Review article

Control of shallow waves of two unmixed fluids by backstepping

Mamadou Diagne* a, Shu-Xia Tang b,*, Ababacar Diagne c, Miroslav Krstic b

a Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
b Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA

ABSTRACT

Among the existing global challenges, water system management is becoming more and more important as the consumption patterns are continually growing. The implication of water system regulation in irrigated agriculture and production of sustainable energy is self-evident nowadays. In the present paper, new perspectives are given on the control of water flowing in an open channel. Mathematically, these physical processes are described by coupled hyperbolic partial differential equations (PDEs). In view of the recent development in PDE control, backstepping methodology has been proven to be a powerful tool in the sense that it provides a systematic design technique. This paper presents the exponential stabilization results of two shallow wave systems including the shallow waves of two unmixed fluids.

© 2017 Elsevier Ltd. All rights reserved.

Contents

1. Introduction .. 211
2. Preliminary: backstepping control of a Saint-Venant–Exner model................................. 224
 2.1. Physical description of the Saint-Venant–Exner model .. 225
 2.2. Backstepping control problem formulation for the SVE model 227
 2.3. Backstepping control design ... 227
 2.3.1. State feedback backstepping controller design .. 228
 2.3.2. Output feedback control design .. 229
 2.4. Simulation of the output feedback controller under a supercritical flow regime 229
3. Backstepping control of a “bi-layer” Saint-Venant model ... 230
 3.1. Physical description of the “bi-layer” Saint-Venant model 230
 3.2. Linearization of the 1D “bi-layer” Saint-Venant model .. 231
 3.3. Boundary control problem formulation for the “bi-layer” Saint-Venant model 231
 3.4. Backstepping control design ... 232
 3.4.1. State feedback backstepping controller design .. 232
 3.4.2. Output feedback backstepping controller design .. 233
4. Simulation results .. 233
5. Conclusion and future works ... 234

References .. 234

1. Introduction

The management of water resource involves innumerable environmental and economic challenges of major concern, among which one can mention water management sustainability, intensively irrigated agriculture, flooding phenomena, production of renewable and sustainable energy through hydropower plants. Sev-
eral efforts have been deployed during the last decades, to repre-
sent water management systems as dynamic systems that have the
ability to predict consistently water resource evolution over time.
From a cohesive perspective, water management systems are com-
plexly integrated, some of which take into account the increasing
demand of hydropower that has tremendous implications for the
evolution of ecosystems (Winz, Brierley, & Trowsdale, 2009), and
may even consist of conflicting sub-systems. For instance, to deal
water-related problems that occurs in a complex network of open-
channels consisting of

• nodes without storage capacity and nodes with storage capacity
 such as lakes and reservoirs with infiltration and evaporation,
• channels as river reaches as well as canals, ditches and inter-
 basin transfers.
• consumptive demands such as irrigated zones or municipal and
 industrial,

(Andreu, Capilla, & Sanchis 1996) developed a generalized decision-
support system (DSS) for water-resources planning and operational
management known as AQUATOOL.

The dynamics of open-channel hydraulic systems can be mod-
elled by nonlinear coupled first-order PDEs, derived from the
conservation of mass and momentum. For instance, estuaries
(Horrovoets, Savenje, Schuurman, & Graas, 2004), rivers (Saint-
Venant, 1871), irrigation canals (Malaterrer, Rogers, & Schuur-
mans, 1998), overland flow (Tayfur, Kavvas, Govindaraju, & Storm,
1993; Wang, Chen, Boll, Stockle, & McCool, 2002), lake hydrody-
namics (Zhao, Shen, Lai, & III, 1996) as well as coastal circula-
tion (Bouchut, Fernández-Nieto, Mangeney, & Narbona-Reina, 2016;
Broche, Salomon, Demaistre, & Devenon, 1986) are described by
shallow water dynamic equations also called as Saint-Venant equa-
tions, neglecting the lateral movement of the water and assuming a
constant velocity over the cross-section of an open channel.

The problematic of designing control tools to reinforce the reg-
ulation of the water level and the flow rate in open-channel hy-
draulic systems has a long history and is still driving the atten-
tion of researchers due to its challenging aspects. The controllers
are usually actuated by adjusting the inflow and the outflow at
the two boundaries of the channel. More precisely, changes in the
volume of a canal pool connected to an upstream reservoir and a
downstream reservoir occur when opening gates are actuated to
vary the inflow and the outflow at the two channel boundaries.

Earlier attempts of controller designs consider the approxi-
mation of the linearized shallow water equations in the fre-
quency domain as finite-dimensional systems in the spatial co-
ordinate (Corriga, Fanni, Sanna, & Usai, 1982; Corriga, Salimbeni,
Sanna, & Usai, 1988; Corriga, Sanna, & Usai, 1983; 1984; Schu-
urmans, Bosgra, & Brouwer, 1995; Shand, 1971). For example in
Corriga et al. (1988), the solutions to the resulting set of ordi-
ary differential equations are given by a distributed transfer ma-
trix relating both the water depth and the water flow discharge at
any point in the canal pool to upstream and downstream bound-
ary discharges. Based on these solutions typically given in an an-
alytical closed-loop form, some lumped parameter models equi-
alent to constant volume control models can then be constructed
by accounting for the delay introduced by the wave propagation
through two boundaries, enabling the design of simple linear state-
feedback controllers. However, all these efforts are based on a non-
realistic assumption that the system transfer matrices are uniform
with respect to the spatial variable. Indeed, due to the intrinsi-
cally nonuniform transfer matrices, such methods are not actually
enabling to reduce the complexity of the original control prob-
lem. Based on the method of characteristics, proportional bound-
ary feedback controllers are successfully designed to cancel the os-
cillating modes induced by the reflection of propagating waves on
the boundaries of the water pool (Litrico & Fromion, 2006).

Originating from an attempt to deal with a wave equation in
Greenberg and Li (1984), more sophisticated controller de-
signs for the shallow water systems are considered, which are
based on stability analysis of the distributed parameter model-
Corriga, Sanna, & Usai (1983; 1984; Schuur-
mans, Bosgra, & Brouwer, 1995; Shand, 1971). For example in
Corriga et al. (1988), the solutions to the resulting set of ordi-
ary differential equations are given by a distributed transfer ma-
trix relating both the water depth and the water flow discharge at
any point in the canal pool to upstream and downstream bound-
ary discharges. Based on these solutions typically given in an an-
alytical closed-loop form, some lumped parameter models equi-
alent to constant volume control models can then be constructed
by accounting for the delay introduced by the wave propagation
through two boundaries, enabling the design of simple linear state-
feedback controllers. However, all these efforts are based on a non-
realistic assumption that the system transfer matrices are uniform
with respect to the spatial variable. Indeed, due to the intrinsi-
cally nonuniform transfer matrices, such methods are not actually
enabling to reduce the complexity of the original control prob-
lem. Based on the method of characteristics, proportional bound-
ary feedback controllers are successfully designed to cancel the os-
cillating modes induced by the reflection of propagating waves on
the boundaries of the water pool (Litrico & Fromion, 2006).

The dynamics of open-channel hydraulic systems can be mod-
elled by nonlinear coupled first-order PDEs, derived from the
conservation of mass and momentum. For instance, estuaries
(Horrovoets, Savenje, Schuurman, & Graas, 2004), rivers (Saint-
Venant, 1871), irrigation canals (Malaterrer, Rogers, & Schuur-
mans, 1998), overland flow (Tayfur, Kavvas, Govindaraju, & Storm,
1993; Wang, Chen, Boll, Stockle, & McCool, 2002), lake hydrody-
namics (Zhao, Shen, Lai, & III, 1996) as well as coastal circula-
tion (Bouchut, Fernández-Nieto, Mangeney, & Narbona-Reina, 2016;
Broche, Salomon, Demaistre, & Devenon, 1986) are described by
shallow water dynamic equations also called as Saint-Venant equa-
tions, neglecting the lateral movement of the water and assuming a
constant velocity over the cross-section of an open channel.

The problematic of designing control tools to reinforce the reg-
ulation of the water level and the flow rate in open-channel hy-
draulic systems has a long history and is still driving the atten-
tion of researchers due to its challenging aspects. The controllers
are usually actuated by adjusting the inflow and the outflow at
the two boundaries of the channel. More precisely, changes in the
volume of a canal pool connected to an upstream reservoir and a
downstream reservoir occur when opening gates are actuated to
vary the inflow and the outflow at the two channel boundaries.

Earlier attempts of controller designs consider the approxi-
mation of the linearized shallow water equations in the fre-
quency domain as finite-dimensional systems in the spatial co-
ordinate (Corriga, Fanni, Sanna, & Usai, 1982; Corriga, Salimbeni,
Sanna, & Usai, 1988; Corriga, Sanna, & Usai, 1983; 1984; Schu-
urmans, Bosgra, & Brouwer, 1995; Shand, 1971). For example in
Corriga et al. (1988), the solutions to the resulting set of ordi-
ary differential equations are given by a distributed transfer ma-
trix relating both the water depth and the water flow discharge at
any point in the canal pool to upstream and downstream bound-
ary discharges. Based on these solutions typically given in an an-
alytical closed-loop form, some lumped parameter models equi-
alent to constant volume control models can then be constructed
by accounting for the delay introduced by the wave propagation
through two boundaries, enabling the design of simple linear state-
feedback controllers. However, all these efforts are based on a non-
realistic assumption that the system transfer matrices are uniform
with respect to the spatial variable. Indeed, due to the intrinsi-
cally nonuniform transfer matrices, such methods are not actually
enabling to reduce the complexity of the original control prob-
lem. Based on the method of characteristics, proportional bound-
ary feedback controllers are successfully designed to cancel the os-
cillating modes induced by the reflection of propagating waves on
the boundaries of the water pool (Litrico & Fromion, 2006).

Various other methods have proven to be effective to en-
sure stability of such water driven fluvial processes. Some ex-
amples are, the proportional-integral boundary feedback con-
troller presented in Santos, Bastin, and Novel (2008),
Xu and Sallet (1999) and Bastin, Coron, and Tamasoiu (2015) (note
that a generalization (Xu & Sallet, 1999) for linear hyperbolic
systems can be found in Xu and Sallet (2014), the infinite-
dimensional linear matrix inequalities (LMI)-based design pro-
posed in Diagne, Santos, and Rodrigues (2010) and Santos,
Rodrigues, and Diagne (2008), and the proportional integral boundary

Recently, a more complicated shallow water equation involv-
sing sediment dynamics has also been investigated. Such dynam-
ics called as Exner equation represents the transport of the sed-
iment in a water flow in the case where the sediment moves
predominantly as bedload (Bastin & Coron, 2016, Page 25). Ex-
ponential stabilization is achieved for coupled linearized Saint-
Venant–Exner models that are hyperbolic PDE systems by employ-

ing various methodologies such as a singular perturbation ap-
proach (Tang, Prieur, & Girard, 2014), explicit boundary dissipative
conditions (Diagne, Bastin, & Coron, 2012), the ISS-Lyapunov func-
tion for time-varying hyperbolic systems (Prieur & Mazenc, 2012),
and the backstepping technique (Diagne, Diagne, Tang, & Kristic,
2017). Among these approaches, backstepping is, to the best of our

knowledge, the first one that could deal with supercritical flow regime without any restrictive conditions.

