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Global attitude/position regulation for underwater vehicles

DEJAN M. BOSÆKOVICÂ ² and MIROSLAV KRSTICí ²

In this paper a nonlinear controller is designed for a 6 DOF model of an unmanned
underwater vehicle (UUV) which includes both the kinematics and the dynamics. It is
shown howthe use of a Lyapunov function, consisting of a quadratic term in the velocity
(both linear and angular), a quadratic term in the position and a logarithmic term in
the attitude leads to a design of a control law that achieves global asymptotic stabiliza-
tion to an arbitrary set point in position/attitude. The control law is made linearly
bounded by avoiding cancellation of some of the quadratic nonlinearities in the model.
No information about the inertia matrix, the damping, and the Coriolis/centripetal par-
ameters isused in the controller, endowing it withacertainamount of parametric robust-
ness. Thecontrol lawisgivenintermsof the Modi® edRodriguesparameters. Anextensive
simulation study shows that the proposed control law achieves excellent tracking for
slowly changing trajectories, even though it is designed only for set point regulation.
The nonlinear controller dramatically outperforms a liner controller.

1. Introduction

Unmanned underwater vehicles (UUVs) is an area of
growing interest due to their ability to operate at
depths and in areas that are inaccessible to other types
of vessels. The scope of their potential application varies
from scienti® c research of ocean depths, surveillance
and inspection of commercial undersea facilities and
installations, to various military purposes. Due to the
need to use nonlinear 6 DOF modelling (because of
signi® cant coupling between the rotational and trans-
lational motion), UUVs are a considerably more chal-
lenging problem for control design than surface ships.

Leonard’s pioneering work on stability analysis and
control of UUVs, using tools from geometric mechanics
(Leonard 1995a± c, 1996a,b, and 1997a,b, Leonard and
Krishnaprasad 1994a,b, Leonard and Marsden 1997),
has solved problems such as control after actuator
failure and stabilization of steady motion. Fossen and
coworkers (Fjellstad and Fossen 1994a± c, Fossen and
Fjellstad 1993, 1995, Schjolberg and Fossen 1994) devel-
oped control schemes based on feedback linearization
which allow (local) trajectory tracking and can accom-
modate some actuator dynamics. Other notable work on

control of UUVs includes that by Pettersen and Egeland
(1996), Cristi et al. (1990), Healey and Lienard (1993),
and Juul et al. (1994).

In this paper the problem of set point regulation for a
general nonlinear 6 DOF model of a UUV with kine-
matics represented by Modi® ed Rodrigues parameters is
addressed. A form of a Lyapunov function with a loga-
rithmic term in the kinematic variable proposed by
Tsiotras (1996) for a 3 DOF spacecraft problem is
employed. A similar idea was independently arrived at
and used by Fjellstad and Fossen (1994a) for stabiliza-
tion to the origin in a 6 DOF model with classical
Cayley± Rodrigues parameters. This paper extends the
result of Fjellstad and Fossen (1994a) to an arbitrary
constant set of points and shows by simulation that
the same method achieves good approximate tracking
for slow time-varying trajectories.

The control law designed in this paper does not
require any information about the inertia matrix of the
UUV and is therefore robust with respect to uncertain-
ties of system parameters. It is also shown that the con-
trol law is linearly bounded in terms of the regulation
error, which guarantees that the control e� ort will
remain reasonable even for large deviations from the
desired position and attitude.

The paper is organized as follows. Section 2 intro-
duces attitude representation in Modi® ed Rodrigues
parameters and 6 DOF equations of motion of the
UUV. A controller based on Lyapunov theory is
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designed in section 3, while the simulation study is pre-
sented in section 4.

