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Fig. 4. Signake(t) acting as the output of backlash hysteresis. Abstract—n many physical problems, equilibrium stabilization is not

possible and the controlled system is in a limit cycle. If the size of the limit

. . . cycle depends on some of the control parameters, then a reasonable objec-
We should mention that it is desirable to compare the control perfaize would be to tune this parameter to minimize the size of the limit cycle.

mance with and without considering the effects of hysteresis. Unfdr-this paper, we propose a method for achieving this. This method is an
tunately, this comparison is not possible in this case as the control I{ension of our earlier result [13] on extremum seeking for equilibria. We

(15)(20) is designed for the entire cascade system illustrate the method with a Van der Pol oscillator example and present
9 Yy ’ analysis for it using averaging and singular perturbations.

Index Terms—Averaging, extremum seeking, limit cycles, singular per-
VI. CONCLUSION turbations.

In this paper, a robust adaptive control architecture is proposed for
a class of continuous-time nonlinear dynamic systems preceded by a . INTRODUCTION
backlash-like hysteresis, where the backlash-like hysteresis is mod-. . . _ .
eled by a dynamic equation. By showing the properties of the hys_L|m|t cyc!es. occur in numerous areas of application. In pa.rtlcular,
teresis model, a robust adaptive control scheme is developed WithEYﬁtemS exist in which feedback COT‘"F" can only r(_educ_g the size of the
constructing the hysteresis inverse. The new adaptive control law |H1_|t_cy.cle, but cannot F:omplett_al_y gllmlnate_l_t. The inability to remove
sures global stability of the adaptive system and achieves both ste{B?— limit cycle and achieve equilibrium stabilization may be associated

lization and tracking with excellent precision. Simulations performe‘é‘Ith gctuator constraints, Ilke_magnltqde and rate saturatlc?‘n. In thlsf,
on a simple nonlinear system illustrate and clarify the approach. situation, the best control requirement is to enforce a stable, “smallest

limit cycle.
The method of “extremum seeking” has traditionally been used for
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was presented in our recent work [12], [13], and it involves the use of
both averaging and singular perturbations. The methods of determin-
istic extremum seeking have similarities with the stochastic approxi-
mation methods [14], [22], [23].

In this paper, we present the first extension of the extremum-seeking P

method to the case in which equilibrium operation is impossible (un-
stable) and the system is always ifirait cycle The objective of the

e = f(z,afz,0))

etector of limi

y = h(z)
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scheme is to reduce the size of the limit cycle to a minimum. Our algo-
rithm is a slight variation on the standard extremum-seeking algorithm
with an excitation signal, but the analysis is novel and incorporates a

a sin wt

nontrivial sequence of steps involving averaging and singular perturgy 1. Extremum-seeking scheme for limit cycle minimization. Freystem

tion methods.
We start in Section Il with a scheme for general feedback systemgr ¢)]-
in limit cycle. This scheme incorporates a block for detection of the

is assumed to be in a limit cycle for any constéiftespite the use of feedback

“amplitude” of the limit cycle. In Section IIl, we apply the scheme to a y
Van der Pol oscillator example for which the simulations demonstrate ~—
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the effectiveness of the scheme. Finally, in Section IV, we present sta-
bility/performance analysis (for the scheme with the Van der Pol ex;
ample), which involves two steps of averaging with one step of singula
perturbation analysis in between. The conclusions drawn are valid on
O(1) time intervals.

Il. AN EXTREMUM-SEEKING SCHEME FORLIMIT CYCLE
MINIMIZATION

We consider single-input—single-output systems of the form

&= f(x,u) o

y =h(x) (2.1)

25F

ilg. 2. Detector of limit cycle amplitude.

st

wherez € R" is the statex € R is the inputy € R is the output, and ’ ’ ' /' T
f: R" xR — R™ andh: R" — R are smooth. Suppose we know a N/
smooth control law ol

U= (J’(;E, 9) (22) [} 1 2 3 4 5 6 7
parameterized by a scalar paramétsuch that the closed-loop system
Fig. 3. Characteristic of the limit cycle “amplitude”with respect t@.