Backstepping boundary controller design methodology relies on the construction of an invertible transformation, generally called as backstepping transformation, which converts the original system into a stable target system. Therefore, induced by the exponential stability of the target system and continuity of the transformation and its inverse, exponential stability of the original system is guaranteed as well. For hyperbolic systems, the first application of the backstepping boundary control approach was introduced for the control of a 1D wave PDE (Krstic, Guo, Balogh, & Smyshlyaev, 2008). The approach has been extended to 2 × 2 hyperbolic systems in Vazquez, Krstic, and Coron (2011) and lately generalized to linear hyperbolic systems with an arbitrary number of positive and one negative characteristic speed in Meglio, Vazquez, and Krstic (2013a). Recently, the problem of stabilizing general bidirectional systems of coupled hyperbolic PDEs has been solved in Hu, Meglio, Vazquez, and Krstic (2016) using backstepping technique. We also refer the readers to Coron, Vazquez, Krstic, and Bastin (2013) and its recent extension (Hu, Vazquez, Meglio, & Krstic, 2017), where quasi-linear hyperbolic systems are investigated. Moreover, for the class of general linear hyperbolic balance laws, a new proof on the optimal finite control time is presented in Coron, Hu, and Olive (2017), where the authors make use of the Fredholm backstepping transformation. Elsewhere, the problem of estimating state and boundary parameters in general heterodirectional linear hyperbolic systems have been recently studied in Anfinsen, Diagne, Aamo, and Krstic (2017). We refer the interested readers to Anfinsen and Aamo (2017), Auriol and Meglio (2016) and Deutscher (2017) for the research results of heterodirectional hyperbolic systems using boundary control.

The present paper demonstrates the feasibility of the backstepping design methodology for exponentially stabilizing shallow waves equations modeled by hyperbolic PDEs.

- First, the design procedure is introduced by studying the case of the Saint-Venant–Exner equation (Diagne et al., 2017) whose linearized and transformed version can be described by three coupled first-order hyperbolic PDEs, two of which have positive propagation speeds and one of which has a negative propagation speed. Here, the characteristic speeds are associated to the water and the sediment dynamics. In particular, supercritical flow regime, which are more difficult to deal with, can be stabilized by applying the general results of Meglio et al. (2013a).

- Second, the practical relevance of such a technique is further demonstrated through the stabilization of the “bi-layer” Saint-Venant equation, which is derived from the depth-averaged incompressible Navier–Stokes or Euler equations (Bouchut & Morales, 2008; Castro et al., 2004) and reflect the interfacial coupling phenomena that cannot be described by the Saint-Venant or Exner models. The “bi-layer” model describes the flow characteristic of two unmixed fluids, i.e., the superposition of two immiscible fluids with different densities and different flow rates. Some examples for these phenomena are, the flow involved in the Strait of Gibraltar where two layers of water with different properties are founded, and the denser Mediterranean and the Atlantic water (Castro, García-Rodríguez, González-Vida, Macias, & Parés, 2007). Also, tsunamis generated by underwater landslide can be described by the “bi-layer” Saint-Venant model (Kim & Veque, 2008). Moreover, in some coastal regions (e.g., US Gulf Coast), the suppression of interfacial waves on dense fluid mud layers is needed to avoid a strong dissipation of surface waves, and the control of a “bi-layer” model can be useful to achieve this objective (Sheremet, Jaramillo, Su, Allison, & Holland, 2017). The PDE backstepping method is applied onto the feedback (exponential) stabilization problem of (a linear version of) the 1D “bi-layer” Saint-Venant model, which are quite relevant applications in fluid dynamics by exploiting the result in Hu et al. (2016). To the best of the authors’ knowledge, this result is the first one on the stabilization of a shallow wave model of two unmixed fluids.

The outline of this paper is as follows. In Section 2, we briefly recall the backstepping stabilization result of the 1D Saint-Venant–Exner model (Diagne et al., 2017) by presenting the key steps and providing some simulation results. In Section 3, the 1D “bi-layer” Saint-Venant model that governs the two unmixed fluids is first introduced based on its physical description. Then, a corresponding control problem related to its linearized version around a steady state is presented, based on which the backstepping controller designs are presented. Numerical simulations are provided in Section 4 for the linearized “bi-layer” Saint-Venant model as well, and this paper ends with a conclusion in Section 5.

2. Preliminary: backstepping control of a Saint-Venant–Exner model

In this section, the major steps for designing a backstepping controller for the linearized Saint-Venant–Exner equation are presented. Such a model describes the dynamics of water and sediment in a prismatic sloping open channel delimited by two gates. The control objective is to ensure (local) exponential stabilization of the water depth $H(t, x)$, the water velocity $V(t, x)$ and the bathymetry $B(t, x)$ which is the depth of the sediment layer above the channel bottom, to the desired setpoints by actuating the downstream gate (see Fig. 1).

2.1. Physical description of the Saint-Venant–Exner model

Given a pool of prismatic sloping open channel, the dynamics of the shallow water system is described by the coupling of Saint-Venant and Exner (SVE) equations (see e.g. Hudson & Sweby, 2003)

$$\frac{\partial H}{\partial t} + V \frac{\partial H}{\partial x} + H \frac{\partial V}{\partial x} = 0. \quad (1a)$$

$$\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \frac{\partial H}{\partial x} + g \frac{\partial B}{\partial x} = gS_b - C_f \frac{V^2}{H}. \quad (1b)$$

$$\frac{\partial B}{\partial t} + aV^2 \frac{\partial V}{\partial x} = 0. \quad (1c)$$

Fig. 1. A sketch of the channel.
where g is the gravity constant, S_h is the bottom slope of the channel, C_f is a friction coefficient and a is a parameter that encompasses the porosity and viscosity effects on the sediment dynamics. The coefficient a is defined as (cf. Hudson & Sweby, 2003) $a = \frac{3C_f}{1 + \sqrt{R_e}}$ with p_k being the porosity parameter and A_k being the coefficient to control the interaction between the bed and the water flow. Indeed, this Saint-Venant–Exner model has been intensively studied in the existing literature. A significant amount of theoretical, numerical and experimental works dealing with the characteristics of water flow under movable bed can be found in Daly and Porphorton (2017); Lanzoni, Sigovilla, Frascati, and Seminara (2017) and the references therein. However, the boundary control of this system is left out in most of the contributions.

Linearization is the most frequently used method to consider the local behavior of nonlinear systems. In the few existing ones (Diagne et al., 2012; Diagne et al., 2017; Tang, Prieur et al., 2014), a straightforward but lengthy computation that is performed on the linearized Saint-Venant–Exner model around a constant steady state (H^*, V^*, B^*) allows to express the system in Riemann coordinates as follows:

$$\frac{\partial \xi}{\partial t} + \lambda \frac{\partial \xi}{\partial x} - M \xi = 0.$$ \hfill (2)

$$\xi = (\xi_1, \xi_2, \xi_3)^T, \quad \Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3),$$ \hfill (3)

$$M = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}, \quad \alpha_k = (3V^* - 2\lambda_k)\lambda_k,$$ \hfill (4)

where

$$\lambda_k = \frac{V^*}{\sqrt{H^*}}(\lambda_k - \lambda_1)$$

and the characteristic coordinates are

$$\xi_k = \frac{H^*}{V^*} \lambda_k \left[\left(V^* - \lambda_1 \right) (V^* - \lambda_j) + gH^* \right] (H(x, t) - H^*) + H^* \lambda_k (V(x, t) - V^*) + gH^* (B(x, t) - B^*).$$ \hfill (5)

Here, $\lambda_1, \lambda_2, \lambda_3$ are the characteristic velocities of the water flow and λ_2 is the characteristic velocity of the sediment motion. One should mention that the sediment motion is much slower than the water flow, physically. The flow characteristics depend on the Froude number $Fr = \sqrt{V^*/gH^*}$. According to Hudson and Sweby (2003), for a subcritical flow regime ($Fr < 1$), $\lambda_1 < 0 < \lambda_2 < \lambda_3$; and for a supercritical one ($Fr > 1$), $\lambda_2 < 0 < \lambda_1 < \lambda_3$.

2.2. Backstepping control problem formulation for the SVE model

For both the subcritical and supercritical regimes, the linear coupled PDE system (2)–(4) has two positive and one negative characteristic velocities and thus can be mapped into the following system through some coordinate transformations:\footnote{We refer the interested readers to Diagne et al. (2017) in which detailed derivations of the system (6) are presented. Also, Section 3 can be a good reference providing the derivation of a linearized coupled hyperbolic PDE system related to a more complex “bi-layer” Saint-Venant model.}

$$\partial_t u_1 + \gamma_1 \partial_x u_1 = \sigma_{11} u_1 + \sigma_{12} u_2 + \alpha(x)w$$ \hfill (6a)

$$\partial_t u_2 + \gamma_2 \partial_x u_2 = \sigma_{21} u_1 + \sigma_{22} u_2 + \alpha(x)w$$ \hfill (6b)

$$\partial_t w - \mu \partial_x w = \theta_1 (x) u_1 + \theta_2 (x) u_2$$ \hfill (6c)

where the variables u_1, u_2, w are the distributed states and γ_1, γ_2, μ are positive constants.

For the system (6), the following boundary conditions are assumed, which can be considered as some special case of physical constraints:

$$u_i(t, 0) = q_i w(t, 0) \quad \text{for } i = 1, 2,$$ \hfill (7)

$$w(t, 1) = \rho_1 u_1(t, 1) + \rho_2 u_2(t, 1) + U(t).$$ \hfill (8)

$$u_i(0, x) = u_i^0(x), \quad w(0, x) = w^0(x), \quad \text{for } i = 1, 2.$$ \hfill (9)

Here, $U(t)$ is the control input as shown in Figure 2.

