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Self-Tuning Control of a Nonlinear Model
of Combustion Instabilities

Miroslav Krstic, Ashish Krupadanam, and Clas Jacobsaember, IEEE

Abstract—We present a self-tuning scheme for adapting the is a field that has grown in significance over the last few
parameters of a proportional integral (PI) controller proposed  years, and already seen remarkable advances [1]-[4], [7]-[13],
by Fung and Yang for stabilization of a Culick-type model [16]-[18], [20], [22], [24], [25]. With respect to the actuation

of nonlinear acoustic oscillations in combustion chambers. Our : o . . .
adaptation criterion is Lyapunov-based and its objective is the mechanism, it is possible to categorize the control methods into

regulation of nonlinear pressure oscillations to zero. We focus two groups: 1) mechanical methods which use loudspeakers
on a two-mode model and first develop a design based on anor moving bodies (less feasible for propulsion systems be-
assumption that the amplitudes of the two modes are available for ~5,se they require a large amount of power) and 2) methods

measurement. The adaptation mechanism is designed to stabilize_ , . ..
both modes and preveFr)n the phenomenon obse?ved by CandelWhICh use a secondary supply of fuel (more promising for

and coworkers whose adaptive controller stabilizes the first but Propulsion systems). Another categorization, to experiment-
(under some conditions) apparently destabilizes the second mode.based and model-based control, was given by Fleffial.

We also prove that the adaptation mechanism is robust to a time [8] who note that, in some of the experiment-based designs
delay inherent to the actuation approach via heat release. In 131, [4], [11], [16]-[18], [22], the suppression of the primary

order to avoid requirements for sophisticated sensing of the mode K i ied b L f d
amplitudes needed for feedback, we also develop an adaptation PréSSUreé peak is accompanied by excitation of secondary

scheme which employs only one pressure sensor. In order for peaks.
the adaptation scheme to be implementable, it is also necessary Combustion instabilities take a form of nonlinear oscil-
to know the control input matrix of the system. Rather than |ations—limit cycles. A nonlinear model of acoustic waves

performing a linear ID procedure with input excitation, we . . . .
propose a simple nonlinear ID approach based on limit cycles in a combustion environment has been developed by Culick

(internal excitation) which exploits the quadratic character of [5]. (@ Iarge volume of other Iiterature. on this topic also
the nonlinearities. Simulations illustrate the scheme’s capability exists which we do not attempt to review here). Reduced-

to attenuate limit cycles and its robustness to magnitude- and order models obtained by Galerkin projection, averaging, and

rate-saturation of the actuator. truncation to the first few modes were studied by Culick and
Index Terms—Adaptive control, averaging, combustion control, coworkers (see, e.g., [21] and references therein) and shown
Galerkin approximation, nonlinear acoustics. to give a satisfactory qualitative match with experimental
results.
Fung and Yang [9] and Fungt al. [10] were the first to
|. INTRODUCTION develop control-oriented extensions of Culick-type models and

COUSTIC instabilities in combustion chambers havto propose the use of various control techniques motivated by
been a significant problem in the design of propulsiotheir models. In particular, Fung and Yang [9] studied in detail
systems. The instabilities are generated by the feedback cthe effect of Pl compensators and showed that they can achieve
pling between the acoustic resonances and the heat relestability in at least two-mode truncations of their models.
of the combustion processes. The instability problem can beThe selection of gains in Fung and Yang's Pl controller
alleviated by changing the design of the chamber to eithi®] requires the knowledge of the model parameters. If these
increase the damping in the system or reduce the couplipgrameters are not known or change with operating conditions,
between flow oscillations and unsteady combustion. Howevir,is possible that the mistuned controller makes one or
these passive techniques are neither systematic, nor robtiste modes unstable. The need to use adaptation was first
in the face of changes in operating conditions or agingecognized by Billouckt al. [3] who used a least mean square
For this reason, active control of combustion instabilitieg MS) adaptive filter to suppress pressure oscillations. Even
though not model-based, their approach was experimentally
successful. However, they did observe that the suppression of
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We first develop adaptation laws under the assumption that
the amplitudes of the modes are available for measurement. SECONDARY PRESSURE
The derivation and the proof of stability in Section IlI are fol- FUEL INJECTOR SENSOR

