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a b s t r a c t

For linear systems in the controllable canonical form, we introduce a prescribed-time output feedback
controller which provides for easy prescription of estimation and stabilization convergence times
irrespective of initial conditions and with minimal tuning of the observer and controller parameters.
We show that the closed-loop output feedback system is fixed-time globally uniformly asymptotically
stable as well as convergent to zero in the prescribed time. Further, we show that a separation principle
holds between the prescribed-time controller and the prescribed-time observer provided the scaling
power of the time-varying observer gains exceeds the scaling power of the controller gains by twice
the order of the system, i.e., provided the observer is fast enough relative to the controller, irrespective
of the constant gains of both.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation and previous work

This work is motivated by tactical missile guidance (see, e.g.,
Zarchan (2007)) and other applications in which there exists a
short, finite amount of time remaining to achieve state estimation
and control objectives, and that time is known to within some
small uncertainty. In finite-time applications such as these, state
observers and controllers that allow the user to prescribe the
convergence times a priori and irrespective of initial conditions
offer a clear advantage over those that do not.

Existing approaches to estimation and control in finite time
are dominated by sliding modes (Angulo, Moreno, & Fridman,
2013; Cruz-Zavala, Moreno, & Fridman, 2011; Levant, 1998, 2003,
2005, 2013) and approaches based on concepts of homogene-
ity (Andrieu, Praly, & Astolfi, 2008; Du, Qian, Yang, & Li, 2013;
Efimov, Levant, Polyakov, & Perruquetti, 2016; Hong, Huang, &
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Xu, 2001; Levant, 2003, 2005). However, for higher-order sys-
tems, these approaches lack constructive methods for selecting
observer and controller parameters that allow for prescription of
the convergence times a priori. The Implicit Lyapunov Function
(ILF) approach used by Lopez-Ramirez, Polyakov, Efimov, and
Perruquetti (2016b) and Polyakov, Efimov, and Perruquetti (2015)
does offer controllers and observers for higher-order systems
that make fixed-time convergence possible (i.e., where the con-
vergence time is independent of initial conditions). However,
the parameter tuning process is complicated, since it requires
numerical schemes to solve systems of linear matrix inequalities
(LMIs). There also exist other state observers that provide for
prescription of convergence time, but their implementations are
relatively complicated also, since they require the use of time
delays (Engel & Kreisselmeier, 2002) or a hybrid-systems frame-
work (Li & Sanfelice, 2015; Raff & Allgower, 2007). Interesting
results on finite-time output feedback were provided by Amato,
Darouach, and De Tommasi (2018), Andrieu et al. (2008), Bernuau,
Perruquetti, Efimov, and Moulay (2015), Hong et al. (2001), Lev-
ant (2003), Li and Qian (2006), Lopez-Ramirez, Efimov, Polyakov,
and Perruquetti (2016a), Shi et al. (2017) and Tian, Zuo, Yan,
and Wang (2017), however none of these works offer simple or
constructive ways to select controller and observer parameters
that allow the user to prescribe the convergence times.

Here, we take an alternative approach to finite-time esti-
mation and control, by leveraging the prescribed-time observer
of Holloway and Krstic (2019) and a prescribed-time state feed-
back controller from Song, Wang, Holloway, and Krstic (2017).
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0005-1098/© 2019 Elsevier Ltd. All rights reserved.
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Namely, we introduce a prescribed-time output feedback con-
troller for linear time-invariant systems in controllable canonical
form, which allows for both easy prescription of the conver-
gence times, and minimal tuning of the observer and controller
parameters. In addition, we provide stability results of the output-
feedback controller, and demonstrate that a separation principle
holds between the observer and the state feedback controller
provided the scaling power of the time-varying observer gains
exceeds the scaling power of the controller gains by twice the
order of the system, i.e., provided the observer is fast enough
relative to the controller, irrespective of the constant gains of
both.

1.2. Problem statement

In this work, we study output feedback for systems whose
solutions are only required to exist on a finite-time interval, t ∈

[t0, t0+tf ), where t0 ≥ 0 is the initial time, and tf > t0 is the final
or terminal time by which we are required to meet the estimation
and control objectives. We restrict our analysis to linear single-
input single-output (SISO) systems in the controllable canonical
form,

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t), (2)

where

A :=

⎡⎢⎣ 0 In−1
...

−a0 −a1 ... −an−1

⎤⎥⎦ , B :=

⎡⎢⎣ 0
...

1

⎤⎥⎦
C :=

[
b0 b1 ... bn−1

]
.

Here, x(t) ∈ Rn is the state, u(t) ∈ R1 is a known and bounded
control input, and y(t) ∈ R1 is the measured output. Our objective
is to achieve perfect estimation of the state and stabilize it to the
origin within a finite time T : 0 < T ≤ tf , in a manner in which T
is fixed (independent of initial conditions) and freely prescribed
by the user a priori.

1.3. Design approach

Our output feedback controller employs a prescribed-time
controller of Song et al. (2017) and the prescribed-time observer
of Holloway and Krstic (2019). The controller was developed for
nonlinear systems in the normal form, which reduces to the
controllable canonical form in the case where the nonlinearities
vanish. The observer, however, was developed for linear systems
in the observer canonical form. Therefore, to use this controller
and observer together, we require a state transformation to relate
the different canonical realizations. Toward this end, note that
there exists a linear time-invariant coordinate transformation T ,
such that by defining a new state ξ (t) as

ξ (t) := T x(t), (3)

the system in controllable canonical form (1), (2) is transformed
into the observer canonical form,

ξ̇ (t) = A ξ (t) + Bu(t) − Dy(t) (4)

y(t) = eT1ξ (t), (5)

where

A :=

⎡⎢⎣ 0 In−1
...