2.3. Backstepping control design

2.3.1. State feedback backstepping controller design

When designing a backstepping controller, the main difficulty is to find a suitable state transformation and a stable target system under the transformation. In order to stabilize the system (6)–(9) through backstepping, an invertible coordinate transformation (Diagne et al., 2017; Meglio et al., 2013b) is constructed as follows:

$$\psi_i(t, x) = u_i(t, x) \quad \text{for } i = 1, 2,$$ \hfill (10a)

$$\chi(t, x) = w(t, x) - \int_0^x k_1(x, \xi) u_1(t, \xi) \, d\xi$$

$$- \int_0^x k_2(x, \xi) u_2(t, \xi) \, d\xi - \int_0^x k_3(x, \xi) w(t, \xi) \, d\xi$$ \hfill (10b)

aiming to convert the system (6)–(9) into the following target system:
\[
\partial_t \psi_1 + \gamma_1 \partial_x \psi_1 = \sigma_{11} \psi_1 + \sigma_{12} \psi_2 + \alpha(x) \chi + \int_0^x c_{11}(x, \xi) \psi_1(t, \xi) \, d\xi \\
+ \int_0^x c_{12}(x, \xi) \psi_2(t, \xi) \, d\xi \\
+ \int_0^x \kappa_1(x, \xi) \chi(t, \xi) \, d\xi, \\
(11a)
\]

\[
\partial_t \psi_2 + \gamma_2 \partial_x \psi_2 = \sigma_{21} \psi_1 + \sigma_{22} \psi_2 + \alpha(x) \chi + \int_0^x c_{21}(x, \xi) \psi_1(t, \xi) \, d\xi \\
+ \int_0^x c_{22}(x, \xi) \psi_2(t, \xi) \, d\xi \\
+ \int_0^x \kappa_2(x, \xi) \chi(t, \xi) \, d\xi, \\
(11b)
\]

\[
\partial_t \chi - \mu \partial_x \chi = 0. \\
(11c)
\]

\[
\psi_i(t, 0) = q_i \chi(t, 0) \quad \text{for } i = 1, 2 \quad \text{and} \quad \chi(t, 1) = 0. \\
(11d)
\]

where the kernel functions \(k_i, i = 1, 2, 3\) of the transformation (10) and the functions \(c_{ij}(\cdot, \cdot), \kappa_i(\cdot), i = 1, 2, j = 1, 2\), are to be determined on the triangular domain \(T = \{(x, \xi) \in \mathbb{R}^2 : 0 \leq \xi \leq x \leq 1\}\), to guarantee exponential stability of (11). One major difference between the original system (6) and the transformed system (11) is that the coupling in the negative propagating transport Eq. (6c) no longer appears in the new coordinate equations as shown in (11c). The dynamics of system (11) is schematically represented in Fig. 3.

Also, setting the boundary condition \(\chi(t, 1)\) to zero in (11d) enables one to derive the following boundary feedback control law:

\[
U(t) = -\rho_1 u_1(t, 1) - \rho_2 u_2(t, 1) + \int_0^1 \left[k_1(1, \xi) u_1(t, \xi) + k_2(1, \xi) w(t, \xi) \right] \, d\xi, \\
(12)
\]

where (8) and (10b) are used. From (12), one could notice that the implementation of the controller also requires the kernels \(k_i\)’s to be known. Indeed, by comparing (6) and (11), such kernel functions need to satisfy the following first-order hyperbolic PDEs:

\[
\mu \partial_x k_1(x, \xi) - \gamma_1 \partial_\xi k_1(x, \xi) = \sigma_{11} k_1(x, \xi) + \sigma_{21} k_2(x, \xi) + \theta_1(\xi) k_3(x, \xi), \\
(13a)
\]

\[
\mu \partial_x k_2(x, \xi) - \gamma_2 \partial_\xi k_2(x, \xi) = \sigma_{12} k_1(x, \xi) + \sigma_{22} k_2(x, \xi) + \theta_2(\xi) k_3(x, \xi), \\
(13b)
\]

\[
\mu \partial_x k_3(x, \xi) + \mu \partial_\xi k_3(x, \xi) = \alpha(\xi) k_1(x, \xi) + \alpha(\xi) k_2(x, \xi), \\
(13c)
\]

\[
k_1(x, x) = -\frac{\theta_1(x)}{\gamma_1 + \mu}, \quad k_2(x, x) = -\frac{\theta_2(x)}{\gamma_2 + \mu}, \\
(13d)
\]

\[
\mu k_3(x, 0) = q_1 \gamma_1 k_1(x, 0) + q_2 \gamma_2 k_2(x, 0). \\
(13e)
\]

Furthermore, the coefficients \(\kappa_i\)’s can be chosen to satisfy the following integral equation for \(i = 1, 2\):

\[
\kappa_i(x, \xi) = \alpha(\xi) k_j(x, \xi) + \int_\xi^x k_j(s, \xi) \, ds. \\
(14)
\]

Under the fact that the \(\kappa_i\)’s exist and are sufficiently smooth, the coefficients \(c_{ij}(\cdot, \cdot)\) can be further chosen such that

\[
c_{ij}(x, \xi) = \alpha(\xi) k_j(x, \xi) + \int_\xi^x k_j(s, \xi) \, ds, \quad i, j = 1, 2.
\]

Then, the target system (11) can be proved to be exponentially stable by a Lyapunov function (Diagne et al., 2017; Meglio et al., 2013b)

\[
V_i(t) = \int_0^1 \left[a_1 e^{-h_1 x} \left(\frac{\psi_1^2(t, x)}{\gamma_1} + \frac{\psi_2^2(t, x)}{\gamma_2} \right) + \frac{1 + x}{\mu} x^2 \right] \, dx, \\
\]

where \(a_1\) and \(\delta_1\) are carefully chosen positive parameters.

Lemma 1. (Diagne et al., 2017) For any given initial condition \((\psi_1^0, \psi_2^0, \chi^0)^T \in \mathcal{L}^\infty(\mathbb{R}^+, \mathbb{R}^2)^T\) and under the assumption that \(c_{ij}, \kappa_i \in \mathcal{C}(T)\), the equilibrium \((\psi_1, \psi_2, \chi)^T = (0, 0, 0)^T\) of the target system (11) is \(\mathcal{L}^\infty\)-exponentially stable.

It is worth noting that an alternative proof can be provided for finite time stability by looking into the solution, as presented in Hu et al. (2016).

From the continuity and invertibility of the backstepping transformation (10), the equivalence between the original system (6) (with the control law (12)) and the target system (11) can be established.

Theorem 1. Consider the system (6) and the control law (12). Under the assumptions that the initial data \(w_0^1, w_0^2, w_0^0\) are in \(\mathcal{L}^\infty(\mathbb{R}^+, \mathbb{R})^3\), the state \((u_1, u_2, w)^T\) is exponentially stable at the origin in the \(\mathcal{L}^\infty\) sense.

2.3.2. Output feedback control design

The feedback controller (12) is implementable only in the case that a full state measurement across the spatial domain is available, however, the measurement of the distributed states is not doable in most flow control problems. Generally, boundary sensing approach, which is more feasible, is employed for control purposes. Next a state observer is designed in order to recover the state at each point of the whole spatial domain based on boundary measurements \(y(t) = w(t, 0)\).

Part I: observer design. Denoting the estimated state as \((\hat{u}_1, \hat{u}_2, \hat{w})^T\), the following state estimator can be associated to system (6):

\[
\partial_t \hat{u}_1 + \gamma_1 \partial_x \hat{u}_1 = \sigma_{11} \hat{u}_1 + \sigma_{12} \hat{u}_2 + \alpha(x) \hat{w} - p_1(x) [y(t) - \hat{w}(t, 0)], \\
(15a)
\]

\[
\partial_t \hat{u}_2 + \gamma_2 \partial_x \hat{u}_2 = \sigma_{21} \hat{u}_1 + \sigma_{22} \hat{u}_2 + \alpha(x) \hat{w} - p_2(x) [y(t) - \hat{w}(t, 0)], \\
(15b)
\]

\[
\partial_t \hat{w} - \mu \partial_x \hat{w} = \theta_1(x) \hat{u}_1 + \theta_2(x) \hat{u}_2 - p_3(x) [y(t) - \hat{w}(t, 0)], \\
(15c)
\]

\[
\hat{u}_i(t, 0) = q_i y(t) \quad \text{for } i = 1, 2. \\
(15d)
\]

\[
\hat{w}(t, 1) = \rho_1 \hat{u}_1(t, 1) + \rho_2 \hat{u}_2(t, 1) + U(t). \\
(15e)
\]

Looking into the structure of this observer, it consists a copy of the original plant plus some observer error injection terms, where
the injection gains $p_1(x)$, $p_2(x)$ and $p_3(x)$ need to be chosen such that the estimated state $(\hat{u}_1, \hat{u}_2, \hat{w})$ converges to the plant state (u_1, u_2, w) in some sense. In order for this to happen, the convergence of the observer error

$$\left(\hat{u}_1 - u_1, \hat{u}_2 - u_2, \hat{w} - w\right)^T,$$ \hspace{1cm} (16)

must hold. In other words, the following error system

$$\delta_t \hat{u}_1 + \gamma_1 \hat{\alpha}_t \hat{u}_1 = \sigma_{11} \hat{u}_1 + \sigma_{12} \hat{u}_2 + \alpha(x) \hat{w} + p_1(x) \hat{w}(t,0),$$ \hspace{1cm} (17a)

$$\delta_t \hat{u}_2 + \gamma_2 \hat{\alpha}_t \hat{u}_2 = \sigma_{21} \hat{u}_1 + \sigma_{22} \hat{u}_2 + \alpha(x) \hat{w} + p_2(x) \hat{w}(t,0),$$ \hspace{1cm} (17b)

$$\delta_t \hat{w} - \mu \partial_x \hat{w} = \theta_t(x) \hat{u}_1 + \theta_2(x) \hat{u}_2 + p_3(x) \hat{w}(t,0),$$ \hspace{1cm} (17c)

$$\hat{u}_i(t,0) = 0 \text{ for } i = 1,2,$$ \hspace{1cm} (17d)

$$\hat{w}(t,1) = \rho_1 \hat{u}_1(t,1) + \rho_2 \hat{u}_2(t,1)$$ \hspace{1cm} (17e)

must converge to the origin for some careful choices of the gain functions $p_1(x), p_2(x)$ and $p_3(x)$.