lowed by simulations in Section IV. In Section V we establish uf!._<:> L

robustness of this scheme to a time delay inherent in the actu- h b b A
ation mechanism. Then in Section VI we relax the assumptioroMBusTIBLE _— ‘ I I |
from Section IIl and derive update laws which do not require MIXTORE— — P -

the modal amplitudes but only pressure measurements from a
single sensor in the combustion chamber. In Section VII we
propose aonlinearidentification procedure for estimating the
input matrix of the system necessary for implementation of th®). 1. Diagram of the feedback control system with distributed actuation
adaptive scheme in Sections Il and VI. Instead of performiryf secondary fuel.
a complicated linear identification of this matrix, we exploit the
guadratic character of the model nonlinearities and estimate E@“sembly ofM point actuators, as in Fig. 1, arid is given
matrix from steady-state limit-cycle data. Section VIII presen [10]
a simulation study on the nonaverage model. In the absence of
actuator limitations, our adaptive scheme drives both modes to
zero. When the actuator is both magnitude- and rate-saturated, he(r.t) = — Z b(ri)uin(t — 7(re))é(r —x1)  (6)
our adaptive controller only reduces the size of the limit cycle. k=1
To prevent parameter drift, we employ update law leakag¢éhere b, = b(r;) is the spatial distribution of the actuator
which stops the drift without increasing the size of limit cyclesutput, 7, = 7(ry) is the time delay relative to the moment
and without requiring priori knowledge of a set of stabilizing of injection for thekth point actuatorg(-) is the Dirac delta
parameter values. function, andu;, is a scaled version of the mass flow rate of
the secondary fuel

M

Il. CONTROLLED MODAL MODEL

RAH, Oy,
The mass, momentum (inviscid), and energy conservation Uin = azC, ot (7
equations for a two-phase mixture in a combustor are [6] B
ap where the coefficient’, is the constant volume specific heat
— +v, Vp=W (1) of the fuel mixture AH. is the heat of combustion of the fuel,
v ot and R is the gas constant of the mixture. As the source terms

p—=Z +pv, Vo, +Vp=F (2) in(4) and (5) are treated as small perturbations to the acoustic
apat field, the solution can be approximated by
a+ﬁpv~vg+vg~Vp:’P 3

p/(r, t)=p Z ()P (r) (8)

where p is the local density of the mixturey, is the local
velocity of the gas phase is the local pressurey is the
averaged ratio of specific heats, amd, F, and P account, Within second-order accuracy. The quantty is the normal
respectively, for the exchange of mass, momentum, and enefggde function satisfying

(including the heat of c_omk_Justhn) bet\_/veen the fuel and the V24 + K2 4h = 0 ©)
gas. The energy equation is written with the pressure as the
dependent variable using the perfect gas law. From the above n- Vi, = 0. (10)

equations, after separating, p, andyp into the steady and Pure longitudinal oscillations in a uniform chamber giwe =

fIL_Jctuatlng ccomponents, CUI'Ck_[_S] derives a wave equat'oc%s(nwz/L). The set of ordinary differential equations that
with associated boundary conditions

represents the amplitudes of each mode obtained from (4),

1 8% 8), and (9) via Galerkin projection is
n-Vp' =—f— [ (5) iin 4+ wnttn + > (Drithi + Enins)