has a stable limit cycle corresponding to eéicBur objective is to tune SOMPONeNt ofr. Then, the multiplication by sin w¢ would result in
a signal that has a slow component proportionafd®/2)(dy/d4),

# to minimize the “amplitude” of the limit cycle. L )
P 4 g\ihereas the fast component would be eliminated by the low-pass filter

In order to employ the extremum-seeking scheme from [12], [1: 4 Y Th he i /s Idb . . |
to the problem of limit cycle minimization, only a small modification™” (s +wi). Then, the integratok/s would be acting approximately

is needed. We add a detector block shown in Fig. 4 to the overall _ag*radient update law driven by the sensitivity function, which tunes
tremum seeking scheme in Fig. 1. The idea of the detector is simp etfr) b . .
and we explain it first, before explaining the operation of the over?# h? des/lgn p{/alrar/neters of the entire scheme are selecte 3s
scheme in Fig. 1. We assume that the output of the system in a liit* <% > @ > wn. <. k.

cycle is sinusoidal,y(t) = Yo + r sin(wot + ¢), whereYy, ¢ are con-
stants and, w, are positive constants. The high-pass filter is supposed
to eliminate the DC componeh} . The expected resultsin(wot+9),

is squared to get-? /2)(14cos(2wot + ¢)), and then passed through a
low-pass filter to extract only® /2. The last block results in the ampli-

tude of the limit cycle . This idea is, of course, based on an assumption

thatwe > (2, (. ) o ) where# — 6™ is a parameter that controls the amplitude of oscillation
The overall extremum-seeking scheme in Fig. 1 functions as followssq..., is a parameter for the offset of The parametes controls the

Suppose the limit cycle transients and the limit cycle oscillations afzquency of limit cycle oscillations, andcontrols the speed of the
fast, so that the cascade of the plant and the limit cycle amplitude ggsit cycle transients (the attractivity of the limit cycle). We assume
tector block can be regarded as a static nonlinearrttpwith alocal  ha14* is constant and is available as the input to the system. The
minimum até™. The excitatiorz sin wt will then create a periodic re- system (3.1) will be in a limit cycle for anfyandé* [11]. This example
sponse in-. The high-pass filtes/(s + ) would eliminate the “DC g contrived to emulate problems in which feedback control can only
1Assume that the limit cycle is almost purely harmonic; for a multiharmoni'&educe the size of a limit cycle, but cannot completely eliminate it.

limit cycle, the method of this paper would result only in minimization of the Ve first study the relationship between the limit cycle amplitude and
first mode. the parametet for the system (3.1). The relationship is shown in Fig. 3.

. AV AN DER PoL EXAMPLE

Consider a Van der Pol equation parameterized byg follows:

Pdef(e—w) —1—(0 =0+ p’(x—20)=0 (3.1)
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Fig. 4. Time response of stateof the Van der Pol system with largg0). Fig. 6.

3.5
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Fig. 5. Time response of parameteof the Van der Pol system with large Fig. 7. Time response of parametenf the Van der Pol system with small

50, 6(0).

is shown in Fig. 8. Denoting = 6 —6* andy = z — w0, the system
Because the characteristic has a minimum, we feedo the input of can be written as
the extremum-seeking block (see Fig. 1).

We perform simulations from both sides of the extremum. In both j—e€ (1 + ((7’ +asinwt)’ —y ) g+ ply=0 (4.1)
cases, we set = 0.1, 2, = 0.75,; = 0.02,w = 0.1, wyr = 0.02, . 5
k= 4,20 = 6,0" = 3,ande = p = 1. In the first case, we set the =y - "’?“’L (4.2)
initial value of the integrato#(0) = 5. We run the simulation without = — ka(y® — ) sinwt., (4.3)

extremum seeking for 100 s and then start the extremum-seeking con-

troller. The oscillation of is shown in Fig. 4, and the process of con- Before we start the analysis, we outline its intended main result. It
vergence of the parameteto #* = 3 is shown in Fig. 5. In the second is Well known [11, Sect. 8.4] that, fat = 0 anda = 0, if u/c is
case, we consider the initial vali¢0) = 1. The oscillation ofz is ~ sufficiently large, we have

shown in Fig. 6, and the process of convergencé af * = 3 is

ShOV\{n in Elg. 7. In both cases, the limit cycle is reduced to its minimal (1) + ( )? —924+0 <E> + exp. decaying terms (4.4)
possible size. w2 o