As in the previous section, the following backstepping transformation (Meglio et al. 2013b) is applied:

$$\tilde{u}_i(t,x) = \tilde{w}_i(t,x) + \int \sigma_1 m_1(x) \hat{w}(t,t) dt,$$ \hspace{1cm} (18a)

$$\tilde{w}(t,x) = \hat{w}(t,x) + \int \sigma_2 m_2(x) \hat{w}(t,t) dt,$$ \hspace{1cm} (18b)

where the functions m_i defined on the triangular domain T, satisfy the following well-posed system:

$$\gamma_1 \partial_t \sigma_1 m_1 = \sigma_{11} \sigma_1 m_1 + \sigma_{12} \sigma_2 m_2 + \alpha(x)m_3,$$ \hspace{1cm} (19a)

$$\gamma_2 \partial_t \sigma_2 m_2 = \sigma_{21} \sigma_1 m_1 + \sigma_{22} \sigma_2 m_2 + \alpha(x)m_3,$$ \hspace{1cm} (19b)

$$\mu \partial_t \sigma_3 m_3 = -\theta_t(x) m_1 - \theta_2(x) m_2,$$ \hspace{1cm} (19c)

$$m_1(x) = \frac{1}{\gamma_1 + \mu} \alpha(x), \; m_2(x) = \frac{1}{\gamma_2 + \mu} \alpha(x),$$ \hspace{1cm} (19d)

$$m_3(1,\xi) = \rho_1 m_1(1,\xi) + \rho_2 m_2(1,\xi).$$ \hspace{1cm} (19e)

As a result, the error system (17) is mapped into the following system:

$$\tilde{u}_1 - \tilde{u}_1 = \sigma_{11} \tilde{w}_1 + \sigma_{12} \tilde{w}_2 + \int g_1(x,\xi) \tilde{w}_1(t,\xi) d\xi$$

$$+ \int g_2(x,\xi) \tilde{w}_2(t,\xi) d\xi,$$ \hspace{1cm} (20a)

$$\tilde{u}_2 + \tilde{u}_2 = \sigma_{21} \tilde{w}_1 + \sigma_{22} \tilde{w}_2 + \int g_2(x,\xi) \tilde{w}_1(t,\xi) d\xi$$

$$+ \int g_2(x,\xi) \tilde{w}_2(t,\xi) d\xi,$$ \hspace{1cm} (20b)

$$\tilde{w} - \mu \partial_x \tilde{w} = \theta_t(x) \tilde{w}_1 + \theta_2(x) \tilde{w}_2 + \int h_1(x,\xi) \tilde{w}_1(t,\xi) d\xi$$

$$+ \int h_2(x,\xi) \tilde{w}_2(t,\xi) d\xi,$$ \hspace{1cm} (20c)

with the boundary conditions as

$$\tilde{w}_i(t,0) = 0, \; \tilde{w}(t,1) = \rho_1 \tilde{w}_1(t,1) + \rho_2 \tilde{w}_2(t,1),$$ \hspace{1cm} (21)

for $i = 1,2$, where the integral coupling coefficients are given by

$$h_1(x,\xi) = -\theta(x) \xi_3(x,\xi) - \int \xi_3(x,v) h_1(s,\xi) ds,$$ \hspace{1cm} (22a)

$$g_i(x,\xi) = -\theta_t(x) m_i(x,\xi)$$

$$- \int m_i(v,s) h_1(s,\xi) ds \text{ for } \{i,j\} = 1,2.$$ \hspace{1cm} (22b)

Moreover, the observer gains are defined by

$$p_i(x) = \mu m_i(0) \text{ for } i = 1,2,3.$$ \hspace{1cm} (23)

Exponential stability holds for the system (20), which can be proved by the following Lyapunov function (Diagne et al., 2017; Meglio et al., 2013b):

$$V_2(t) = \int \left[d_2 e^{-\delta_2 t} \left(\frac{\tilde{w}_1^2(t,x)}{\gamma_1} + \frac{\tilde{w}_2^2(t,x)}{\gamma_2} \right) + \frac{e^{\delta_2 t}}{\mu} \tilde{w}^2(t,x) \right] dx,$$

where d_2 and δ_2 are strictly positive parameters that are chosen.

Lemma 2. Under the assumptions that the initial condition $\tilde{w}_1^0, \tilde{w}_2^0, \tilde{w}^0 \in C^c([\tau,\infty])$ and the functions $g_0, h_1 \in C(T)$, the system (20) with boundary conditions (21) and integral coupling coefficients (23) is exponentially stable in the L^c sense.

With the invertibility and continuity of the transformation (18), equivalence between the error system (17) and the target system (20) can be established. Thus, the following theorem holds.

Theorem 2. Under the assumptions that the initial data are in $C^c([\tau,\infty])$ for the observer system (15) (with the coefficient functions $p_i(x), i = 1,2,3$ determined by (19) and (23)) exponentially converges to the system (6) in the L^c sense.

Part II: Output feedback backstepping controller design. Combining the controller (12), which requires a full state measurement, and the observer (15), which reconstructs the distributed state based on an output measurement $w(t,0)$, an observer-based output feedback controller can be designed.

Theorem 3. Consider the (u_1, u_2, w^0)-system (6) together with the $(\hat{u}_1, \hat{u}_2, \hat{w})$-observer (15) (with the coefficient functions $p_i(x), i = 1,2,3$ determined by (19) and (23)). For a given initial condition $(u_1^0, u_2^0, w^0, \hat{u}_1^0, \hat{u}_2^0, \hat{w}^0) \in C^c([\tau,\infty])$ and the control law

$$U(t) = -\rho_1 u_1(t,1) - \rho_2 u_2(t,1) + \int \left[k_1(1,\xi) \hat{u}_1(t,\xi)$$

$$+ k_2(1,\xi) \hat{u}_2(t,\xi) + k_3(1,\xi) \hat{w}(1,\xi) \right] d\xi,$$ \hspace{1cm} (24)

where k_1, k_2 and k_3 satisfy (13), the $(u_1, u_2, w, \hat{u}_1, \hat{u}_2, \hat{w})$-system is exponentially stable in the sense of the L^c-norm.

The proof can be found in Krstic and Smyshlyaev (2008, Section 5.2) by constructing a weighted Lyapunov function.

2.4. Simulation of the output feedback controller under a supercritical flow regime

$$T = 10, \; \Delta x = 0.01, \; \Delta t = 0.02, \; C_f = 0.15, \; \rho_2 = 1.5, \; q_1 = q_2 = 1.5.$$

In this subsection, the dynamic of the closed-loop system (6), together with the output feedback control law (24), is simulated. The parameters of the physical model together with the set point (H^*, V^*, B^*) are listed in Table 1. Linearizing the system (1) around
the set point \((H^*, V^*, B^*) \) gives the corresponding characteristic velocities \(\lambda_1 = 1.87, \lambda_2 = -0.5 \) and \(\lambda_3 = 8.13 \). A supercritical flow regime is considered setting the Froude number to \(Fr = 1.13 \). Physically, a high velocity profile and a low water level are considered to be the setpoint in this simulation.

The initial bottom topography is chosen as

\[
B(0, x) = 0.4 \left(1 + 0.25 \exp \left(-\frac{(x - 0.5)^2}{0.003} \right) \right),
\]

which presents a Gaussian distribution centered at the middle of the domain. The initial water level and its velocity field are computed, respectively as

\[
H(0, x) = 2.5 - B(0, x), \quad V(0, x) = \frac{10 \sin(\pi x)}{H(0, x)}.
\]

Using initial conditions of the physical system (1), namely, \(H(0, x), V(0, x) \) and \(B(0, x) \), the initial data of the characteristic variables \(w \), \(u_1 \) and \(u_2 \) are computed from (5).

In order to implement the control law (24), the kernel PDEs (13) are solved numerically offline and the values of the kernels \(k_1, k_2 \) and \(k_3 \) at \(x = 1 \) are employed. In sight of the triangular shape of the kernel function domain \(T \), an accurate finite volume scheme (a modified Roe scheme) can be employed to advance in time and space the hyperbolic evolutionary system (6). The solution to the kernel problem is computed accurately by using the quadratic finite element \(P_2 \). Moreover, the finite element setup is used to compute the kernel gain \(p(x) \) defined in (23). Elsewhere, the computation of the control law (24) also requires the solution of the system (19), which is solved numerically on time and space using a finite element setup. Fig. 4 shows the evolution in time of the control input \(U(t) \) at downstream, and the output measurement \(y(t) \) at upstream. Clearly, the amplitude of \(U(t) \) decreases in time and vanishes for \(t \geq 4s \) as shown in Fig. 4(a) and the amplitude of the output measurement \(y(t) \) decreases in time and tends to zero after \(t \geq 3s \) as depicted in Fig. 4(b). The dynamics of the \(L^\infty \)-norm are directly related to the magnitude of the propagation speeds \(\lambda \) (see, Fig. 5). Under this supercritical flow regime, it is remarkable that the backstepping output feedback control law (Fig. 5(a)) achieves exponential stability compared to the approach in Diagne et al. (2012) (Fig. 5(b)), which leads to an unstable dynamics. This striking fact is justified knowing that the conditions of Theorem 2 (cf Diagne et al., 2012) are not fulfilled in this specific case. Fig. 6 describes the time and space dynamics of the plant, and is consistent with the numerical results presented above. As time increases, it can be noticed that the perturbation in the overall system decreases and vanishes later.

The presented numerical simulations of system (6) subject to the backstepping feedback control \(U(t) \), is stabilized around the zero equilibrium as expected from the theoretical part.

The simulations verify the physical importance of the result in this section. More precisely, the backstepping controller offers the possibility to stabilize the moving bed dynamics under a rapidly varying water flow with a relatively small depth, with a single boundary actuation.

3. Backstepping control of a “bi-layer” Saint-Venant model

“Bi-layer” Saint-Venant models are often used to describe more complex interaction between the sediment and the water layers in river flows, for which the major characteristic of the physical phenomena cannot be described by the Saint-Venant–Exner model and thus requires to adopt the bi-layer model accounting for two unmixed fluids with the lower layer consisting of dense mixture of water and moving sediment. In this section, a “bi-layer” Saint-Venant model is presented for the purpose of controlling these waves with fast dynamics.