0 ... 0

⎤⎥⎦ , B :=

⎡⎢⎣ bn−1
...

b0

⎤⎥⎦ , D :=

⎡⎢⎣ an−1
...

a0

⎤⎥⎦ ,

the ais and bis are the same as those in (1), (2), and e1 =

[1, 0, . . . , 0]T ∈ Rn is the first of the n-dimensional unit vectors.
Now, we construct a prescribed-time observer for the system (4),
(5) according to Holloway and Krstic (2019) as
˙̂
ξ (t) = A ξ̂ (t) + Bu(t) − Dy(t)

+

⎡⎢⎣ g1(t − t0, T )
...

gn(t − t0, T )

⎤⎥⎦(y(t) − ξ̂1(t)
)

(6)

where the time-varying observer gains {gi(t − t0, T )}ni=1 are func-
tions of the prescribed convergence time T , with 0 < T ≤ tf , and
must be designed. Then since the relationship (3) is known, we
calculate the state estimate x̂(t) with

x̂(t) = T −1ξ̂ (t). (7)

The estimate (7) is based on the idea that, if the estimate ξ̂ (t)
tracks ξ (t) well, then x̂(t) might track x(t) with comparable per-
formance by virtue of (3). Finally, using the state estimate (7),
we construct a prescribed-time output feedback controller of the
form

u(t) = −L̂0(t) − L̂1(t) − L̂2(t) − L̂3(t), (8)

where the expressions L̂0(t), L̂1(t), L̂2(t), L̂3(t) are linear time-
varying functions of the state estimates and are developed in the
following.

2. Preliminaries

2.1. Prescribed-time scaling functions

Both the prescribed-time observer from Holloway and Krstic
(2019) and the prescribed-time controller from Song et al. (2017)
employ the following scaling functions, which are positive mono-
tonic functions of the convergence time, T > 0, a parameter
which is freely prescribed by the user and independent of initial
conditions.

We define the function µ1(t − t0, T ) : [t0, t0 + T ) ↦→ R+ as

µ1(t − t0, T ) :=
T

T + t0 − t
, (9)

which starts from 1 at t = t0 and increases monotonically to
infinity as t → t0 + T . We also define the function ν(t − t0, T ) :

[t0, t0 + T ) ↦→ R+ as

ν(t − t0, T ) := µ1(t − t0, T )−1
=

T + t0 − t
T

, (10)

which starts from 1 at t = t0 and decreases monotonically to
zero as t → t0 + T . Then also using (9), we define the function
µ(t − t0, T ) : [t0, t0 + T ) ↦→ R+ as

µ(t − t0, T ) := µ1(t − t0, T )n+m
=

T n+m

(T + t0 − t)n+m , (11)

which also starts from 1 at t = t0 and increases monotonically to
infinity as t → t0 + T , but can be tuned to do so more quickly
than µ1(t−t0, T ) through the positive integers n (the order of the
system) and m ≥ 1, a design parameter.

Notation: The parameter m in (11) can take on different values in
the observer and the controller. Therefore, throughout the paper,
we replace m with the subscripted parameters mO and mC as
applicable for the observer and controller, respectively. To save
space, we often omit the explicit t − t0 and T dependence of
the functions (9)–(11) and write them simply as µ1, ν, µO, and
µC , where the ‘‘O" and ‘‘C" subscripts denote the dependence
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on the parameters mO and mC . Also, for any scalar function f (t)
continuous and bounded on [t0, t0 + T ), we use the notation
∥f ∥[t0,t] := supt0≤τ≤t |f (τ )|.

2.2. Fixed-time stability in prescribed time

Our stability analyses employ the following concepts of fixed-
time stability which were introduced in Song et al. (2017). Note
that in all of these, T is freely prescribed and independent of
initial conditions.

Definition 1 (FT-GUAS). The system ẋ = f (x, t) (of arbitrary
dimension of x) is said to be fixed-time globally uniformly asymp-
totically stable (FT-GUAS) in time T if there exists a class K L

function β such that for all t ∈ [t0, t0 + T ),

|x(t)| ≤ β(|x(t0)|, µ1(t − t0, T ) − 1), (12)

where the function µ1(t − t0, T ) is defined in (9).

Notice that the function µ1(t − t0, T ) − 1 = (t − t0)/(T + t0 − t)
starts from zero at t = t0 and increases monotonically to infinity
as t → t0 + T . Therefore, the function β(|x(t0)|, µ1(t − t0, T )− 1)
decays to zero as t → t0 + T , i.e., at a time that is prescribed by
T .

Definition 2 (FT-ISS). The system ẋ = f (x, t, d) (of arbitrary
dimensions of x and d) is said to be fixed-time input-to-state
stable (FT-ISS) with respect to d in time T if there exists a class
K L function β and a class K function γ , such that for all t ∈

[t0, t0 + T ),

|x(t)| ≤ β(|x(t0)|, µ1(t − t0, T ) − 1) + γ (∥d∥[t0,t]), (13)

where the function µ1(t − t0, T ) is defined in (9).

Note that in the absence of the disturbance d(t), a system that is
FT-ISS is FT-GUAS in time T .