IV. ANALYSIS over andO(1) time interval. In this section, we will show that the ex-

tremum-seeking scheme guarantees that (4.4) holds with an
To simplify the analysis, we replace the amplitude detector block

with a quadratic function. We also drop the low-pass filter from the ka  w, w
extremum-seeking scheme to make the proof as simple as posible. 0 <" W + ?) error (4.5)
The resulting extremum-seeking scheme with the Van der Pol system
provided+/(z(0) — x0)? + (0)2/12 = 2,6(0) — 6%, n(0) — 2 — a*
and the quantities

2The conclusions of the analysis without these simplifications would be the

€
same, but the analysis would be much more complicated. /_, (4.6)
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Now, averaging with respect tofor 1/, small, we obtain
6 | Van der Pol y ( )2 y? /
System ’ o I ga in wt® 2 a\2
dr’ :ira |:1—|—(H + asin wt®) _(r ) :| (4.15)
do p 2 8
na . a\2
% = — E asin wt® <% — na) (4.16)
. 1) Iz
[ k "7"1/2 s d77a wh (Ta,)Q
~—] —3 ~— 5o 7= < ‘i n“) (4.17)
T T a1 (4.18)

T do
asinwt Note thatt” = (¢/u) in this average system. Denate = (wo /).

By using the relationship > ws, k, (4.15)—(4.17) can be expressed
Fig. 8. Simplified extremum-seeking scheme for limit cycle minimization. 54

are all sufficiently small, which means that, over@i ) time interval, w dr"l — [1 + (0 tasing,)” )Z} (4.19)
the solutions will be locally exponentially converging to a small neigh- d‘{’f 2 8

borhood of the “smallest” limit cycle. The smallness condition (4.6) dg* __k asin é < re)? B ”a) (4.20)
implies that the adaptation gakw and the filter cutoff frequency,, do~ w o T 2 ’
should be an order of magnitude smaller than the excitation frequency i w, [(r)?2 .

w, which should be an order of magnitude smaller than the limit cycle do- = < — ) . (4.21)

dampinge, which should be an order of magnitude smaller than the
limit cycle frequencyu. This ordering ofu, €, w, k, a, andw
the following separation of time scales:

« limit cycle oscillations faster than;

« limit cycle transients faster than;

« excitation signal oscillations faster than;

» extremum-seeking filter transients.

h @NSUTeS g system is in the standard singular perturbation form [recall the
smallness condition (4.6)].
The next step in our analysis is to study the system (4.19)—(4.21).
We freezer® in (4.19) at its “quasi-steady-state” value

a2 [ . 2
For notational simplicity, in this section, we take= O(1). (r)" =4 [1 + (0" tasiné,) ] : (4.22)
We are now ready to commence our analysis. To represent the Van
der Pol system (4.1) in polar coordinates, let Substituting (4.22) into (4.20) and (4.21), we obtain the “reduced
model”
y = rsin ¢, § = Ur COS . 4.7) 1o i
;é" = - — asin ¢, [2 +2(8} + asin (757-)2 — nf] (4.23)
Then, we have e N ‘
I _ 2 [2 +2(8% 4+ asin ¢, )? — r/f.b] . (4.24)
do, w

« ~ 2 < e
P =er cos’ 10} |:1 + (H + asin wt) — r?gin? (/'):| (4.8) o
Becausev;, k < w, the system (4.23) and (4.24) is in the form to
which the averaging method is applicable [11, Sect. 8.3]. The average

. 2,
=/ — €COs ¢sin @ |:1 + (9 + asin ;ut) — 2 sin? (b:| . (4.9 model of (4.23) and (4.24) is

= -2
treatt as a state and ugeas an independent variable. Then, the whole do- 2mw

system can be represented as . [:_) + 2(63;3@ +asing,)? - nga] Ao, (4.25)

The overall system is shown in (4.2) and (4.3) and (4.8) and (4.9). We g ko /” sin 6.
0