=1

where p’ is the pressure fluctuation ari is the speed of o oo

sognd in the mixture. The q_uantitiels and f accommodate. +ZZ(A"W7”71 + Buijming) = Un(t)  (11)
all influences of acoustic motions, mean flow, and combustion
response, under conditions without external forcing. The terms ) _
h. and f, account for the effects of the control inputs. Fletg (S€€ Culick [5] for the expressions for thd, B, D, E-
al. [10] have derived the relationship between the mass flg@efficients), WhgreEfl = [[f #7dV and the control input
rate of the injected secondary fugl;,, and the source term to the nth mode is

h. (we briefly review their derivation in this section keeping a2 M

only details indispensable for our presentation). The distributed U, (t) = ] Z b(ry )t (rr )uin(t — 7(r)). (12)
control action of the secondary fuel is approximated by an PEn o

i=1 j=1
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When we use no control, i.es;;, = 0, which impliest,, = 0, Under the assumption th.ﬁfD andf(p are updated slowly,
the system (11) has an unstable linearization and, due to thme averaging (see Nayfeh [19] for this particular application)
guadratic terms, for realistic values of the parameters, tb&the model (15) gives equations for the modes in terms of
solutions converge to a periodic orbit, as shown and discusghdir amplitudes-,, and phaseg,,. The two mode model given

in Paparizos and Culick [21] and the references therein. TmeFung and Yang [9] is

purpose of active control is to add feedback termsnin

through u;, to stabilize the system (11), (12). To a reader 71 = Q11 — Priracos® (17)
with experience in control theory it is obvious that this is a Ty = et + Bl cos ® (18)
very difficult problem because 1) the control inpyt, drives . P2

the system through time delays; 2) various coefficients in (11) ¢ =20 — 02— /3<,—1 - 27’2) sin (19)

and (12) cannot be assumed to be known accurately; and 3) the 2

controlu;,, cannot apply feedback ef; but only a feedback of yhere @ is the phase difference between the modes, defined
a variable that is physically measurable, such as, for exampd.¢ = 24, — 4. The constanf is given by

the instantaneous pressure

o0 /3 == <’7"’: )wl
y(t) = ' (rs, 1) Z £ (rs) (13) il

ande«.,, andé..,, the closed-loop growth coefficients, are given
wherer, is the location of the pressure sensor. by the expressions
Fung and Yang [9] proposed a PI controller for the sec-

ondary fuel injectionvi;,, which, due to the differentiation in MoT
(7), gives a PD control law Qen = Qn = 5 Z Kp(t = m)Unik cos(wnT)
k=1
w(t) = —[Kpy(t —7.) + Kpy(t — 7. 14 Kp(t —
win(t) = ~[Kpy(t =) + Kpit =] (14) _Ept=m), Sm(wm)l 0
Wn
wherer, is the delay due to measurement, computation and
actuation in the implementation of control. Substituting (14)
into (12) we get Oon =0 + 5 Z Dt = 7)Ung i (Wn k)
. - . Kp(t—m
i+ Wit + Z(Dm‘m + Enini) + %Unk cos(wnm)] . (21)
=1 n
+ Z Z(Ammmj + Bpijming) The quantityl,,;, is the spatial distribution of the control input
i=1 j=1 which is modeled as a set 8f point actuatorsy; is the total
a2 M o= time delay for the control input at each point, ang is the
ZZb 12 ) (00 )0 () [K i (£ — 72,) frequency of each mode. We point out that in (19) we have
B3 k=1 i=1 corrected a sign error that appears in Fung and Yang [9].
+ Kpni(t—m)]=0 (15) When the coefficientsy; and a2 are known, the gains

f(p and f(D can be selected fixed to achieve desired values
where 7, = 7(ry) + 7.. Fung and Yang [9] showed that,of damping coefficientsy.; and c... When oy and «» are
when all the parameters of the system are kno(at least) unknown or vary with operating condition& > and K, are
the two-mode truncation of the system (15) can be stabilizeg@ntinuously updated with the objective of driving andr;
by properly choosingk’» and Kp. The next section showsto zero. In order to derive the update laws fii, and K p,
how to tuneKp and Kp on-line when the parameters of then this section we assume that they enter (20) and (21) with
system are unknown. 7, = 0. The stability of the system with the delays included

will be proved in Section V.