Definition 3 (FT-ISS+C). The system ẋ = f (x, t, d) (of arbitrary
dimensions of x and d) is said to be fixed-time input-to-state
stable and convergent to zero (FT-ISS+C) in time T if there exist
class K L functions β and βf , and a class K function γ , such that
for all t ∈ [t0, t0 + T ),

|x(t)| ≤ βf
(
β(|x(t0)|, t − t0) + γ (∥d∥[t0,t]), µ1(t − t0, T ) − 1

)
,

(14)

where the function µ1(t − t0, T ) is defined in (9).

So, a system that is FT-ISS+C is also FT-ISS, with the additional
property that its state converges to zero in the time T despite
the presence of a disturbance.

2.3. Prescribed-time observer

Define the observer error states as

ξ̃i(t) := ξi(t) − ξ̂i(t), i = 1, . . . , n. (15)

Then with (4), (5), and (6), we obtain the error dynamics
˙̃
ξi(t) = ξ̃i+1(t) − gi(t − t0, T )ξ̃1(t), i = 1, . . . , n − 1 (16)
˙̃
ξn(t) = −gn(t − t0, T )ξ̃1(t). (17)

To facilitate the selection of the observer gains {gi(t − t0, T )}ni=1,
we transform the error system (16), (17) according to the fol-
lowing lemma of Holloway and Krstic (2019), repeated here for
reference.

Lemma 1 (Observer Error Transformation). Consider the transfor-
mation ξ̃i(t) ↦→ ζ̃i(t) defined by

ζ̃i(t) := µO(t − t0, T )ξ̃i(t), i = 1, . . . , n, (18)

and the transformation ζ̃i(t) ↦→ z̃i(t) defined by

z̃i(t) :=

n∑
j=1

p∗

Oi,j
(µ1)ζ̃j(t), i = 1, . . . , n, (19)

where the functions {p∗

Oi,j
(µ1)} are defined by

p∗

Oi,j
(µ1) := p̄Oi,jµ

i−j
1 , 1 ≤ j ≤ i ≤ n, (20)

and the coefficients {p̄Oi,j} are constants to be determined. By select-
ing the {p̄Oi,j} according to

p̄Oi,i = 1, (21)

p̄Oi,j = 0, j > i, (22)

for {p̄Oi,j} with j ≥ i, the recursion relations

p̄Oi,j−1 = −
n + mO + i − j

T
p̄Oi,j + p̄Oi+1,j , n − 1 ≥ i ≥ j ≥ 2,

(23)

p̄On,j−1 = −
2n + mO − j

T
p̄On,j , j = n, n − 1, . . . , 2, (24)

for {p̄Oi,j} with j < i, and the observer gains {gi(t − t0, T )}n−1
i=1

according to

gi(t − t0, T ) = li +
(
n + mO + i − 1

T
p̄Oi,1 − p̄Oi+1,1

)
µi

1

−

i−1∑
j=1

gj(t − t0, T )p̄Oi,jµ
i−j
1 , (25)

and gn(t − t0, T ) according to

gn(t − t0, T ) = ln +
2n + mO − 1

T
p̄On,1µ

n
1

−

n−1∑
j=1

gj(t − t0, T )p̄On,jµ
n−j
1 , (26)

where the {li}ni=1 are constants to be selected, the observer error
system (16), (17) is transformed into

˙̃zi(t) = z̃i+1(t) − liz̃1(t), i = 1, . . . , n − 1, (27)
˙̃zn(t) = −lnz̃1(t). (28)

The system (27), (28) is stabilized by selecting the constants
{li}ni=1 to make the companion matrix ΛO Hurwitz, where ΛO is
defined from (27), (28) as

ΛO :=

⎡⎢⎣ −l1 In−1
...

−ln 0

⎤⎥⎦ . (29)

Prescribed-time convergence of the observer (4), (5) is stated and
proven in Theorem 1 of Holloway and Krstic (2019), restated here
as a lemma for reference.

Lemma 2 (FT-GUAS Observer). For the dynamic system (1), (2)
defined on the finite time interval t ∈ [t0, t0 + T ), consider the
observer (6) having error dynamics (16), (17) and observer gains
{gi(t − t0, T )}ni=1 given by (25), (26) where the {li}ni=1 are constants
to be selected. If the constants {li}ni=1 are selected such that the
companion matrix (29) is Hurwitz, then the system (16), (17) has
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a FT-GUAS equilibrium at the origin, with a prescribed convergence
time T , and there exist positive constants M̃, δ̃ > 0 such that

|ξ̃ (t)| ≤ ν(t − t0, T )mO+1M̃e−δ̃(t−t0)|ξ̃ (t0)|, (30)

for all t ∈ [t0, t0+T ), where ν(t−t0, T ) is defined in (10), and mO ≥

1 is an integer and a design parameter. Furthermore, the output
estimation error injection terms γi(t − t0, T ) := gi(t − t0, T )ξ̃1(t)
for i = 1, . . . , n remain uniformly bounded over [t0, t0 + T ), and
also converge to zero as t → t0 + T .

In summary, the convergence time T : 0 < T ≤ tf is a free
parameter selected by the user, the parameters {li}ni=1 are selected
to make the companion matrix ΛO Hurwitz, and mO is an integer
tuning parameter. The coefficients {p̄Oi,j} for j < i are explicitly
provided by the recursion relations (23), (24), and are calculated
using the algorithm of Remark 1 in Holloway and Krstic (2019).
Finally, the observer gains {gi(t − t0, T )}ni=1 provided by (25), (26)
are then easily calculated recursively.