3.1. Physical description of the “bi-layer” Saint-Venant model

Fig. 7 depicts a “bi-layer” shallow water flow of two unmixed fluids delimited by two gates. The dynamics of these two superposed immiscible layers of shallow water fluids could be modeled by the following 1D “bi-layer” Saint-Venant model:

\[
\frac{\partial H_1}{\partial t} + \frac{\partial (H_1 U_1)}{\partial x} = 0,
\]

(25a)
the uniform matrix equation,\(3.2.\) fluid.\(\)

\[
\partial U_1 / \partial t + U_1 \partial U_1 / \partial x + g \partial H_1 / \partial x + g \partial H_2 / \partial x + g S_b = S',
\]

\[
\frac{\partial H_2}{\partial t} + \frac{\partial (H_2 U_2)}{\partial x} = 0,
\]

\[
\frac{\partial U_2}{\partial t} + U_2 \frac{\partial U_2}{\partial x} + g \frac{\partial H_2}{\partial x} + g \frac{\partial H_1}{\partial x} + \frac{\partial S_b}{\partial x} = \frac{\rho_1}{\rho_2} S'.
\]

In these equations, the indices 1 and 2 refer to the upper and lower layers, respectively, as depicted in Fig. 7 as well. The state variables \(H_i, U_i, i = 1, 2\) represent respectively the thickness of the \(i\)th layer and the velocity. Each layer is assumed to have a constant density \(\rho_i, i = 1, 2\) \((\rho_1 < \rho_2)\). The system contains the source terms \(S_b\), and \(S'\), where \(S_b\) is the slope of the bathymetry and \(S'\) stands for the friction between the two layers which is given by

\[
S' = \frac{C_f (U_1 - U_2)}{H_1 H_2}.
\]

The equation (25) could be recast into the following form:

\[
\frac{\partial W}{\partial t} + \frac{\partial F(W)}{\partial x} = S(W),
\]

where \(W := \begin{bmatrix} H_1, & U_1, & H_2, & U_2 \end{bmatrix}^T\) and the maps

\[
F(W) = \begin{bmatrix} H_1 U_1 \\ \frac{U_1^2}{2} + g (H_1 + H_2) \\ H_2 U_2 \\ \frac{U_2^2}{2} + g (H_2 + r H_1) \end{bmatrix},
\]

\[
S(W) = \begin{bmatrix} 0 & S' - g S_b & 0 & r S' - r g S_b \end{bmatrix}^T,
\]

where \(r = \rho_1 / \rho_2\).

Physically, the ratio \(r\) characterizes the relative thickness of the bottom fluid layer with respect to the upper fluid layer. In the following parts of this section, we deal with the case when \(r \ll 1\), namely, when the bottom fluid is much thicker than the upper fluid.

3.2. Linearization of the 1D “bi-layer” Saint-Venant model

Similar to the stabilization problem of the Saint-Venant–Exner equation, a local behavior of the nonlinear system (25) is considered around a steady state. denotes the corresponding Jacobian matrix function for (27). For the sake of simplification, we only consider here only the case when the steady state is constant, i.e., uniform in both time and space where \(W^* = (H_1^*, U_1^*, H_2^*, U_2^*)^T\) is the constant steady state associated with the system (27). One can note from (29) that the constant steady state is characterized by

\[
\frac{C_f (U_1^* - U_2^*)^2}{H_1^* H_2^*} = g S_b.
\]

Defining the deviation of the state \(W\) with respect to the steady-state \(W^*\) as

\[
w = W - W^* = [h_1, u_1, h_2, u_2]^T,
\]

the linearized model of (27) is written as follows:

\[
\partial_t w + A(W^*) \partial_t w = S_t(w),
\]

where

\[
A(W) = \begin{bmatrix} U_1 & H_1 & 0 & 0 \\ g & U_1 & g & 0 \\ 0 & 0 & U_2 & H_2 \\ rg & 0 & g & U_2 \end{bmatrix}
\]

and

\[
S_t(w) = \begin{bmatrix} 0 & 1 & 0 & r \end{bmatrix}^T \alpha'_f (w)
\]

with

\[
\alpha'_f = -a_1 (h_1 H_1^* + h_2 H_2^*) + a_2 (u_1 - u_2),
\]

\[
a_1 = C_f (U_1^* - U_2^*)^2 / H_1^* H_2^*,
\]

\[
a_2 = 2 C_f U_1^* - U_2^* / H_1^* H_2^*.
\]

For the case of \(r \approx 1\) and \(U_1 \approx U_2\), i.e., when the two-layers have very similar densities and flow rates, a first-order approximation of the eigenvalues is given in Nieto, Castro-Diaz, and Parés (2011) and Abgrall and Karni (2009).

The next step is to further simplify the problem by diagonalizing the system matrix \(A(W^*)\) of (32) and expressing the system in Riemann coordinates. The characteristic equation derived from the matrix \(A(W^*)\) is given by

\[
\left(\lambda - U_1^* \right)^2 - g H_1^* \left(\lambda - U_2^* \right)^2 - g H_2^* = r g H_1^* H_2^*.
\]

Following the results in Schijf and Schonfeld (1953), the eigenvalues of the system (32) in the case of \(r \ll 1\) i.e., \(\rho_1 \ll \rho_2\) approach to those given as

\[
\lambda_1 = U_1^* - \sqrt{g H_1^*}, \quad \lambda_2 = U_1^* + \sqrt{g H_1^*},
\]

\[
\lambda_3 = U_2^* - \sqrt{g H_2^*}, \quad \lambda_4 = U_2^* + \sqrt{g H_2^*},
\]

which are the eigenvalues of \(A(W^*)\) in the critical case of \(r = 0\). In what follows, the above \(\lambda_k\) \((k = 1, 4)\) are taken as the eigenvalues of \(A(W^*)\). From (38), it is remarkable that the internal and external characteristics travel at different speeds. Indeed, the lower layer characteristics moves much slower than the upper ones. We consider the subcase when

\[
\lambda_1, \lambda_3 < 0, \quad \lambda_1 \neq \lambda_3;
\]

\[
\lambda_2, \lambda_4 > 0, \quad \lambda_2 \neq \lambda_4,
\]

which corresponds to a subcritical flow regime for each layer.

For a given eigenvalue \(\lambda_k\) \((k = 1, 4)\) of the matrix \(A(W^*)\), the associated left eigenvector is expressed by...
\[
L_k^w = - \left(\prod_{i=1,2,3,4} \left(\lambda_i - \lambda_k \right) \right)^{-1} \times \begin{bmatrix} l_{k,1} & l_{k,2} & l_{k,3} & l_{k,4} \end{bmatrix}^T,
\]

(41)

where

\[
l_{k,1} = \frac{U_1^2 - \left(\text{tr}(A(W^*)) - \lambda_k \right) (U_1^2 + gh_i^*) + f_k}{\lambda_k},
\]

(42)

\[
l_{k,2} = \frac{3H_i^* U_1^2 - 2H_i^* U_1 (\text{tr}(A(W^*)) - \lambda_k) + H_i^* (f_k + gh_i^*)}{\lambda_k},
\]

(43)

\[
l_{k,3} = gh_i^* (7U_1^2 - \lambda_k), \quad l_{k,4} = gh_i^* H_i^*.
\]

(44)

The quantities \(f_k \) are defined by:

\[
f_1 = (\lambda_3 + \lambda_2) \lambda_4 + \lambda_2 \lambda_3, \quad f_2 = (\lambda_3 + \lambda_1) \lambda_4 + \lambda_1 \lambda_3.
\]

(45)

\[
f_3 = (\lambda_2 + \lambda_1) \lambda_4 + \lambda_1 \lambda_2, \quad f_4 = (\lambda_1 + \lambda_2) \lambda_3 + \lambda_1 \lambda_2.
\]

(46)

Multiplying \(w \) by \(L_k^w \) \((k = 1, 4)\), the following characteristic coordinate (Riemann invariant) is obtained:

\[
\xi_k = L_k^w w = - \left(\prod_{i=1,2,3,4} \left(\lambda_i - \lambda_k \right) \right)^{-1} \times \begin{bmatrix} l_{k,1} h_1 + l_{k,2} u_1 + l_{k,3} h_2 + l_{k,4} u_2 \end{bmatrix}.
\]

(47)

Therefore, the variables \(w \) can be expressed in term of the Riemann invariant \(\xi \) as

\[
w = \begin{pmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \\ \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix},
\]

(48)

where \(\xi = (\xi_1, \xi_2, \xi_3, \xi_4)^T \) and for \(k = 1, 4 \),

\[
y_k = \frac{\lambda_k - 1}{H_i^*}, \quad \beta_k = \frac{1}{gh_i^*} \left(U_1^2 + 2(\lambda_k - 1)U_1^2 - \lambda_k^2 + gh_i^* \right),
\]

and

\[
\alpha_k = \frac{1}{gh_i^* H_i^*} \left(gh_i^* \beta_k - 2 \lambda_k^2 U_1^2 + 3U_1^2 (\lambda_k - 1)U_1^2 + 2(gh_i^* - 2 \lambda_k^2) U_1 + \lambda_k^2 (\text{tr}(A^*) - \lambda_k) + gh_i^* (\lambda_k + 2) \right).
\]

(49)

Let

\[
\Lambda = \text{diag}([\lambda_1, \lambda_2, \lambda_3, \lambda_4]),
\]

then (32) can be rewritten as follows:

\[
\partial_t \xi + \Lambda \partial_x \xi = M \xi,
\]

(51)

where

\[
M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} a_2 (\gamma_1 - \alpha_1) - a_1 (H_i^* + \beta_i H_i^*) \\ a_2 (\gamma_2 - \alpha_2) - a_1 (H_i^* + \beta_i H_i^*) \\ a_2 (\gamma_3 - \alpha_3) - a_1 (H_i^* + \beta_i H_i^*) \\ a_2 (\gamma_4 - \alpha_4) - a_1 (H_i^* + \beta_i H_i^*) \end{pmatrix}^T.
\]

(52)

3.3. Boundary control problem formulation for the “bi-layer” Saint-Venant model

Define the state vectors as

\[
u(t, x) = (\xi_2, \xi_4)^T, \quad \nu(t, x) = (\xi_1, \xi_3)^T
\]

and introduce the transport speed matrices as

\[
\Lambda^t = \text{diag}([\lambda_1, \lambda_2, \lambda_3, \lambda_4]).
\]

(53)

\[
\Lambda^l = \text{diag}([\lambda_1, \lambda_2, -\lambda_3, -\lambda_4], \lambda_1, \lambda_2, \lambda_3, \lambda_4).
\]

(54)

where it holds from (39)-(40) that

\[
\lambda_1, \lambda_2, \lambda_3, \lambda_4 > 0, \quad \lambda_1 \neq \lambda_2, \quad \lambda_1 \neq \lambda_3.
\]

(55)

Then, the system (51) is rewritten as

\[
\partial_t \nu(t, x) + \Lambda^t \partial_x \nu(t, x) = \nu(t, x) + S \nu(t, x).
\]

(56a)

\[
\partial_t \nu(t, x) - \Lambda^l \partial_x \nu(t, x) = 0.
\]

(56b)

where the in-domain parameters are given as

\[
S^t = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}, \quad S^l = \begin{bmatrix} S_3 \\ S_4 \end{bmatrix},
\]

(57)

where \(S_1 = g(\gamma_1 - \alpha_1) - a_1 (H_i^* + \beta_i H_i^*) \). The objective is to stabilize the system (56) with the following boundary condition:

\[
u(t, 0) = Q_0 \nu(t, 0), \quad \nu(t, 1) = R_1 \nu(t, 1) + U(t),
\]

(58)

where the boundary parameters \(Q_0 = \{ q_{ij} \} \in \mathbb{M}_{2,2}(\mathbb{R}) \), \(R_1 = \{ r_{ij} \} \in \mathbb{M}_{2,2}(\mathbb{R}) \) (59)

and \(U(t) = [u_1(t), u_2(t)]^T \) consists of the boundary controllers we need to design.