2. Model of UUVs

2.1. Attitude representation using Modi® ed Rodrigues
parameters

Let µ denote the principal angle and let ¸ denote the
principal axis associated with Euler’s Theorem. The
Euler parameters (unit quaternions) q = [́ ,²1,²2,²3]T

are de® ned as

´q = cos
µ

2
, ²i = i̧ sin

µ

2
, i = 1, 2, 3 (2.1)

and they satisfy the constraint

´2
q + ²T² = ´2

q + ²2
1 + ²2

2 + ²2
3 = 1. (2.2)

The attitude representation in unit quaternions is a four-
dimensional parametrization and therefore it is non-
minimal. Introducing a new set of coordinates
(Cayley± Rodrigues parameters) de® ned as the ratio of
unit quaternions

q i =
²i

´q
, i = 1, 2, 3 (2.3)

the constraint (2.2) is eliminated. The vector
q = [q 1, q 2, q 3]T is related to the principal vector ¸ and
principal angle µ as

q =¸ tan
µ

2
. (2.4)

The introduction of minimal three-parameter descrip-
tions is mainly motivated by their potential advantages
in stabilization and control related problems. Un-fortu-
nately, all three parameter representations contain sin-
gularity points. One can see fromequation (2.4) that this
representation presents a singularity at µ = p , i.e. the
classical Cayley± Rodrigues parameters cannot be used
for describing eigenaxis rotations of more than 180ë . If
instead of (2.3) a renormalization de® ned as

s i =
²i

1 + ´q
, (i = 1, 2, 3) (2.5)

is introduced, one can easily show that the Modi® ed
Rodrigues parameter vector s = [s 1, s 2, s 3]T is related
to the principal vector and principal angle as

s =¸ tan
µ

4
. (2.6)

It is obvious from equation (2.6) that the Modi® ed
Rodrigues parameters are superior to any other three-
parameter representation. First, all eigenaxis rotations in
the range 0 µ < 360ë are well de® ned. Second, unlike

otherthree-parameterrepresentations(Euleriananglesor
Cayley± Rodrigues parameters) which eliminate an in® -
nite number of possible orientation con® gurations due
to singularity, this parametrization eliminates only one
attitude con® guration being singular (namely, µ = 360ë

implies ´q = ­ 1, and (2.2) implies ² = 03 1).

2.2. Kinematic equations of motion
The work on the UUVs starts with the representation

of the kinematics in the Modi® ed Rodrigues parameters.
The kinematic model describes the geometric relation-
ship between earth-® xed and body-® xed reference
frames. The motion in body-® xed and earth-® xed refer-
ence frames is related through a transformation matrix
J(´) as

Ḉ = J(´) t =
J1(´)
03 3

03 3

J2(´)
t . (2.7)

The vectors ´ and t are de® ned as

´ =
x
s

, t =
n
x

, (2.8)

where x = [x1, x2, x3]T represents the position vector in
the inertial reference frame, s = [s 1, s 2, s 3]T the vector
of Modi® ed Rodrigues parameters representing the atti-
tude, n and x are the linear and angular velocities in the
body-® xed reference frame. The matrices J1(´) and J2(´)
are de® ned as

J1( s ) =I +
8

(1 + j s j2)2 S( s ) S( s ) ­ 1 ­ j s j2

2
I (2.9)

J2( s ) =
1
2

I + s s T ­ S( s ) ­ 1 + s T s
2

I (2.10)

where the matrix S( ) is de® ned as

S( s ) =

0 s 3 ­ s 2

­ s 3 0 s 1

s 2 ­ s 1 0

. (2.11)

From the de® nition it is obvious that the matrix S is
skew-symmetric with the property

S(a)b = ­ a b = b a = ­ S(b)a. (2.12)
The matrices J1( s ) and J2() are invertible with the prop-
erties

J1( s )­ 1 = J1( s )T

J2( s )­ 1 =
4

1 + j s j2

2

J2( s )T. (2.13)
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Finally, the system consisting of equations (2.9) and
(2.10) can be written as

Çx = I +
8

(1 + j s j2)2 S( s ) S( s ) ­ 1 ­ j s j2

2
I v (2.14)

Çs =
1
2

I + s s T ­ S( s ) ­ 1 + s T s
2

I x . (2.15)

2.3. Dynamic equations of motion
The dynamic equations (Newton’s equations of

motion for a rigid body with respect to the body-® xed
reference frame) are given by:

m( Çv + x v + Çx rg + x ( x rg)]= f (2.16)