Combining (17)—(19) with (20) and (21), the equations for
. ADAPTIVE CONTROLLER FOR the closed-loop adaptive system are represented as

THE AVERAGE TwO-MODE MODEL

. i i 1= a1 + (mKp + 6. Kp)r, — Briracos @ (22)
In this paper we develop an adaptation technique for the PI. i S K ) 32 cos B 23
controller (14). We replace the constant galtis andKp by "2 = “2"2 + (12Kp + 62K p)ra + fri CO; (23)
estimateskp and K p b = 20, — s+ (20161 — wrds) Ky — <% 3 %)Kp
1 2
uint:—f( t— T, +K t— 7o)yt — 7
(1) = ~[Kp(t = o)yt = 7o) + K (t — 7.)i >(116) ﬁ<__272> e o

In (15) this modification is accommodated by replaciig ~The quantitiesyi, 2, 61, and é» correspond to the terms
and K p by Kpp(t — i,) and K p(t — 73,), respectively. multiplying K, and Kp in (20) and (21).
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Our design of a tuning mechanism fé’rp andf(D is based a designer without exact knowledgecaf and «; would not be

on a Lyapunov function able to select constamk » and K, to satisfy(30) and (31).

A fine point worth noting is that our analysis does not an-

RN ST S S o swer whether the “closed-loop damping coefficients; (t) =

=3 <” MERIr= pK”> @) ¥ nKp(t) + 6, Kp(t) and ae(t) = as + 1Kp(f) +
R R 82K p(t) converge to negative values or not. Indeed, all that

where K, and K> are parameter estimation errors we have set as an objective and achieved is thé&t) and
. A r2(t) go to zero. Following the results on invariant manifolds
Kp=Kp—-Kp of adaptive nonlinear systems [15], it is possible that from a
Kp=Kp—Kp set of initial conditions of measure zero (that is, with zero

probability), cv.1 (#) and a(t) converge to positive values.

with constantsk, and K p yet to be defined. The weighting This, however, will not prevent, (¢) andr(¢) from going to
coefficientsgp, gp > 0 are referred to as the adaptation gainero, as the Lyapunov analysis shows.
The control objective is to drive; and r» to zero, while  AS it can be seen in (27) and (28), the implementation of
keeping the errorsk, and Kp bounded. Taking the time the update laws requires the knowledge of the parameters
derivative of V', we get 72, 61, and 6, in (22)—(24), which is a major modeling re-
guirement. In Section VIl we presentanlinear identification
V= (a1 +71Kp+6Kp)r? + (as +v2Kp + 6K p)r2 procedure for determining these parameters from steady-state

1 & = 1 & - limit cycle data.
——KpKp— —KpKp

gp gr
= (a1 +mKp +6.Kp)r? + (ay + v Kp + 62K p)r3 IV. SIMULATIONS FOR THE AVERAGE MODEL
1 - i _tuni i imu-
S Kp et + e Kp _To illustrate the self-tuning controller, we carried out simu
gD lations for the uncontrolled and controlled two mode models.

1 = ) 5\ - These simulations are for the model (22)—(24) with the update
— g fr o+ by | Kp- (26) jaws (27) and (28).
The values of the parameters in these simulations were
To cancel the cross-terms generated by the parameter estinf®wsen as given by Fung and Yang [9]. The conditions for

tion errorsKp and Kp, we select the update laws the existence of stable limit cycles in open loop are
Kp = —gp(nr? +72r2) (27) aran <0 (33)
% 201 + s < 0. 34
Kp=—gp(617] + 6273). (28) 1T a2 (34)