‘ i ) ‘ ‘ dnaa _ wh 2w

dr . rcos? ¢ |:1 + ((7’ + asin wt) — 7?2 sin? ¢:| dér ~ 27w o

FER 1A (4.10) : [2 +2(8% + asing, )’ — 7,;“‘] dp-.  (4.26)

dé E a(r?sin® ¢ — n) sin wt

—~ =2 4.11 . . .

dé i 1-A (4.11) Performing the integrations, the average system becomes

dn _ wp r?sin? ¢ — 7

a6 1—-A (4.12) Aagee ka® s,

dt 1 1 16 =—2— O (4.27)

16 =0 (4.13) aor v

1¢ 1-A e Wh aa p paa 2

d¢ p / cz'l/g _ ’; {_ (7’7; _9_ aZ) +2 ((,)T ) } . (4.28)
where

Define
A € . ~ . 2 2 .
A= ﬁ cos ¢ sin ¢ |:1 + (H + asin wf) — 7% sin? (,6:| . (4.14) A=t (24 (1,2). (4.29)
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Then, the average system is

LS Yk (4.30)
do- w
d,’"]';ftl _ Wh ~aa ‘ paa 2
praato {—m +2(9:) } (4.31)
The Jacobian at the average equilibrigfft = 7%% = 0 is
-2 i a 0
J = w ” (4.32)
0 _ ¥R

Obviously,J** is Hurwitz, which implies that the average equilibrium
is exponentially stable. Then, according to the averaging theorem [ﬂ?p

Theorem 8.3], all solutionsﬁﬂ(q‘),), i (6-)) exponentially converge
to anO(6)-neighborhood of the origin, where

5 — max{ka,wn} (4.33)

W

Because (4.23)—(4.24) is the reduced model of the singularly perturbed

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000

The last statement means that extremum seeking brings the limit cycle
amplitude to withinO (a + § + w + (1/p)) of its minimum.

A comment is in order about the statement that the results of this
section are valid over a®(1) time interval. Although this interval
contains several periods of oscillation of the Van der Pol limit cycle,
it contains only a fraction of a period of the excitation signal because
w < 1, which would seem to weaken the results of the presented anal-
ysis. For this reason, it is important to understand wheréxtig lim-
itation on the time interval comes from. This limitation is typical for
“weakly nonlinear oscillators” (see, e.g., [11, Sect. 8.4]). It is because
the average model of the Van der Pol system is not exponentially stable,
so that the approximation ~ ut is valid only onO(1) time intervals.

This time interval can be extended by taking into account higher order
terms inl/px (in our analysis, this would be done in the first averaging

). Because all of the rest of the analysis holds for infinite time (be-
cause the respective reduced models are all exponentially stable), the
results can be made valid over time intervals of the order of the slowest
time constants in the extremum-seeking loop. The simulation results
presented in the previous section confirm that the conclusions of the
analysis are valid for a time interval much longer t@2f1 ).
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system (4.19)—(4.21), by the Tikhonov-type theorem on the infinite in-

terval [11, Theorem 9.4], we have that
0% (¢-) — 00 (dr) =0(w)  (4.34)

- 271/2
v (6r) = 2 [1+ (52(60) + asino, ) } S2OW)  (435)

because it is easy to verify that the boundary layer model

dry € (Tb+2\/1-|-—92) <1+92 _ ("'£’+2V1+92)d> (4.36)

dt

2 8

has an exponentially stable equilibriumrat= 0 for all . The above
conclusions imply that

exp.

07 (6-) ZBO (6 4 w) (4.37)
r(0:) ZB24+ 0 (a+6+w). (4.38)

Because (4.19)—(4.21) is the average system of (4.10)—(4.13), from

the averaging theorem, it follows that

8(¢) — O <é+w+%> (4.39)

r(¢) —24+0 <a+6+w+ l) (4.40)
1

[at least on arO(y) interval for ¢]. By an argument similar to that

in [11, Theorem 8.4], we establish the same propertie$ fandr as
functions of time; i.e.,

6(t) — O <5 +w+ ,%) (4.41)

7“(t)—>2+()<a+6+w+l) (4.42)
I3

[at least on ar)(1) interval fort]. This result, in turn, implies that

y(t)2 1
y(t)2+”llfl—2)—>2+()<a+6+w+/—l>. (4.43)
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