2.4. Prescribed-time controller

Prescribed-time stabilization of the state to the origin will be
achieved using the controller provided by Theorem 2 of Song
et al. (2017). The controller employs a change-of-coordinates
transformation of the state,

w1(t) := µC (t − t0, T )x1(t), (31)

wq(t) := dwq−1(t)/dt, q = 2, . . . , n + 1, (32)

and we denote wn+1(t) := ẇn(t) and xn+1(t) := ẋn(t). We also
define

r1(t) := [w1(t), . . . , wn−1(t)]T = J1w(t) ∈ Rn−1 (33)

r2(t) := ṙ1(t) = [w2(t), . . . , wn(t)]T = J2w(t) ∈ Rn−1

where J1 := [In−1, 0(n−1)×1], J2 := [0(n−1)×1, In−1], and Kn−1 :=

[k1, . . . , kn−1]
T

∈ Rn−1, where Kn−1 is an appropriately chosen
coefficient vector such that the matrix

ΛC :=

[
0 In−2

−k1 −k2 ... −kn−1

]
(34)

is Hurwitz. The state wn(t) is replaced by a new variable σ (t)
defined as

σ (t) := wn(t) + K T
n−1r1(t), (35)

which results in the transformed system

ṙ1(t) = ΛC r1(t) + en−1σ (t) (36)

σ̇ (t) = ẇn(t) + K T
n−1J2w(t). (37)

The latter equation (37) is rewritten using (A.1) of Song et al.
(2017) and substitution of the last row of (1), which gives

σ̇ (t) = µC

(
u(t) − aT x(t) +

n∑
k=1

(
n
k

)
µ

(k)
C

µC
xn+1−k(t)

+ νn+mCK T
n−1J2w(t)

)
(38)

where the vector a ∈ Rn is defined from (1) as a := [a0, a1, . . . ,
an−1]

T . Finally, (38) is rewritten as

σ̇ (t) = µC (u(t) + L0(t) + L1(t) + L2(t)) (39)

where

L0(t) :=

n∑
k=1

(
n
k

)
µ

(k)
C

µC
xn+1−k(t), (40)

L1(t) := νn+mCK T
n−1J2w(t) (41)

L2(t) := −aT x(t). (42)

Using these definitions, we paraphrase Theorem 2 of Song et al.
(2017) as another lemma. Note that here, L2(t) equals the known
f (x, t) in that theorem.

Lemma 3 (FT-GUAS Controller). Select kn > 0. Then the system (1)
with the controller

u(t) = − (L0(t) + L1(t) + L2(t) + knσ (t)) (43)

with L0(t), L1(t), and L2(t) as defined in (40)–(42) and σ (t) as
defined in (35) has a FT-GUAS equilibrium at the origin, with a
prescribed convergence time T , and there exist M̃, δ̃ > 0 such that

|x(t)| ≤ ν(t − t0, T )mC+1M̃e−δ̃(t−t0)|x(t0)| (44)

for all t ∈ [t0, t0 + T ). Furthermore, the control u(t) remains
uniformly bounded over [t0, t0 + T ), and also converges to zero as
t → t0 + T .

Because of Lemma 3, we define the linear feedback

L3(t) := knσ (t) (45)

= kn
(
eTn + K T

n−1J1
)
w(t) (46)

after using (35) and (33). Then using (45), the controller (43)
becomes

u(t) = − (L0(t) + L1(t) + L2(t) + L3(t)) . (47)

The quantities L0(t), L1(t), L2(t), and L3(t) are linear feedbacks of
the state, and can be written in terms of either the original state
variables or the transformed ones. The former are more useful
for implementation, while the latter facilitate stability analyses.
In terms of the transformed variables, we have

L0(t) = νmC l0(ν)w(t) (48)

L1(t) = νn+mCK T
n−1J2w(t) (49)

L2(t) = −νmC+1aTQC (ν)w(t) (50)

L3(t) = kn
(
eTn + K T

n−1J1
)
w(t) (51)

where (48) is true by Lemma 4 in Song et al. (2017), and (50)
results from using Lemma 3 of the same reference in (42). Then
by using Lemma 2 of the same reference to replace w(t), the
feedbacks (48)–(51) are rewritten in terms of the original state
variables as

L0(t) = µ1l0(ν)PC (µ1)x(t) (52)

L1(t) = µ1−n
1 K T

n−1J2PC (µ1)x(t) (53)

L2(t) = −aT x(t) (54)

L3(t) = µ
mC+1
1 kn

(
eTn + K T

n−1J1
)
PC (µ1)x(t). (55)

Lastly, note that as with the observer, T : 0 < T ≤ tf is a
free parameter selected by the user, the parameters {ki}n−1

i=1 are
selected to make the companion matrix (34) Hurwitz, and mC is
an integer tuning parameter. The user can select any kn > 0, and
then the remaining coefficients needed to build the controller are
provided by Lemma 2 and Lemma 4 in Song et al. (2017).

3. Prescribed-time output feedback

3.1. Synthesis

Having only the measured output and state estimate available
for feedback, we replace the controller (47) with the output
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feedback

u(t) = −(L̂0(t) + L̂1(t) + L̂2(t) + L̂3(t)) (56)

= −

(
µ1l0(ν)PC (µ1) + µ1−n

1 K T
n−1J2PC (µ1) − aT

+ µ
mC+1
1 kn

(
eTn + K T

n−1J1
)
PC (µ1)

)
x̂(t), (57)

where L̂0(t), L̂1(t), L̂2(t), and L̂3(t) denote the quantities (52)–(55)
but with x(t) replaced by x̂(t). With (7), (15), and (3), we obtain

x̂(t) = x(t) − T −1ξ̃ (t). (58)