. Th librium is ai
Then V becomes e equilibrium is given by

1

V = (@+mEp+6Kp)ri+(ae+v2Kp+626p)rs. (29) M0 Feosd, Y M (35)
1
To guarantee (global) stability of the equilibrium = r, = (P (36)
Kp = Kp and the regulation of; andr, to zero, we wish 2%, — 0
to have ®o = tan ! [#} (37)
200 + a2

a1+ 7 Kp +&Kp <0 (30) ' The values of the parametefs, «», 61, andf, are taken as
@y + 72 Kp + 62Kp < 0. (31) 0.0144,-0.0559, 0.0062, and 0.0178, respectively [9]. The
value of the specific heat rati is taken as 1.2 as in [9].
The constantskr and Kp, which have thus far remained QOpen-loop simulations. Fig. 2 shows the equilibrium
undefined, can always be selected to satisfy (30) and (335)—(37) in the r1-r» plane for three different initial
provided conditions and the phase variation with time.
1169 — 781 £ 0. (32) _Simu_lations Wit_h control. To prepare for the closed-loop
simulations, we first calculate the constants ~-, 61, and
This condition amounts to a linear controllability conditiord, from the data in [9]. This calculation is explained in
with a PD controller. When this condition is not satisfied, it i&\ppendix A. As shown in Fig. 3, our adaptive controller
possible that the PD controller (both the constant one and ttéves the oscillation amplitudes to zere, (versusr; plot),
self-tuning one) could increase the damping of one mode (falthough the phase need not necessarily converge to a constant.
instance, a mode that is open-loop unstable) while decreasifig. 4 shows the variation of» and Kp with time. The
the damping of the other mode or making it even unstablalues of Kp and Kp increase from zero to some values
When the “controllability” condition (32) is satisfied, the selfwhich are optimal for the particular initial conditions on the
tuning controller will guarantee that andr» go to zerowhile amplitudes.
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Fig. 4. Controlled systemk, and Kp versus time.
V. ROBUSTNESS TODELAY IN PARAMETER ESTIMATES . M N N
_ _ _ _ _ 7’2(t) = OéQTQ(t) + Z[’kaKD(t — Tk) + (52ka(t — Tk)]TQ(t)
While the adaptation law in Section Il were derived by k=1
assuming thaf{p, and Kp enter the systerwithout the time + Br2(t) cos B(t) (39)
delaysry, in this section we ensure that stability is preserved M

in the presence of the delays. We consider the closed-logp:) — 20, — 6, + Z [(2w1 615 — wabar) K p(t — 73.)]
system