J Çx + x (Jx ) + mrg ( Çv + x v) = ¿, (2.17)
where rg = [xg, yg, zg]T is the centre of gravity, m is the
mass of the UUV, J = JT > 0 is the inertia matrix of
UUV, and f and ¿ are vectors of external forces and
moments (including control and hydrodynamic forces/
moments). Upon the inclusion of hydrodynamic forces/
moments, it was shown in Fossen (1994) that equations
(2.16) and (2.17) give

MÇt + C( t ) t + D( t ) t + g( s ) = u (2.18)
where u is a vect r of actuator control forces and
moments, M is a constant positive de® nite and sym-
metric inertia matrix (which includes the added inertia),
C( t ) is a skew-symmetric matrix linear in t containing
the Coriolis and centripetal terms, D( t ) is a positive
de® nite damping matrix containing drag and lift terms
(and possibly skin friction and viscous damping), and
g( s ) is the vector of restoring (gravitational and
buoyant) forces/moments. The wave-induced forces/
moments are assumed to be negligible, since UUVs
operate below the wave a� ected zone (the operating
depth is signi® cantly greater than 20m). The variations
of water density are also considered to be negligible.

2.4. Restoring forces/moments
Let m be the mass of UUV (including water in free

¯ oating spaces), r the volume of ¯ uid displaced by the
vehicle, g0 the acceleration of gravity (positive down-
wards) and q f the ¯ uid density. Then, the submerged
weight of the body and buoyancy force in the earth-
® xed frame are respectively W = mg0 and B = q f g0r .
Assuming that UUV is neutrally buoyant (W = B)
and that the distance between the centre of gravity CG
and centre of buoyancy CB in the body-® xed frame
is BG = [BGx, BGy, BGz) = [0, 0, BGz], the vector of
gravitational and buoyant forces/moments becomes

g( s ) = 2BGzW

0
0
0

4
(1 + j s j2)2 s 2s 3 +

2(1 ­ j s j2)
(1 + j s j2)2 s 1

2(1 ­ j s j2)
(1 + j s j2)2 s 2 ­ 4

(1 + j s j2)2 s 1 s 3

0

.

(2.19)

3. Control of UUVs

In order to achieve stabilization of the system (2.14),
(2.15), (2.18) at the point (x, s , t ) = (xd, s d, 0) , regula-
tion error variables ~x and ~s are introduced as

~x = x ­ xd (3.1)
~s = s ­ s d. (3.2)

Taking

V =
1
2

t TMt +
k1

2
~xT~x + k2 ln(1 + ~s T~s ) (3.3)

as a Lyapunov function candidate, one ® nds its deriva-
tive to be
ÇV = ­ t TC( t ) t ­ t TD( t ) t + t T(u ­ g( s ))

+
k2

~s T

1 + j ~s j2
I + s s T ­ S( s ) ­ 1 + s T s

2
I x

+ k1
~xT I +

8
(1 + j s j2)2 S( s ) S( s ) ­ 1 ­ j s j2

2
I v.

(3.4)
Since C( t ) is skew-symmetric and D( t ) is positive
de® nite one gets
ÇV t T(u ­ g( s ))

+
k2 x

T

1 + j ~s j2
I + s s T ­ S( s ) ­ 1 + s T s

2
I

T
~s

+ k1vT I +
8

(1 + j s j2)2 S( s ) S( s ) ­ 1 ­ j s j2

2
I

T
~x

= t T(u ­ g) + t T

k1 I +
8

(1 + j s j2)2 S( s ) S( s ) +
1 ­ j s j2

2
I ~x

k2 I + s s T + S( s ) ­ 1 + s Ts
2

I ~s

.

(3.5)
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Denoting

u =
uv

ux

, g =
gv

gx

, (3.6)

and using the facts that s = s d + ~s and S( ~s ) ~s =
~s ~s = 0 one gets

ÇV t T

uv ­ gv + k1
~x + k1

8
(1 + j s j2)2 S( s )

S( s ) +
1 ­ j s j2

2
I ~x

ux ­ gx + k2
~s +

k2

1 + j ~s j2

s d s
T
d + s d

~s T + ~s s T
d + S( s d) ­ 1 + j s j2

2
I ~s

.