Then substituting (58) into (57) gives

u(t) = −

(
µ1l0(ν)PC (µ1) + µ1−n

1 K T
n−1J2PC (µ1) − aT

+ µ
mC+1
1 kn

(
eTn + K T

n−1J1
)
PC (µ1)

) (
x(t) − T −1ξ̃ (t)

)
= −(L0(t) + L1(t) + L2(t) + L3(t))

+ (L̃0(t) + L̃1(t) + L̃2(t) + L̃3(t)) (59)

where we have defined

L̃0(t) := µ1l0(ν)PC (µ1)T −1ξ̃ (t) (60)

L̃1(t) := µ1−n
1 K T

n−1J2PC (µ1)T −1ξ̃ (t) (61)

L̃2(t) := −aTT −1ξ̃ (t) (62)

L̃3(t) := µ
mC+1
1 kn

(
eTn + K T

n−1J1
)
PC (µ1)T −1ξ̃ (t). (63)

The second group of terms in parentheses on the right-hand side
of (59) can be viewed as an ‘‘input error" that acts as a disturbance
against the controller, which we define as the quantity

ũ(t) := L̃0(t) + L̃1(t) + L̃2(t) + L̃3(t). (64)

Then with (64), (59) becomes

u(t) = − (L0(t) + L1(t) + L2(t) + L3(t)) + ũ(t). (65)

In summary, (56) is equivalent to (65).

3.2. Stability results

In this section, we state new results which characterize the
stability of the output feedback controller (65). The proofs are
provided later in the next section. Notice from (65) that the
stability of the output feedback system depends on the behavior
of the input error, ũ(t). The following lemma and remark show
how desirable ũ(t) dynamics can be obtained.

Lemma 4. By selecting the constants {li}ni=1 to make the companion
matrix ΛO Hurwitz, and the integers mO ≥ 1 and mC ≥ 1 according
to

mO ≥ mC + 2n − 1, (66)

the function |ũ(t)| remains uniformly bounded over t ∈ [t0, t0 + T ),
and also goes to zero as t → t0 + T . Furthermore, there exists a
positive integer α and positive constants Mα, δα such that

|ũ(t)| ≤ ν(t − t0, T )αMαe−δα (t−t0)|ξ̃ (t0)|. (67)

Remark 1. Suppose (1) is replaced by an nth-order chain of
integrators. Then by selecting the constants {li}ni=1 to make the
companion matrix ΛO Hurwitz, and the integers mO ≥ 1 and
mC ≥ 1 such that

mO ≥ mC + n,

the function |ũ(t)| remains uniformly bounded over t ∈ [t0, t0 +

T ), and also goes to zero as t → t0 + T .

Lemma 4 provides conditions to obtain the following stability
result for the closed-loop system.

Lemma 5 (FT-ISS+C Output Feedback). Consider the system (1), (2)
with observer (6) and the controller feedback (65). If the constants
{ki}n−1

i=1 and {li}ni=1 are selected such that the matrices ΛC and ΛO
are Hurwitz, kn is selected positive, and if the integers mO ≥ 1 and
mC ≥ 1 are selected according to (66), then the closed-loop output
feedback system is FT-ISS+C, and there exist M̌, δ̌, γ̌ > 0 such that
for all t ∈ [t0, t0 + T ),

|x(t)| ≤ ν(t − t0, T )mC+1
(
M̌e−δ̌(t−t0)|x(t0)| + γ̌ ∥ũ∥[t0,t]

)
. (68)

Furthermore, the control u(t) remains uniformly bounded over [t0,
t0 + T ).

The previous results facilitate the proof of our main result, which
is the separation principle between the prescribed-time observer
(6) and the prescribed-time controller (65).

Theorem 1 (FT-GUAS Separation Principle). Consider the system
(1), (2) with observer (6) and the controller feedback (65). If the
constants {ki}n−1

i=1 and {li}ni=1 are selected such that the matrices ΛC
and ΛO are Hurwitz, kn is selected positive, and the integers mO ≥ 1
and mC ≥ 1 are selected according to (66), then the quantity
|x(t)| + |ξ̂ (t)| has a FT-GUAS equilibrium at the origin, and there
exists a positive constant M̄ such that for all t ∈ [t0, t0 + T ),

|x(t)| + |ξ̂ (t)| ≤ ν(t − t0, T )mC+1M̄
(
|x(t0)| + |ξ̂ (t0)|

)
. (69)

3.3. Proofs of results

Proof of Lemma 4. From (64), the triangle inequality, and (60)–
(63), and since µ1 > 0, we obtain

|ũ(t)| ≤

(
µ1|l0(ν)| + µ1−n

1 |K T
n−1||J2|

+ µ
mC+1
1 |kn(eTn + K T

n−1J1)|
)

|PC (µ1)||T −1
||ξ̃ (t)|

+ |a||T −1
||ξ̃ (t)|. (70)

Now, since µ1 = ν−1, from Lemma 2 in Song et al. (2017) we
have

pCi,j (µ1) = p̄Ci,jν
−n−i+j+1, (71)

and multiplying and dividing by ν2n−2 gives

pCi,j (µ1) =
1

ν2n−2 p̄Ci,jν
n+j−i−1. (72)

Now define the matrix P∗

C (ν) having elements

p∗

Ci,j (ν) = p̄Ci,jν
n+j−i−1. (73)

Since i can be at most equal to n, and j is at least equal to one,
for all i, j, the exponent on ν in (73) is nonnegative. This means
that |P∗