M ) ) /\ |:<2'71k ’YQk)Kp(t— Tk):|
71(t) = aqri(t) + Z[’yleD(t —73) + 61 K p(t — 1)1 (t) - y
M=t 1 .
— Bri(t)ra(t) cos () (38) ﬁ(m(t) — 2ry(t )) sin ®(¢). (40)
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where Then (48) yields
1 M
Aty = — = Upp cO8(Wn Ty 41 . ~
k 5 k ( k) (41) U< — Cl—pl—%ZH((t_Tk” 7’%(t)
k=1
1
6nk = —lfnk Sin(wn'rk). (42) M
2wy, Z — &K (t— 7))t — )
Assuming that “controllability condition” (32) holds, we select =
Kp and Kp such that <62—p2——ZIKt—m ) 2(1)
c1 = (o1 +mKp+6Kp)>0 (43) M )
Z p2 — &K (t — m))r2(t — ) (51)
=1
ca = —(a2 +72Kp + 62Kp) > 0. (44) . .
where| K| denotes the 2-norm ak. We see that if
Now, let us take a Lyapunov function ~ o el
| Kp(t — )| < = < — (52)
. & 24
U=Z|ri@) +ri@) ZKDt—Tk Kp(t—m)| < 2 < 22 (53)
2 §2 26
M . )
+ 1 ZKIQ’(t — )| i+ 2y (a5) for @l ko= 1,---, M, then U(t) < 0. Denoting g =
Mgp i~ max{gp,gr}, We see that
where p; and p, are positive constants yet to be determined, 1M )
and Ut) > ZQ—MZIK(t—m)I
k=1
M t 1 -
1 > —— max |K(t —1,))°. 54
SRR ) T R R )
k=1 Tk
| M . Then, if we select
Qo = — |:/ 7%(3) ds:|. 47 c
M k=1 Wtk pL= Zl (55)
Note that forr;, = 0, the Lyapunov functiorl/ reduces to the p2 = 64—2 (56)
Lyapunov functionV” in (25). Then we have
the set
. < M _ N
U=-la —pl+Z[’YleD(t—Tk)+51kKP(t—Tk)]> 1 €1 C2 ?
U0 57
P 0) < 3290 min 65 (57)
1 M ) )
x r(t) — i [p1 —mEKp(t—m) — 6 Kp(t— )] is positively invariant. This is easy to see because (57) along
k=1 with (57) implies (52), (53), which, due to (55), (56), means
) M N that in the set (57) we have
Xri(t—7mk) = {c2—p2+ Z[’YQkKD(t - Tk)
. U <=5t = 530, (58)
. 1 .
+ b Kp(t — Tk)])@(t) i > lp2 —12Kp B o N
=1 In addition, (58) proves that the equilibrium = r, = Kp =
X (t —13) — 62 K p(t — 7)]r3 (¢ — 7). (48) Kp = 0 is stable, and that the set (57) also belongs to
its region of attraction. Finally, by LaSalle’'s theorem, (58)
Let us denotek = [K,, Kp]® and guarantees that; (¢) andr2(¢) converge to zero.
It is important to properly interpret the regional result we
2 have just established. From (45) and (57) it is clear that we are
=M InaX’Ylk <max 61k> (49) restricting the initial conditions on the estimation errdrs

and Kp to be sufﬁmently small. Sinc& , = K, — K, and
Kp=Kp— Kp, where Kp and Kp are constants selected

2 2
& = M\/<maxwk> + <max 52k> . (50) in our analysis to satisfy (43) and (44), it follows that we need
k k initial conditions on the estimate&;, and K to be close to
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someof many possiblestabilizing values of Kp and Kp. If  Comparing these equations to the expressions (27) and (28)
we select the initial gaing(p and K to be zergthen from we solve fora;, as, b1, and b,
(45) and (57) we require that there ex&gimeKp and K p

that satisfy (43), (44), and w200 <%w§_7w€> (69)
. . . 2 R ANE S
—4@4"—K2<———Qm{@g9}>. (59) 2 no o7
gp P T gp U 16gM & & a2 = 7 (w? — w3) R (70)
We stress that the robustness result established in this section b — 2gp s1w3 B S2w? (71)
is achieved without any tools for update law robustification 1= p?(wi—w?) \ ¥7 )3
(leakage, projection, etc.). As we shall see in Section VIII-B, 2p 5 6
these tools will become necessary in the presence of substantial by = m <$ - ﬁ) (72)
actuator limitations. PrwL — @2 ! 2

The coefficientp can be eliminated by replacingp, and
VI. |MPLEMENTATION OF THE UPDATE gp in the Lyapunov function (25) byp/p? and gp/p?,
LAWS USING A SINGLE PRESSURESENSOR respectively. Thus, in order to implement the update laws (60),
While the control law of Fung and Yang [9] involves only(61)' we need only the knowledge of the mode shapes, mode

the pressure measurements from a single sensor, it may apﬁ'@ﬂ“enc'?s’ and the con§tam§ 72, 61, andéy, which we

that a sophisticated scheme (with distributed sensors) would$rmate in the next section. ) ,
necessary to measure the mode amplitudemndr, needed to Remark 6.1: Even thou_gh high pressure sensors are avail-
implement the update laws (27) and (28). Fortunately, this le, and one can obtain clean measurements of pressure

not the case and we can employ a single pressure sensor will ¢h allow the calculation of, in some situations it may

in the average sense performs the same task of adaptationp%ggs'rable to avoid using the derivative Of. pressure..Su_ch
the scheme which employs the mode amplitudes. situations are easy to accommodate by replacing the derivative