(3.7)
Choosing

uv = gv( s ) ­ k1
~x ­ c1v ­ k1

8
(1 + j s j2)2

S( s ) S( s ) +
1 ­ j s j2

2
I ~x (3.8)

ux = gx ( s ) ­ k2
~s ­ c2 x ­ k2

1 + j ~s j2

s d s
T
d + s d

~s T + ~s s T
d + S( s d) ­ 1 + j s j2

2
I ~s (3.9)

yields
ÇV ­ c1jvj2 ­ c2j x j2. (3.10)

By LaSalle’s invariance theorem (Khalil 1996), the sol-
utions converge to the largest invariant set inside the set
v = x = 0, that is, the set where u = g:

0 = ­ k1
~x ­ k1

8
(1 + j s j2)2 S( s ) S( s ) +

1 ­ j s j2

2
I ~x

0 = ­ k2
~s ­ k2

1 + j ~s j2

s d s
T
d + s d

~s T + ~s s T
d + S( s d) ­ 1 + j s j2

2
I ~s ,

(3.11)
which is equivalent to

J1(´)T~x = 0

J2(´)T~s = 0.
(3.12)

Since both J1(´) and J2(´) are invertible, the equilibrium
~x = ~s = v = x = 0 is globally asymptotically stable.

Theorem 3.1: The system (2.7), (2.18), (3.8), (3.9) is
globally asymptotically stable at ´ = t = 0.

The control law (3.8), (3.9) does not require informa-
tion about the parameters of the inertia matrix, damping
matrix, and the Coriolis/centripetal matrix, and is thus
robust to parametric uncertainties in the UUV model.

Noting that ja bj jakbj, one can observe that
u ­ g( s ) is linearly bounded (in ~x, ~s , v, x ) because

8
(1 + j s j2)2 S( s ) S( s ) +

1 ­ j s j2

2
I ~x (3.13)

=
8

(1 + j s j2)2
~x s s +

1 ­ j s j2

2 ( ~x s ) 12j ~xj

(3.14)
and

1
1 + j ~s j2

s d s
T
d + s d

~s T + ~s s T
d + S( s d) ­ 1 + j s j2

2
I ~s

(3.15)

=
1

1 + j ~s j2
s d s T

d
~s + s d

~s T~s + ~s s T
d

~s + ~s s d

­ 1 + ( s d + ~s )T( s d + ~s )
2

~s (3.16)

7
2

j s dj +
3
4

j s dj2 +
1
2

j ~s j. (3.17)

This is a remarkable property for a system with non-
linearities of quadratic growth and indicates that, in the
control design, cancellation of nonlinearities that are not
of destabilizing nature is avoided. As a result, wasting
control e� ort is avoided and robustness is improved.

4. S imulation study

The controller designed in section 3 was simulated for
UUV with the following set of parameters (Fjellstad and
Fossen 1994a):

Inertia matrix

M= diagfm11, m22, m33, m44, m55, m66g

= diagf215, 265, 265, 40, 80, 80g. (4.1)
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Damping matrix

D( t ) = diagf70, 100, 100, 30, 50, 50g
+ diagf100v1j, 200jv2j, 200jv3j , 50j x 1j, 100j x 2j , 100j x 3jg,

(4.2)
Coriolis and centripetal terms matrix

C( t ) =
0 0 0 0 m33v3 ­ m22v2

0 0 0 ­ m33v3 0 m11v1

0 0 0 m22v2 ­ m11v1 0
0 m33v3 ­ m22v2 0 m66 x 3 ­ m55x 2

­ m33v3 0 m11v1 ­ m66x 3 0 m44 x 1

m22v2 ­ m11v1 0 m55x 2 ­ m44 x 1 0

.

(4.3)

The UUV has mass of m = 185kg and is assumed to
be neutrally buoyant. It is assumed that the centre of
buoyancy coincides with the centre of gravity and that
environmental disturbances are negligible.

When plotting three component vectors on a single
® gure, components one, two, and three are represented
with dotted, dash± dot, and dashed lines respectively.
For representing the attitude in quaternions
q = [́ , ²T]T, ´ will be plotted as a solid line and the
components of the vector ² will conform to the vector
representation rule.