C (ν)| is a continuous function of the bounded argument
ν ∈ (0, 1], so it remains bounded for all t ∈ [t0, t0 + T ). Now,
from (72) and (73) we obtain

pCi,j (µ1) =
1

ν2n−2 p
∗

Ci,j (ν), (74)

and therefore

PC (µ1) = µ2n−2
1 P∗

C (ν). (75)

Then from (75) we have for all t ∈ [t0, t0 + T )

|PC (µ1)| ≤ µ2n−2
1 |P∗

C (ν)|. (76)
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Substituting (76) into (70) obtains

|ũ(t)| ≤

(
ν−2n+1

|l0(ν)| + ν−n+1
|K T

n−1||J2|

+ ν−2n−mC+1
|kn(eTn + K T

n−1J1)|
)

|P∗

C (ν)||T
−1

||ξ̃ (t)|

+ |a||T −1
||ξ̃ (t)|, (77)

and then substituting (30) into (77) gives

|ũ(t)| ≤

{(
νmO−2n+2

|l0(ν)| + νmO−n+2
|K T

n−1||J2|

+ νmO−mC−2n+2
|kn(eTn + K T

n−1J1)|
)
|P∗

C (ν)|

+ νmO+1
|a|
}
|T −1

|M̃e−δ̃(t−t0)|ξ̃ (t0)|. (78)

Since ν ∈ (0, 1], for positive integers i, j with i < j, it is true
that ν j

≤ ν i. Similarly, νmO−n+2
≤ νmO−2n+2

≤ νmO−mC−2n+2, and
νmO+1

≤ νmO−mC−2n+2. Then from (78) we obtain

|ũ(t)| ≤ νmO−mC−2n+2
{(

|l0(ν)| + |K T
n−1||J2|

+ |kn(eTn + K T
n−1J1)|

)
|P∗

C (ν)| + |a|
}

× |T −1
|M̃e−δ̃(t−t0)|ξ̃ (t0)|. (79)

Define the function

φ(ν) : =

(
|l0(ν)| + |K T

n−1||J2| + |kn(eTn + K T
n−1J1)|

)
|P∗

C (ν)|

+ |a|, (80)

and the quantity

φ̄ := sup
0<ν≤1

|φ(ν)|. (81)

By (73) and the statements that immediately followed, and the
last statement of Lemma 4 in Song et al. (2017), it is clear
that |P∗

C (ν)| and |l0(ν)| remain bounded for all t ∈ [t0, t0 + T ).
Therefore, from (80) and (81), it is clear that for all t ∈ [t0, t0+T ),
φ̄ is bounded also.

And so, with (79), (80), and (81), we obtain

|ũ(t)| ≤ νmO−mC−2n+2φ̄|T −1
|M̃e−δ̃(t−t0)|ξ̃ (t0)|, (82)

where φ̄ is a positive constant. Then by selecting mO ≥ mC +

2n−1, the exponent on ν in (82) is positive, and we have proven
the claim with α = mO − mC − 2n + 2, Mα = φ̄|T −1

|M̃ , and
δα = δ̃. ■

For brevity, the proof of Remark 1 is omitted.

Proof of Lemma 5. Substituting the controller (65) into the
transformed system (36), (39) yields

ṙ1(t) = ΛC r1(t) + en−1σ (t) (83)

σ̇ (t) = −knµCσ (t) + µC ũ(t). (84)

Differentiating the Lyapunov function candidate V (t) :=
1
2σ (t)2

and using (84) gives

V̇ (t) = −knµCσ (t)2 + µCσ (t)ũ(t). (85)

Using Young’s inequality and Lemma 1 of Song et al. (2017), we
obtain for all t ∈ [t0, t0 + T ),

V (t) ≤ ζC (t − t0, T )knV (t0) +
∥ũ∥2

[t0,t]

2k2n
, (86)

where ζC (t − t0, T ) is the monotonically decreasing function

ζC (t − t0, T ) := e
T

mC+n−1

(
1−µ1(t−t0,T )mC+n−1

)
,

which has the properties ζC (0, T ) = 1 and ζC (T , T ) = 0. From
(86) we obtain

σ (t)2 ≤ ζC (t − t0, T )knσ (t0)2 +
∥ũ∥2

[t0,t]

k2n
, (87)

such that for all t ∈ [t0, t0 + T ),

|σ (t)| ≤ ζC (t − t0, T )
kn
2 |σ (t0)| + γσ ∥ũ∥[t0,t], (88)

where γσ := 1/kn. Now, by Lemma 4, by selecting mO ≥ mC +

2n−1, we guarantee that ũ(t) not only remains bounded, but also
goes to zero as t → t0 + T . The former fact combined with (88)
shows that the σ (t) system is FT-ISS with respect to ũ(t).

The r1(t) and σ (t) systems (83) and (84) combine to form a
cascade system whose stability depends on the stability of each
subsystem. Define

w̄(t) :=

[
r1(t)
σ (t)

]
. (89)

Then it is true that

|w̄(t)| ≤ |r1(t)| + |σ (t)| (90)
|r1(t0)| ≤ |w̄(t0)| (91)
|σ (t0)| ≤ |w̄(t0)|. (92)

Recall that the r1(t) system is a linear system that is ISS w.r.t. σ (t).
This means there exist positive constants M1, δ1, γ1 such that for
all t ∈ [t0, t0 + T ),

|r1(t)| ≤ M1e−δ1(t−t0)|r1(t0)| + γ1∥σ∥[t0,t]. (93)

We obtain a ‘‘fading memory" stability estimate for |r1(t)| as
follows. For any time t ∈ [t0, t0 + T ), (93) provides

|r1(t)| ≤ M1e
−δ1

(
t− t+t0

2

) ⏐⏐⏐⏐r1 ( t + t0
2

)⏐⏐⏐⏐+ γ1 sup
t+t0
2 ≤τ≤t

|σ (τ )|. (94)

