T. Li, “Principles of optimalizing control systems
and an application to the internal combustion engine,”ASME, vol. 160,
pp. 1–16, 1951.

[4] A. L. Frey, W. B. Deem, and R. J. Altpeter, “Stability and optimal gain in
extremum-seeking adaptive control of a gas furnace,” inProc. 3rd IFAC
World Congr., vol. 48A, London, 1966.

[5] O. L. R. Jacobs and G. C. Shering, “Design of a single-input sinusoidal-
perturbation extremum-control system,”Proc. Inst. Elect. Eng., vol. 115,
pp. 212–217, 1968.

[6] V. V. Kazakevich, “Extremum control of objects with inertia and of un-
stable objects,”Sov. Physi., Dokl., vol. 5, pp. 658–661, 1960.

[7] V. V. Kazakevich and I. A. Mochalov, “Statistical study of some algo-
rithms for the control of inertial objects of optimization in the presence
of drift,” Automat. Remote Contr., no. 11, pp. 49–56, 1974.

[8] , “Joint identification and accelerated optimization of plants with
lag,” Automat. Remote Contr., no. 9, pp. 62–73, 1984.

[9] V. V. Kazakevich and Yu. V. Shcherbina, “Design of continuous-dis-
crete extremal control systems that are stable under low-frequency dis-
turbances,”Automat. Remote Contr., no. 2, pp. 59–64, 1979.

[10] , “Design of extremal control systems that are stable under any
polynomial drift,” Automat. Remote Contr., no. 10, pp. 56–62, 1985.

[11] H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Pren-
tice-Hall, 1996.

[12] M. Krstic and H. H. Wang, “Design and stability analysis of extremum
seeking feedback for general nonlinear systems,” inProc. 1997 Conf.
Decision Contr., vol. TA02-3, San Diego, CA.

[13] , “Stability of extremum seeking feedback for general nonlinear
dynamic systems,”Automatica, vol. 36, pp. 595–601, 2000.

[14] H. J. Kushner and D. S. Clark,Stochastic Approximation Methods for
Constrained and Unconstrained Systems. New York: Springer, 1978.

[15] M. Leblanc, “Sur l’electrification des chemins de fer au moyen de
courants alternatifs de frequence elevee,”Revue Generale de l’Elec-
tricite, 1922.

[16] S. M. Meerkov, “Asymptotic methods for investigating quasistationary
states in continuous systems of automatic optimization,”Automat. Re-
mote Contr., no. 11, pp. 1726–1743, 1967.

[17] , “Asymptotic methods for investigating a class of forced states
in extremal systems,”Automation and Remote Control, no. 12, pp.
1916–1920, 1967.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000 2437

[18] , Asymptotic methods for investigating stability of continuous sys-
tems of automatic optimization subjected to disturbance action, (in Rus-
sian), in Automatika i Telemekhanika, no. 12, pp. 14–24, 1968.

[19] I. S. Morosanov, “Method of extremum control,”Automat. Remote
Contr., vol. 18, pp. 1077–1092, 1957.

[20] I. I. Ostrovskii, “Extremum regulation,”Automat. Remote Contr., vol.
18, pp. 900–907, 1957.

[21] A. A. Pervozvanskii, “Continuous extremum control system in the pres-
ence of random noise,”Automat. Remote Contr., vol. 21, pp. 673–677,
1960.

[22] G. N. Saridis,Self-Organizing Control of Stochastic Systems. New
York: Marcel Dekker, 1977.

[23] J. C. Spall, “Multivariate stochastic approximation using simultaneous
perturbation gradient approximation,”IEEE Trans. Automat. Contr., vol.
37, pp. 332–341, 1992.

[24] J. Sternby, “Extremum control systems: An area for adaptive control?,”
in Preprints Joint Amer. Contr. Conf., vol. WA2-A, San Francisco, CA,
1980.

[25] C. S. Drapper and Y. T. Li,Optimal and Self-Optimizing Control, R.
Oldenburger, Ed. Boston, MA: MIT Press, 1966.

Correction to “Asymptotic State Tracking in a Class of
Nonlinear Systems Via Learning-Based Inversion”

Young-Hoon Kim and In-Joong Ha

In the above paper,1 the biographies were printed without the au-
thors’ photographs. The revised biographies follow.

Young-Hoon Kim received the B.S., M.S., and
Ph.D. degrees in control and instrumentation
engineering from Seoul National University, Seoul,
Korea, in 1992, 1994, and 1998, respectively.

He is presently a Member of Research Staff at
the Nano Systems Laboratory, Samsung Advanced
Institute of Technology, Suwon, Korea. His current
research interests include nonlinear control theory
and its application to high-precision servo systems
for data storage devices.

In-Joong Ha received the Ph.D. degree in computer,
information, and control engineering (CICE) from
the University of Michigan, Ann Arbor, in 1985.

He is presently Professor in the School of
Electrical Engineering, Seoul National University,
Seoul, Korea. From 1985 to 1986, he was with
General Research Laboratories, Troy, MI. From
1982 to 1985, he was a Research Assistant at the
center for Research on Integrated Manufacturing,
University of Michigan, Ann Arbor. From 1973 to
1981, he worked in the area of missile guidance and

control at the Agency of Defense Development in Korea. His current research
interest includes nonlinear control theory and its applications to missiles,
electric machines, and high-precision servo systems for factory automation and
multimedia.

Dr. Ha was the recipient of the 1985 Outstanding Achievement Award in the
CICE program.

Manuscript received December 10, 2000.
Y.-H. Kim is with the Nano Systems Laboratory, Samsung Advanced Institute

of Technology, Suwon 440-600 Korea.
I.-J. Ha is with the School of Electrical Engineering, Seoul National Univer-

sity, Seoul 151–742, Korea.
Publisher Item Identifier S 0018–9286(00)11713-1.

1IEEE Trans. Automat. Contr.,vol. 45, pp. 2011–2027, Nov. 2000

0018–9286/00$10.00 © 2000 IEEE