3.4. Backstepping control design

3.4.1. State feedback backstepping controller design

The backstepping method could be used to design feedback boundary controllers for stabilizing the (linearized) “bi-layer” Saint-Venant system in Riemann invariants, i.e., (56)-(58), which consists of two leftwards and two rightwards propagating waves. In this section, the generalized backstepping methodology that enables the feedback stabilizability of an arbitrary number of waves traveling in both directions [Diagne, Tang, Diagne, & Krstic, 2016a; 2016b; Hu et al., 2016] is applied to ensure the exponential stabilization of this linearized “bi-layer” model.

Part I: controller design. The following Volterra-type change of coordinates

\[
\begin{pmatrix} e(t, x) \\ \beta(t, x) \end{pmatrix} = \begin{pmatrix} u(t, x) \\ v(t, x) \end{pmatrix}
\]

(60)

is performed to transform the system (56)-(58) into a finite-time stable target system Hu et al. (2016):

\[
\partial_t \epsilon(t, x) + \Lambda^t \partial_x \epsilon(t, x) = S^t \epsilon(t, x) + S^l \beta(t, x) + \int_0^x C^t(x, \xi) e(t, \xi) d\xi
\]

(61a)

\[
\partial_t \beta(t, x) - \Lambda^l \partial_x \beta(t, x) = \Delta(x) \beta(0, t).
\]

(61b)
\[\epsilon(t, 0) = Q_0 \beta(t, 0), \]
\[\beta(t, 1) = 0, \]
\[\Delta(x) = \begin{bmatrix} 0 & 0 \\ \delta_2,1(x) & 0 \end{bmatrix} \]
and \(C, C^1 \) are matrices of functions defined on the triangular domain \(T \). Here, \(C, C^1 \) and \(\delta_2,1(x) \) are all to be chosen.

Remark 1. Compared with the \(v \)-subsystem in the system (56)–(58) that the control is applied on and thus has a coupling term with the \(u \)-subsystem, the \(\beta \)-subsystem in the target system (61) has zero boundary input and is clearly finite-time stable. The remaining part, i.e., the target \(\epsilon \)-subsystem, is then connected to the \(\beta \)-subsystem, making the resulting cascaded system finite-time stable.

In order to map the system (56)–(58) into the desired target system (61), the kernels \(G \) and \(H \), defined on the domain \(T \), must satisfy the following system of equations:

\[\partial_\xi G(x, \xi) \Lambda^T - \Lambda^1 \partial_\xi G(x, \xi) = -G(x, \xi) S^\xi, \]
\[\partial_\xi H(x, \xi) \Lambda^T + \Lambda^1 \partial_\xi H(x, \xi) = G(x, \xi) S^\xi, \]
\[G(x, x) \Lambda^T + \Lambda^1 G(x, x) = 0, \]
\[H(x, x) \Lambda - \Lambda^1 H(x, x) = 0, \]
\[G(x, 0) \Lambda^T Q_0 - H(0, x) \Lambda^T = -\Delta(x). \]

The existence and uniqueness of the backstepping transformation (60) could be guaranteed by adding some artificial boundary conditions (Hu et al., 2016). Also, as proved in Hu et al. (2016), the kernel PDE admit (61) admit a unique discontinuous which guarantees the existence of a unique inverse transformation. The inverse transformation is

\[\begin{pmatrix} u(t, x) \\ v(t, x) \end{pmatrix} = \begin{pmatrix} \epsilon(t, x) \\ \beta(t, x) \end{pmatrix} - \int_0^x \begin{pmatrix} 0 & 0 \\ \mathcal{G}(x, \xi) & \mathcal{H}(x, \xi) \end{pmatrix} \begin{pmatrix} \epsilon(t, \xi) \\ \beta(t, \xi) \end{pmatrix} d\xi, \]
where the kernels \(\mathcal{G}(x, \xi), \mathcal{H}(x, \xi) \) satisfy

\[0 = \mathcal{G}(x, \xi) + \mathcal{G}(x, \xi) - \int_\xi^x \mathcal{H}(x, \eta) \mathcal{G}(\eta, \xi) d\eta, \]
\[0 = \mathcal{H}(x, \xi) + \mathcal{H}(x, \xi) - \int_\xi^x \mathcal{H}(x, \eta) \mathcal{H}(\eta, \xi) d\eta. \]

In the meantime, \(\delta_2, 1(x) \) and thus \(\Delta(x) \) can be obtained. Also, the following equations are obtained for \(C^T(x, \xi), C^1(x, \xi) \):

\[C^T(x, \xi) = S \mathcal{G}(x, \xi) + \int_\xi^x C^1(x, \eta) \mathcal{G}(\eta, \xi) d\eta, \]
\[C^1(x, \xi) = S \mathcal{H}(x, \xi) + \int_\xi^x C^1(x, \eta) \mathcal{H}(\eta, \xi) d\eta. \]

Hence, the control law \(\tilde{u}(t) \) can be obtained by plugging the transformation (60) into (58). Indeed, (61d) implies that

\[\tilde{u}(t) = -R u(t, 1) + \int_0^1 (\mathcal{G}(1, \xi) u(t, \xi) + H(1, \xi) v(t, \xi)) d\xi. \]

Part II: stability of the target system. In this part, the stability of the target system (61) is studied based on the Lyapunov method, which proves that it is exponentially stable as well.\(^3\)

Assume there exist constants \(M_0, M_1, \tilde{q} > 0 \) such that

\[\| S^\xi \|, \| S^{\xi^2} \| \leq M_0. \]
\[\| C^T(\cdot, \xi) \|, \| C^1(\cdot, \xi) \| \leq M_1. \forall \xi \in [0, x]. \forall x \in [0, 1]. \]
\[\| Q_0^T Q_0 \| < \tilde{q}. \]

where \(\| \cdot \| \) stands for the 2-norm, and denote

\[\min \{ \lambda_i^1, \lambda_i^1 | i = 1, 2 \} := \Delta, \]
\[\max \{ \lambda_i^1, \lambda_i^1 | i = 1, 2 \} := \Lambda. \]

The exponential stability of the target system (61)–(62) can be then proved.

Lemma 1. For any given initial data \((e^0)^T, (\beta^0)^T\) and \((e^0)^T, (\beta^0)^T\) in \((L^2(0, 1))^4\) and under the assumption that \(C, C^1 \in C(T) \), the equilibrium \((e^1, \beta^1) = (0, 0, 0, 0)^T\) of the target system (61)–(62) is exponentially stable in the \(L^2 \)-norm:

\[\| (e^T(t, \cdot), \beta^T(t, \cdot))^T \|_{L^2}^2 := \int_0^1 \| (e^T(t, x) \epsilon(t, x) + \beta^T(t, x) \beta(t, x)) dx. \]

Proof. A Lyapunov function is constructed as follows:

\[V_2(t) = \frac{1}{2} \int_0^1 e^{-v_1 x} e^T(t, x) \Lambda^T \epsilon(t, x) dx + \frac{1}{2} \int_0^1 (1 + x) \beta^T(t, x) \Lambda^T \epsilon(t, x) dx, \]

where

\[\Lambda^T := \Lambda^{-1} = \begin{bmatrix} \frac{1}{\lambda_1^2} & \cdots & \frac{1}{\lambda_n^2} \end{bmatrix}, \]

and \(D = \text{diag}(d_1, d_2) \). The constants \(v_1 \) and \(d_1, d_2 \) are all positive parameters to be determined.\(^4\) Then, we have

\[C_1 \| (e^T(t, \cdot), \beta^T(t, \cdot))^T \|_{L^2}^2 \leq V_2(t) \]

\[\leq C_2 \| (e^T(t, \cdot), \beta^T(t, \cdot))^T \|_{L^2}^2, \]

where the two positive constants are

\[C_1 = \frac{1}{2 \Delta} \min \{ e^{-v_1}, d_1, d_2 \}, \]

\[C_2 = \frac{1}{2 \Lambda} \max \{ 1, 2 d_1, 2 d_2 \}. \]

\(^3\) A different Lyapunov-based proof is also presented in Diagne, Tang, Diagne, and Krstic (2016b).

\(^4\) A generalized version of the Lyapunov function was presented in Diagne et al. (2016a; 2016b) for dealing with the general class of coupled systems of \(m + n \) heterodirectional transport PDEs, where the elements in the weighing matrix \(D \) are successively determined.
This ensures that $V_2(t)$ is positive definite. Differentiating (76) with respect to time leads to

$$
V_2(t) = \int_0^1 e^{-\nu \psi} \tau \beta \epsilon(t, x) dx + \int_0^1 \frac{1}{2} e^{-\nu \psi} \tau \epsilon(t, x) \mathcal{A}_{\text{inv}}^t \beta \epsilon(t, x) dx
$$

Substituting equations (61a) and (61b) into (82), the following inequality is derived:

$$
V_2(t) = \int_0^1 e^{-\nu \psi} \tau \beta \epsilon(t, x) dx + \int_0^1 \frac{1}{2} e^{-\nu \psi} \tau \epsilon(t, x) \mathcal{A}_{\text{inv}}^t \beta \epsilon(t, x) dx
$$

Further calculations give

$$
\frac{1}{2} F_1(t) + F_2(t)
$$

where

$$
F_1(t) = \beta_1(t, 0) \psi \frac{\hat{q}}{2} - \frac{1}{2} d_1 + \int_0^1 \frac{1}{2} e^{-\nu \psi} \tau \epsilon(t, x) \mathcal{A}_{\text{inv}}^t \beta \epsilon(t, x) dx
$$

and

$$
F_2(t) = \frac{1}{2} F_1(v_1) \int_0^1 e^{-\nu \psi} \tau \epsilon(t, x) \epsilon(t, x) dx
$$

with

$$
\frac{1}{2} F_2(d_1, d_2, v_1) = \min \{ d_1, d_2 \} - \frac{M_0}{\lambda} - \frac{M_1}{\lambda} v_1
$$

Choose the positive constants d_1, d_2 as follows:

$$
d_2 \geq \hat{q}, \quad d_1 \geq \hat{q} + \int_0^1 (1 + \lambda_2) \epsilon_x^2 \frac{1}{(\lambda_2^x)^2} \delta_{2,1}^2(\epsilon(\xi)) dx
$$

which guarantee that $F_1(t)$ is non-positive. Then, by choosing $v_1 > 0$ large enough to satisfy

$$
f_1(v_1) > 0, \quad f_3(v_1) := \hat{q} - \frac{M_0}{\lambda} - \frac{M_1}{\lambda} v_1 > 0,
$$

it holds that $f_2(v_1) \geq f_3(v_1) > 0$ and

$$
V_2(t) \leq F_2(t) \leq -C_1 V_2(t),
$$

with

$$
c_1 = \frac{1}{\lambda} \min \left\{ f_1(v_1), \frac{1}{\max(d_1, d_2)} f_2(d_1, d_2, v_1) \right\}
$$

which gives

$$
V_2(t) \leq V_2(0) e^{-c_1 t}.
$$

Finally, it can be derived from (79) that

$$
\| e^T(t, \cdot \cdot \cdot), \beta^T(t, \cdot \cdot \cdot) \|_{L^2} \leq \frac{C_2}{C_1} \| (e^0(\cdot \cdot \cdot), \beta^0(\cdot \cdot \cdot)) \|_{L^2} e^{-c_1 t},
$$

where C_1, C_2 are defined in (80) and (81). This completes the proof.