Now, from (88) we obtain

sup
t+t0
2 ≤τ≤t

|σ (τ )| ≤ ζC

(
t + t0

2
− t0, T

) kn
2

|σ (t0)|+γσ ∥ũ∥[t0,t], (95)

and then from (93), (88), and since ζC (0, T ) = 1, we obtain⏐⏐⏐⏐r1 ( t + t0
2

)⏐⏐⏐⏐ ≤ M1e
−δ1

(
t+t0
2 −t0

)
|r1(t0)| + γ1|σ (t0)|

+ γ1γσ ∥ũ∥
[t0,

t+t0
2 ]

. (96)

Now, inserting (96) and (95) into (94) gives

|r1(t)| ≤ M2
1e

−δ1(t−t0)
|r1(t0)|

+ γ1

(
M1e

−δ1

(
t− t+t0

2

)
+ ζC

(
t + t0

2
− t0, T

) kn
2
)

|σ (t0)|

+ γ1γσ (M1 + 1) ∥ũ∥[t0,t]. (97)

Next, using (97) and (88) in (90), we obtain for all t ∈ [t0, t0 + T )

|w̄(t)| ≤ M2
1e

−δ1(t−t0)
|r1(t0)|

+

(
γ1M1e

−δ1

(
t− t+t0

2

)
+ γ1ζC

(
t + t0

2
− t0, T

) kn
2

+ ζC (t − t0, T )
kn
2

)
|σ (t0)|

+ (γ1γσ (M1 + 1) + γσ ) ∥ũ∥[t0,t]. (98)
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Then using (91) and (92), (98) gives

|w̄(t)| ≤

(
M2

1e
−δ1(t−t0)

+ γ1M1e
−δ1

(
t− t+t0

2

)

+ γ1ζC

(
t + t0

2
− t0, T

) kn
2

+ ζC (t − t0, T )
kn
2

)
|w̄(t0)|

+ (γ1γσ (M1 + 1) + γσ ) ∥ũ∥[t0,t]. (99)

For all t ∈ [t0, t0 + T ), every term in the parentheses has decayed
from its initial value at t0. So, there exist some positive constants
Mw̄ , δw̄ , and γw̄ such that

|w̄(t)| ≤ Mw̄e−δw̄ (t−t0)|w̄(t0)| + γw̄∥ũ∥[t0,t] (100)

where γw̄ := (γ1γσ (M1 + 1) + γσ ). Therefore, the w̄(t) cascade
system is ISS w.r.t. the disturbance ũ(t).

It remains to invert the dynamics of the scaled state to obtain
those of the original state. Define the matrix R and its inverse
from the equation

w̄(t) =
(
JT1 + enK T

n−1

)
r1(t) + enwn(t)

= Rw(t), (101)

such that R := I+enK T
n−1J1 and R−1

= I−enK T
n−1J1. Using Lemma

3 in Song et al. (2017) and (101), we obtain

x(t) = νmC+1QC (ν)R−1w̄(t), (102)

and then from (101), Lemma 2 in Song et al. (2017), and µ1(0, T ) =

1, we have

w̄(t0) = RPC (1)x(t0). (103)

Then with (102), the last statement of Lemma 3 in Holloway and
Krstic (2019), and substituting in (100), we obtain

|x(t)| ≤ νmC+1q̄C |R−1
|
(
Mw̄e−δw̄ (t−t0)|w̄(t0)| + γw̄∥ũ∥[t0,t]

)
. (104)

Then from (103), we obtain

|w̄(t0)| ≤ |RPC (1)||x(t0)|, (105)

which after substituting into (104) obtains

|x(t)| ≤ νmC+1
(
M̌e−δ̌(t−t0)|x(t0)| + γ̌ ∥ũ∥[t0,t]

)
(106)

with M̌ := q̄C |R−1
||RPC (1)|Mw̄ , δ̌ := δw̄ , and γ̌ := q̄C |R−1

|γw̄ .
Therefore, the output feedback system is FT-ISS+C.

As for the claim regarding u(t), from (65), (48), (49), and (45)
we obtain

u(t) = −νmC
(
l0(ν) + νnK T

n−1J2 − νaTQC (ν)
)
w(t)

− knσ (t) + ũ(t). (107)

The terms involving w(t) are uniformly bounded for t ∈ [t0, t0+T )
and go to zero as t → t0 + T . By Lemma 4 and our choice of
the observer and controller parameters, the same is true for ũ(t).
Finally, by Lemma 4 and (88), σ (t) remains uniformly bounded
for t ∈ [t0, t0 + T ). The claim on u(t) is proven. ■

Proof of Theorem 1. From (15), the triangle inequality, and (7)
we obtain

|ξ̃ (t0)| ≤ |T |

(
|x(t0)| + |ξ̂ (t0)|

)
. (108)

Inserting (108) into (30) then gives

|ξ̃ (t)| ≤ νmO+1M̃|T |e−δ̃(t−t0)
(
|x(t0)| + |ξ̂ (t0)|

)
. (109)

Using (68) and (109), we obtain

|x(t)| + |ξ̂ (t)| ≤ νmC+1
(
M̌e−δ̌(t−t0) + M̃|T |e−δ̃(t−t0)

)

×

(
|x(t0)| + |ξ̂ (t0)|

)
+ νmC+1γ̌ ∥ũ∥[t0,t], (110)

and then from (82) and (108), we obtain

sup
t0≤τ≤t

|ũ(τ )| ≤ φ̄|T −1
|M̃|T |

(
|x(t0)| + |ξ̂ (t0)|

)
.