We now postulate, and later prove, that the update laws (é))‘)pressure by its integral in (60) and (61)
and (28) can be replaced by the following expressiondifgr

and Kp: IT(D = —(a1y® + a27°) (73)
: . Kp = —(biy® + b22%). (74)
Kp=—(a1y® +a25%) (60)
Kp = —(biy? + boif). (61) where 2(t) = [ y(o)do. In this case the coefficients
(69)—(72) would be defined by

In the following, we show that the constants, as, b1, and

bs can be found such that the average equations of (60) and o = 29p ywi _ Yo (75)
(61) are given by (27) and (28). Using (13) LT (w? —w?) \ 97 b3
00 ag = ZQDUJ%UJQ <_1 _ ﬁ) (76)
Y=pY_ Mntn = p(mir + i) (62) PP(wd—wd) \W 93
n=t _ 29p Swi  bwi
; bh=—— 2 2 T T2 (77)
we get (60) and (61) in the form P(wi—w3) \ % 3
: _ 2gpwiwi (& 6
Kp = —plaa(mepr +matp2)? + ao(iny + inpe)?]  (63) = P?-w?) \vi ¥3) (78)

I%P = —p*[br(mer + mp2)? + ba(inths +12tp2)?] (64)

where; andi, represent the values of the mode functions
at the point of measurement. Substituting the mggéy VII. I DENTIFICATION OF THE CONSTANTS 71, Y2, 61 AND 62
In this paper we are concerned with the problem of stabi-

N = T sin(wyt + ¢y) (65) lization in the presence of a varying equivalence ratio, and
. o . o assume that its variation affects only the open-loop growth
and its derivative by its approximation coefficientsa; and a» but not the control input coefficients
. ~1, 2, 61, andé,. The coefficientsy;, v2, 61 andé, need to be
Tn 2 T COS(Wnt + ¢n), (66)  known in order for the adaptation laws (27), (28), or (60), (61),

and (69)—(72) to be implemented. These coefficients would be

after averaging we get difficult to identify if the model were linear. Our approach to

v D 9 2 9 9 2 9 the problem via a nonlinear model allows us to identify those
Kp=-5 [(ar + wiaz)irs + (a1 +wpas)ara]  (67)  Coeicients easily using onlgteady-statdimit cycle data.
5 p 2 2.2 2 2 2 Consider an identification experiment with fixed values of
Kp=—=|(b b - b b 5 1. 68 . 2 . .

r 2 [(br+wibo) 9ri + (b +wiba)yra]. (68) K, andK p, denoted simply a& ;, and K p. The equilibrium
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equations for (22) and (23) have the form

«@ 6

/_31 + %KD + [_;KP =rycosd (79) o8
QY2 2 7 o
L K+ 2 Kp=—"Lcosd. 80

J5) I b I3 r 2 (80) 0.05

We now outline a procedure for identifying /3, 61/3, v/

andé» /. These quantities can be employed in (27), (28), o’
(69)—(72) instead ofy1, 2, 61, andés by treatings as a part ~0.05
of the adaptation gain.

Equations (79) and (80) have the linear form !
-0.15
A +BIX =Y (81)
As + B;X =7 (82) % 50 100 150

Time
where 4y, = ay./B8 and B = [y/B, 6/ for k= 1,2, and

Fig. 5. Nonaverage system without control, pressure versus time.