Part III: Stability of the closed-loop control system. The exponential stability of the target system (61), together with existence, uniqueness, regularity and invertibility of the backstepping transformation (60), guarantee the stability of the closed-loop control system (56)–(58) with the designed state feedback controller (69).

Theorem 4. For any given initial data $(\nu^0)^T, \ (\nu^0)^T = (u^T(0, \cdot \cdot \cdot), v^T(0, \cdot \cdot \cdot))$, which is bounded, and the equilibrium $(\nu^*, \ (\nu^*)^T = (0, 0, 0, 0))^T$ of the closed-loop system (56)–(58) with controller (69) is exponentially stable in the sense of the norm $(\| u^T(t, \cdot \cdot \cdot), v^T(t, \cdot \cdot \cdot) \|_{L^2}^2)^{1/2}$.

3.4.2. Output feedback backstepping controller design

As in the SVE case, the backstepping controller (69) requires a full state measurement across the spatial domain. In the situation when the only available data is the measured boundary output $y(t) = y(t, 0)$, one needs to first construct an observer to recover the full state information of the system (56)–(58). Then, using these recovered data, an output feedback controller can be designed.

Part I: Observer design. Next, a boundary state observer design is presented which helps avoid the full state measurement in a to-be-designed output feedback controller.

Defining the estimated state vector as $(\hat{u}^T, \hat{v}^T)^T$, the following state observer consisting of a copy of the plant (56), (58) plus output injection terms:

$$
\hat{d}_1 \hat{u} + \Lambda^T \hat{d}_x \hat{u} = S^* \hat{u} + S^T \hat{v} - P_1(x)[y(t) - \hat{v}(t, 0),]
$$

is anticipated to achieve the reconstruction of the distributed state vector $(u^T, v^T)^T$.

Doing so, the vector $(\hat{u}^T, \hat{v}^T)^T = (u^T - \hat{u}^T, \hat{v}^T - \hat{v}^T)^T$ is introduced which satisfies the following observer error system:

$$
\hat{d}_1 \hat{u} - \Lambda^T \hat{d}_x \hat{u} = -P_2(x)[y(t) - \hat{v}(t, 0),]
$$

Moreover, during the design steps, it is anticipated that

$$
\hat{u}(t, 0) = Q_0 y(t), \quad \hat{v}(t, 1) = R_1 \hat{u}(t, 1) + \nu(t)
$$

is obtained by adding the observer error.

Thus, the objective is to determine the output injection coefficients $P_1(x)$ and $P_2(x)$ such that the observer error $(\hat{u}^T, \hat{v}^T)^T$ converges to the origin in the sense of the norm $(\| (\hat{u}^T, \hat{v}^T)^T \|_{L^2})$.

According to the backstepping control transformation (60), the following backstepping transformation inspired by the duality between controller and observer designs can be considered:

$$
\left(\begin{array}{c}
\hat{u}(t, x) \\
\hat{v}(t, x)
\end{array} \right) = \left(\begin{array}{c}
\Xi(t, x) \\
\hat{\beta}(t, x)
\end{array} \right) + \int_0^x \left(\begin{array}{c}
M(x, \xi) \\
N(x, \xi)
\end{array} \right) \left(\begin{array}{c}
\Xi(t, \xi) \\
\hat{\beta}(t, \xi)
\end{array} \right) d\xi,
$$
where the to-be-determined kernels M and N are defined on the triangular domain \mathbb{T} to map the error system (97) into the following exponentially stable target system:

$$
\frac{d}{dt} \tilde{e} + \Lambda^T \Lambda \frac{d}{dt} \tilde{\beta} = S^T \tilde{e} + \int_0^x D'(x, \xi) \tilde{e}(t, \xi) d\xi,
$$

(99a)

$$
\frac{d}{dt} \tilde{\beta} - \Lambda^T \Lambda \frac{d}{dt} \tilde{\beta} = \int_0^x \tilde{D}'(x, \xi) \tilde{e}(t, \xi) d\xi,
$$

(99b)

$$
\tilde{e}(t, 0) = 0, \quad \tilde{\beta}(t, 1) = R_1 \tilde{e}(t, 1) - \int_0^1 \tilde{\Delta}(\xi) \tilde{\beta}(t, \xi) d\xi.
$$

(99c)

Here, the functions $D'(x, \xi), \tilde{D}'(x, \xi)$ and $\tilde{\Delta}(\xi)$ are also to be determined.

By matching the error system (97) and the above target system, it can be derived that the transformation kernels $M(x, \xi)$ and $N(x, \xi)$ satisfy the following PDEs:

$$
-M \tilde{e}(x, \xi) \Lambda^T + \Lambda^T M(x, \xi) = S^T \tilde{e}(x, \xi) + S^T N(x, \xi),
$$

(100a)

$$
-N \tilde{\beta}(x, \xi) \Lambda^T - \Lambda^T N(x, \xi) \tilde{\beta}(x, \xi) = 0,
$$

(100b)

$$
M(x, x) \Lambda^T - \Lambda^T M(x, x) = S^T,
$$

(100c)

$$
N(x, x) \Lambda^T - \Lambda^T N(x, x) = 0,
$$

(100d)

and meanwhile, the observer gains are given by

$$
P_1(x) = -M(x, 0) \Lambda^T, \quad P_2(x) = N(x, 0) \Lambda^T.
$$

(101)

Moreover, the functions $D'(x, \xi), \tilde{D}'(x, \xi)$ and $\tilde{\Delta}(\xi)$ are defined by the following equations:

$$
D'(x, \xi) + \int_{\xi}^x M(x, \eta) d\eta = 0,
$$

(102)

$$
\tilde{D}'(x, \xi) + \int_{\xi}^x N(x, \eta) d\eta = 0,
$$

(103)

$$
\tilde{\Delta}(\xi) = N(1, \xi) - R_1 M(1, \xi).
$$

(104)

The existence, uniqueness, and regularity of the transformation (98) are discussed in Hu et al. (2016), which guarantees the existence of a unique inverse transformation. The inverse transformation is

$$
\begin{pmatrix}
\tilde{e}(t, x) \\
\tilde{\beta}(t, x)
\end{pmatrix} = \left(\begin{pmatrix} u(t, x) \\ v(t, x) \end{pmatrix} \right) + \int_0^x \left(\begin{pmatrix} M(x, \xi) \\ N(x, \xi) \end{pmatrix} \right) \left(\begin{pmatrix} u(t, x) \\ v(t, x) \end{pmatrix} \right) d\xi,
$$

(105)

and it can be derived from (98) and (105) that the kernels $M(x, \xi), N(x, \xi)$ need to satisfy

$$
0 = M(x, \xi) + M(x, \xi) - \int_{\xi}^x M(x, \eta) N(x, \eta) d\eta,
$$

(106)

$$
0 = N(x, \xi) + N(x, \xi) - \int_{\xi}^x N(x, \eta) N(x, \eta) d\eta.
$$

(107)

In order to solve the system of equations (106)--(107), the method of successive approximations can be used, see, Krostic and Smyslyeva (2008, Section 4.4).

Assume there exists a constant $M_2 > 0$ such that

$$
\|D'(x, \xi)\|, \|\tilde{D}'(x, \xi)\|, \|\tilde{\Delta}(\xi)\| \leq M_2, \quad \forall \xi \in [0, x], \quad \forall x \in [0, 1].
$$

(108)

then exponential stability of the target system (99) can be proved.

Lemma 2. For any given data $((\tilde{e}^0)^T, (\tilde{\beta}^0)^T) \in (L^2([0, 1]))^4$, the system (99), with (100), (102)--(104), is exponentially stable in the L^2 sense. Furthermore, for any given data $((\tilde{e}^0)^T, (\tilde{\beta}^0)^T) \in (L^2([0, 1]))^8$, the observer (96) exponentially converges to the system (56) and (58) in the L^2 sense.

Proof. The following Lyapunov function is constructed:

$$
\hat{V}_4(t) = \frac{1}{2} d_3 \int_0^1 e^{-\nu_2 x^T} (t, x)(\Lambda^T)^{-1} \tilde{e}(t, x) dx
$$

$$
+ \frac{1}{2} \int_0^1 e^{-\nu_2 x^T} (t, x)(\Lambda^T)^{-1} \tilde{\beta}(t, x) dx,
$$

(109)

where the constants d_3 and ν_2 are both positive parameters to be determined. In fact, \hat{V}_4 is equivalent to the square of the state L^2-norm:

$$
C_3 \| (\tilde{e}^T (t, \cdot), \tilde{\beta}^T (t, \cdot))^T \|_{L^2}^2 \leq \hat{V}_4(t) \leq C_4 \| (\tilde{e}^T (t, \cdot), \tilde{\beta}^T (t, \cdot))^T \|_{L^2}^2,
$$

(110)

where C_3, C_4 are two positive constants. Thus, the Lyapunov function $\hat{V}_4(t)$ is positive definite.