Figure 1 shows the time evolution of position x, atti-
tude q, and actuator control forces and moments and uv
and ux . The initial values were chosen to be

´(0) = [10, 10, 10, 1, 1, 1]T for the position/attitude
vector in the earth-® xed reference frame, t (0) = 06 1
for the velocity vector in the body-® xed reference
frame, and the regulation set-point was chosen as
´d = [0, 0, 0, 0, 0, 0]T. Control parameters were chosen
to be k1 = 50, k2 = 50, c1 = 10, c2 = 10. It should be
noted that s (0) = [1, 1, 1]T corresponds to q(0) =
[­ 0.5, 0.5, 0.5, 0.5]T, i.e. to the initial eigenaxis rotation
of 240ë .

In order to understand the importance of the non-
linear part of the control law, previous simulation is
repeated with all the initial conditions and parameter
values the same, but with a linear control law (higher
order terms in ~x and ~s in the original control law are
neglected giving the p̀roportional feedback’

uv = ­ k1x ­ c1v, ux = ­ k2

2
s ­ c2x

for this particular simulation). Results are shown in
® gure 2. The system will eventually reach the desired
values for attitude/position using the linear control law
as expected (it was proven in section 3 that a linear
bound can be found for the nonlinear portion of the
control law), but will experience an extremely long
period of oscillatory behaviour with large overshoot in
the desired position and waste of control e� ort.

Next, the proposed design is applied for set point
regulation to try to track a time-varying reference
signal. Figures 3 and 4 show the time evolution of posi-
tion tracking error ~x, attitude q, actuator control forces
and moments uv and ux , and UUV’s trajectory in the
x1x2x3-space for tracking of the desired trajectory
xd(t) = [10sin (0.01t), 10cos (0.01t), 0]T. Evidently, the
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for q(0) = [­ 0.5, 0.5, 0.5, 0.5]T.



control design achieves excellent tracking (the error is
less than 2.5% of the desired amplitude) after less than
50s, with small control e� ort. All initial conditions and
control parameters are the same as in the previous
two cases except for the initial condition for attitude
which is taken as s (0) = [13 , 1

3 , 1
3]

T (this corresponds to
q(0) = [0.5, 0.5, 0.5, 0.5]T).

Good tracking can be achieved (under 7.5% error) for
a signi® cantly higher frequency of desired trajectory
(xd(t) = [10sin (0.1t), 10cos (0.1t), 0]T) with higher
control gains k1 = 500, k2 = 500, c1 = 50, c2 = 50, for

all the initial conditions the same as in the previous
simulation (® gures 5 and 6). Owing to the highly non-
linear nature of the system, the control e� ort is
going to be much larger compared with the previous
case.

5. Conclusions

A controller based on Lyapunov theory which
achieves global attitude/position set point regulation
for a 6 DOF UUV model with kinematics represented
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Figure 3. Position tracking for

xd(t) = [10sin(0.01t), 10cos (0.01t), 0]T

(the time evolution of position tracking

error ~x, attitude q, and actuator control

forces and moments uv and ux ).

Figure 2. Position/attitude control

for q(0) = [­ 0.5, 0.5, 0.5, 0.5]T
using

linear control law.



in Modi® ed Rodrigues parameters has been derived.
The controller does not require any information
about UUV model parameters except those related to
restoring forces and is therefore robust with respect to
parametric uncertainties. The control law avoids cancel-
lation of nonlinearities and is shown to be linearly
bounded.

The simulation study indicates that the overall system
performance is excellent. The controller, although
designed for constant set point regulation, achieves a
small tracking error even for slowly time-varying desired
trajectories.

The control design in this paper achieves stabilization
but is not optimal. It will be of interest to extend the
inverse optimal design for the 3DOF spacecraft model
in KrsticÂ and Tsiotras (1998) to the 6 DOF UUV model.
Inverse optimality is achieved using the backstepping
method (KrsticÂ et al. 1995) and guarantees in® nite
gain margin and fuel e� ciency for the UUV.
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Figure 4. The trajectory in the

x1x2x3-space (xd(t)=
[10sin(0.01t), 10cos(0.01t), 0]T).

Figure 5. Position tracking for

xd(t)= [10sin(0.1t), 10cos(0.1t), 0]T

(the time evolution of position

tracking error ~x, attitude q, and

actuator control forces and moments

uv and ux ).
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