Using this result in (110) gives

|x(t)| + |ξ̂ (t)| ≤ νmC+1M̄
(
|x(t0)| + |ξ̂ (t0)|

)
(111)

for some positive constant M̄ . Define r := |x(t0)| + |ξ̂ (t0)|, and
s := µ1 − 1. Then ν can be expressed as ν = 1/(s + 1), and it
is clear that the right-hand side of (111) is a class K L function
of the form β(r, s) = M̄r/(s + 1)mc+1. Thus we have proven the
claim. ■

3.4. Implementation

The main benefit of this approach to finite-time stabilization is
it offers simple parameter tuning which prescribes convergence
times. The parameters {li}ni=1 and {ki}ni=1 are selected to make the
matrices (29) and (34) Hurwitz, and the integer tuning parame-
ters mO ≥ 1, mC ≥ 1 are selected simply according to (66). But
most importantly, the time of convergence, T , is freely prescribed
by the user, completely independent of initial conditions and
other parameters.

On the other hand, the main drawback of our approach is
clear: the output feedback controller (65) was developed for
linear systems having no plant or measurement uncertainties,
which is limiting in practice. Because of this, the presence of
unmodeled plant or measurement disturbances will degrade the
stabilization of the state to a nonzero neighborhood of the origin.

Lastly, as discussed in Holloway and Krstic (2019) and Song
et al. (2017), the use of the observer (6) and controller (43) in
practice will exhibit numerical instability in the final instants as
t → t0 + T . However, these works also offer simple solutions to
circumvent this problem, such as increasing T to be slightly larger
than tf . These solutions decrease the accuracy of the observer
and controller convergence, but in manageable ways that can be
tuned easily if needed.

4. Numerical example

Consider the double integrator with only the first state mea-
sured as output, ẋ1(t) = x2(t), ẋ2(t) = u(t), and y(t) = x1(t)+η(t),
where η(t) is zero-mean, white Gaussian measurement noise.
Using (52)–(55) and Lemma 2 and Lemma 4 from Song et al.
(2017), we find the state feedback controller (47) to be u(t) =

−κ(t−t0, T )T x(t), where κ(t−t0, T ) := [κ1(t−t0, T ), κ2(t−t0, T )]T ,
and κ1(t − t0, T ) = k1

mC+2
T µ1 +

(mC+3)(mC+2)
T2

µ2
1 + k1k2µ

mC+2
1 +

k2
mC+2

T µ
mC+3
1 , κ2(t − t0, T ) = k1 + 2mC+2

T µ1 + k2µ
mC+2
1 . We

replace x(t) with x̂(t) and use (7) to implement the control u(t) =

−κ(t − t0, T )T ξ̂ (t), since T −1 equals identity for the chain of
integrators. The state estimate ξ̂ (t) is obtained from the observer
(6), which for this example becomes ˙̂

ξ1(t) = ξ̂2(t) + g1(t −

t0, T )
(
y(t) − ξ̂1(t)

)
, ˙̂
ξ2(t) = u(t) + g2(t − t0, T )

(
y(t) − ξ̂1(t)

)
.

As in the example of Holloway and Krstic (2019), we obtain the
constants p̄O1,1 = p̄O2,2 = 1, p̄O1,2 = 0, and p̄O2,1 = −

mO+2
T ,

and the gains g1(t − t0, T ) = l1 + 2mO+2
T µ1, g2(t − t0, T ) =

l2 + l1
mO+2

T µ1 +
(mO+1)(mO+2)

T2
µ2

1. Fig. 1–3 show simulation results
of this example with tf = 10, mC = 1 and mO = 3 (see
Remark 1), and l1 = l2 = k1 = k2 = 1, for three sets of initial
conditions, and with measurement noise standard deviation of
ση = 2. To ensure stabilization at t = t0 + tf without numerical
instability (see Section 3.4), we set T = 13. Fig. 1 shows the
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Fig. 1. Time histories of states (solid) and state estimates (dashed) for the double
integrator example.

Fig. 2. Time histories of state estimation errors for the double integrator
example.

dynamics of the state and state estimate, and Fig. 2 shows the
dynamics of the estimation error. The observer gains, controller
gains, and control input are shown in Fig. 3. Despite the presence
of the measurement noise, stabilization of both the state and
state estimate are achieved to within a small neighborhood of
the origin in the prescribed time. Also, despite the gains going
to infinity as t → t0 + T , the control input remains bounded.

5. Conclusions

The output feedback controller presented allows the user to
easily prescribe convergence times a priori, irrespective of initial
conditions. A separation principle holds between the prescribed-
time observer of Holloway and Krstic (2019) and the uncertainty-
free prescribed-time controller of Song et al. (2017) provided the
scaling power of the time-varying observer gains exceeds the
scaling power of the controller gains by twice the order of the
system, i.e., provided the observer is fast enough relative to the
controller, irrespective of the constant gains of both. In practice,
the presence of significant plant or measurement disturbances
will degrade stabilization of the state to a nonzero neighborhood
of the origin. For problems in which such disturbances impede
the performance of (65) unacceptably, the output feedback con-
trollers of Lopez-Ramirez et al. (2016a) and Tian et al. (2017)
may offer viable solutions, however these will require additional
tuning of parameters to prescribe the convergence times.

Fig. 3. Time histories of observer gains, controller gains, and control input for
the double integrator example.
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