Differentiating (109) with respect to time leads to

$$
\dot{\hat{V}}_4(t) = d_3 \int_0^1 e^{-\nu_2 x^T} (t, x)(\Lambda^T)^{-1} \frac{d}{dt} \tilde{e}(t, x) dx
$$

$$
+ \int_0^1 e^{-\nu_2 x^T} (t, x)(\Lambda^T)^{-1} \frac{d}{dt} \tilde{\beta}(t, x) dx.
$$

(111)

Substituting the Eqs. (99a) and (99b) into (111), the following inequality is derived:

$$
\dot{\hat{V}}_4(t) \leq - \frac{1}{2} e^{-\nu_2 x^T} (t, 1)|d_3 - 4e^{\nu_2 R_1^T} |\tilde{e}(t, 1)
$$

$$
- \frac{1}{2} f_4(d_3, v_2) \int_0^1 e^{-\nu_2 x^T} (t, x) \tilde{e}(t, x) dx
$$

$$
- \frac{1}{2} f_2(v_2) \int_0^1 e^{-\nu_2 x^T} (t, x) \tilde{\beta}(t, x) dx,
$$

(112)

where

$$
f_4(d_3, v_2) = \left(v_2 - \frac{M_0 + M_2}{\Lambda} \right) d_3 - \frac{M_2}{2} \frac{1}{v_2} (1 + e^{2\nu_2} - 1),
$$

(113)

$$
f_2(v_2) = v_2 - \frac{M_2}{\Lambda} - 4M_2^2.
$$

(114)

To ensure the exponential stability of the system (99), first, the positive parameter v_2 is chosen as follows:

$$
v_2 > \max \left\{ \frac{M_0 + M_2}{\Lambda}, \frac{M_2}{\Lambda} + 4M_2^2 \right\},
$$

(115)

and then the positive constant d_3 is chosen to satisfy

$$
d_3 \geq 4e^{\nu_2 R_1^T} R_1, \quad d_3 > \frac{M_2 (1 + e^{2\nu_2} - 1)}{v_2 (v_2 + M_0 - M_2)}.
$$

(116)

With these choices of parameters, the positive definiteness of f_4, f_5 is guaranteed:

$$
f_4(v_2, d_3) > 0, \quad f_5(v_2) > 0,
$$

(117)

and it holds that
\[V_4(t) \leq -\frac{1}{2} f_4(d_3, v_2) \int_0^t e^{-\alpha s} \varepsilon^T(t, x) \varepsilon(t, x) dx \]
\[-\frac{1}{2} f_5(d_3, v_2) \int_0^t e^{\alpha s} \beta^T(t, x) \beta(t, x) dx \]
\[\leq -c_4 V_4(t) \] for some positive constant \(c_4 \), which then gives
\[V_4(t) \leq V_4(0) e^{-c_4 t}. \] (119)

Finally, it can be derived from (110) that
\[\| (e^T(t, \cdot), \beta^T(t, \cdot)) \|_{\mathcal{L}_2} \leq \sqrt{\frac{C_1}{C_2}} \| (e^0(\cdot), \beta^0(\cdot)) \|_{\mathcal{L}_2} e^{-c_4 t}. \] (120)

This proves the exponential stability of the target error system (99), with (100) and (102)–(104). Then, from the continuity and invertibility of the backstepping transformation (98), exponential convergence of the designed observer (96) can be derived. □

Part II: Output feedback backstepping controller design.

Based on the designed backstepping controller (69), which requires a full state measurement, and the observer (96), which reconstructs the state over the whole spatial domain through the boundary measurement \(v(t, 0) \), an observer-based output feedback controller is designed:
\[u(t) = -R_i \hat{u}(t, 1) + \int_0^1 \left[G(1, \xi) \hat{u}(t, \xi) + H(1, \xi) \hat{v}(t, \xi) \right] d\xi, \] (121)

which works with the help of the observer (96).

Theorem 5. For any given initial data \((u^0)^T, (v^0)^T, (q^0)^T, (p^0)^T)^T \in (\mathcal{L}^2(0, 1))^4 \) of the closed-loop \((u^T, v^T, \hat{u}^T, \hat{v}^T)^T\)-system, consisting of the original system (56)–(58), the observer (96) defined by (100) and (101), and the controller (121) with \(G \) and \(H \) defined by (61), is exponentially stable in the sense of the \(\mathcal{L}_2 \)-norm:
\[\| (u^T(t, \cdot), v^T(t, \cdot), \hat{u}^T(t, \cdot), \hat{v}^T(t, \cdot)) \|_{\mathcal{L}_2} := \int_0^1 \left[u^T(t, x) u(t, x) + v^T(t, x) v(t, x) + \hat{u}^T(t, x) \hat{u}(t, x) + \hat{v}^T(t, x) \hat{v}(t, x) \right] dx. \]

The proof is omitted as well, for which a weighted Lyapunov function can be constructed by following the idea in Krstic and Smyshlyaev (2008, Section 5.2).

4. Simulation results

The goal of the following numerical simulations is to illustrate the efficiency of the designed output feedback controller \(u(t) \), namely, (121), to stabilize the linearized “bi-layer” Saint-Venant system in Riemann invariants (56)–(58) around the zero equilibrium.

The following data are considered as initial conditions for the layers 1 and 2 through the physical variables:
\[H_2(0, x) = 2 + 0.5 \exp \left(-\frac{(x - 0.5)^2}{0.003} \right). \] (122)
\[H_1(0, x) = 6 - H_2(x). \] (123)
\[U_1(0, x) = \frac{10}{H_1(0, x)} + 3 \sin(2\pi x). \] (124)
\[U_2(0, x) = -\frac{10}{H_2(0, x)} - 3 \sin(2\pi x). \] (125)

![Fig. 8. Evolution in time of the control input \(U(t) \) and the norm of the characteristic solutions.](image)

The initial data of the characteristic variables \(\xi_k \) (k = 1, 2, 3, 4) for the system (51) are computed as functions of the physical variables \(H_1(0, x) \) and \(U_1(0, x) \) for \(i = 1, 2 \), thanks to the relation (47).

The ratio \(r \) between the densities is set to 0.01 and the friction coefficient \(C_f \) is set to 0.05. The following uniform steady state: \(H_1^* = 3, U_1^* = 1, H_2^* = U_2^* = 0.99 \) satisfies the constraints (30) with \(S_0 = 1 \). Moreover, with this choice of steady state, the characteristic speeds are given by: \(\lambda_1 = -4.42, \lambda_2 = 6.42, \lambda_3 = -2.18, \lambda_4 = 4.08 \). The \(\xi \)-solution is computed up to time \(T = 10s \).

Regarding the boundary conditions (38), it is assumed that
\[Q_0 = \begin{bmatrix} -1.5 & 0.01 \\ 0.01 & 1.5 \end{bmatrix}, \quad R_1 = \begin{bmatrix} 0.5 & 0.1 \\ 0.15 & -0.5 \end{bmatrix}. \] (126)

As for the SVE simulation, a finite volume discretization method is performed for the evolution Eq. (51). The method uses a volume integral formulation of the problem with a finite partitioning set of volume to discretize, and it is well suited for discretizing computational fluid dynamics equations (Benkhaldoun & Seaid, 2010; Diaz, Chacón, Fernández-Nieto, & Parés, 2007; Vevea, 2002). For instance, a general family of finite volume methods for non-homogeneous hyperbolic system is presented in Diaz et al. (2007) and some numerical tests to solve the “bi-layer” Saint-Venant model are provided.

Elsewhere, the computation of the control law requires the kernel values defined in (61). In sight of the triangular shape of the computational domain, we solve numerically the kernel system using the finite element method. See that the kernels are piecewise continuous, we adopt the discontinuous Galerkin (DG) finite element method to approximate the solution of the kernels. It is well-known in the literature that the DG technique yields accurate solution if at least piecewise quadratic polynomials are used for the basis function. The finite element method is particularly adapted for problems with complex geometries. An extensive review of these methods can be found in Thomee (2001).

In Fig. 8(a), the behavior in time of each component of the output feedback input controller is depicted. Despite the initial amplitudes, the second component of the control input \(U_2(t) \) decreases in time and vanishes, with the settling time being about 4s. The first component of the control input \(U_1(t) \) shows the same trend as well, with its amplitude decreasing in time and tending to zero, with the same settling time.

Fig. 8(b) depicts the evolution in time of the \(\mathcal{L}_2 \)-norms of the characteristics for the output feedback closed-loop system. As expected from the theoretical part we observe clearly that the norm of the characteristics decreases in time and converges to zero. This shows that the closed-loop system (51) subjected to the output feedback controller converges to the zero equilibrium. Thereby, the “bi-layer” Saint-Venant model (25) converges to \((H_1^*, U_1^*, H_2^*, U_2^*) \).

Fig. 9 shows the evolution in time of the component of the solution to the closed-loop (51). The initial conditions are computed using the data in (122)–(125) and the considered uniform steady state. As expected from Fig. 8(b), it can be seen from Fig. 9 that
each component of the ξ-solution converges to the origin and this is consistent with the theoretical results.

5. Conclusion and future works

This paper is devoted to the stabilization problem of shallow water waves that has been attracting the interest of control engineers for many decades. New perspectives are given based on some recent results that deal with exponential stabilization of linear coupled hyperbolic PDE systems. It has been proven that the backstepping methodology may unlock several important constraints regarding the design of boundary feedback control laws for such application.

The backstepping control of the linearized Saint-Venant–Exner model, which describes the dynamics of water and sediment in a prismatic sloping open channel delimited by two gates and can be transformed into a system that consists of two rightward and one leftward convecting transport PDEs, is first presented as a preliminary result. It is remarkable that a single boundary controller applied at the downstream gate enables the closed-loop feedback system to be exponentially regulated to a constant set point. No dissipativity restriction is imposed on the controller gain as in Diagne et al. (2012). Moreover, not only the subcritical but also the supercritical flow regimes can be treated by such a backstepping design.

Going to the depth of this contribution, the case of two un mixed fluids flowing in a portion of channel delimited by two gates is studied. Different from the SVE controller design, two backstepping controllers at the downstream gates are used to exponentially stabilize the corresponding “bi-layer” Saint-Venant model, which consists of two rightward and two leftward convecting transport PDEs.

It is worth mentioning that these two results stand among the first ones attempting to formulate and solve the control problems in the multi-layer flow dynamics. An effective control algorithm for boundary disturbance rejection (Tang, Guo, & Krstic, 2014; Tang & Krstic, 2014) can make a high impact on water system management. Also, extending the present results in the context of networks of open channel is an important but challenging future research direction.

Acknowledgment

The authors would like to thank Rafael Vazquez for suggesting the successive approximation method in the derivation of the inverse of the backstepping transformation in the observer design.

References