X =[Kp,Kp|* (83)

Y=r CQOS‘P (84) VIIl. SIMULATION FOR NONAVERAGE MODEL

Z=-"1cosd. (85) The update law using a single pressure sensor was imple-
T2

mented on the nonaverage two-mode model
We can therefore use the least-squares linear regression to find . 5
the best estimate of; /3, 81/13, 12/ andé, /3 from a series ~ In = 20 + (wr = 20m8n )

of experiments in which we measure, ., and®. Let X;, 2 G .
Y;, and Z; denote the values ok, Y, andZ in N different + ZZ[AMWWJ + Brijming]
experiments. Then the estimates =1 j=1
o M 2
r r r 771 a 2% S (4
/8 & s (CLX)(XE X)) + ﬁZZ[KD(t_Tk)m(t k)
= ZXZ‘X‘ - " k=1 i=1
61/ ~ ‘ N .
=t N + Kp(t — 7i)ni(t — 7)]b(rn )Pn(Tr)9i(rs) = 0 (89)

N LX) (XY
x [Z XY — (Xim 3\521_1 J)] (86) wheren = 1,2 and Numerical values of,, 6,, and andy
i=1

are taken from [9] as in the averaged case. The expressions
-1

N / N T for A,;; and B,;; are taken from Culick [5] and are given as
{72//3} _ [ZX‘XT (Zj=1 X;) (i Xi) ] J J [5] 9
6 3 N e Inz _
2/f ‘:1N . N N Anij = 4’7@02]@0,2» [(w? + w?)Q —wt - 4’ywi2w]2»]
X ZX‘Z‘ - (i Xi)(zjzl %) (87) In:l 2o\ 2 2 9
i=1 N - 2ywiw? (@) — i) (W] +wi —wy) (90)
[ inimi i y-1 Inz ¥—1 Inz
are easily shown to be the minimizers of the cost functional By = (v 7) (0 4 u?) + (7 7) (02— u?)
N N 2’}/ 2’}/
J=3"(Yi— A - BIX) + 3 (7 - A, - BI X))’ (91)
=1 =1
(88) where
with respect toB; and Bs. Inij = / Pnthitp; dV. (92)

Note that in the above procedure and o, are treated
as unknown but constant. Once the identificationyof 3,
61/8, v2 /3 andds /3 is performed for a constant equivalenc

ratio, the adaptation laws (27), (28) can be used to adapt %@O: COIS e ati £ rem sh iimit cvel
PD controller to the actuak; and «s which vary with the pen-loop simuiations ot the system Show a limit Cycle as

equivalence ratio. in the averaged case. The time trace of the pressure for this

The key for implementing the procedure (83)—(88) is thlé@odel, as sensed at one end of the chamber, is given in Fig. 5.
availability of the amplitudes of the modes andr, and the ) ) ) o
phase shift. Computing these quantities (in particular) A+ Closed-Loop Simulations Without Actuator Limits
from time traces op for a system in a limit cycle, turns out The simulations are carried out with the assumption that
to be a nontrivial task. In Section VIII we explain haw, 2, the distribution of the control input is uniform in space, i.e.,
and ¢ are calculated using an LMS algorithm. b = 1 for all M points in the discrete approximation. The

With the assumption that oscillations are purely longitudinal
(j}n a uniform chamber, the mode functions, are given as
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Fig. 6. The power spectral density and the phase of the Fourier transform of the pressure in the nonaverage uncontrolled system.

pressure sensor is assumed to be at one end of the chanler estimation error, at any instakt can be expressed as
where, (r;) = 1. 1;(ry) is taken as unity assuming that the e — XTW (99)
length over which the secondary fuel burns is small. Secondary Ck = Pk A

fuel combustion is approximated by four point actuators, i.erhe parameter update law is

M = 4 and the time delay is taken as one fourth of the time R R

period of the first mode. The delayed values of Wi = Wi + 2pep X, (100)

win(t) = Kp(t— )9t —7.) + Kp(t — r)y(t — 7o) (93 Since we have four “parameters” i, and two sinusoids
with distinct frequencies in the regresstr we have persistent
are needed to obtaifV,,(t). This is implemented using theeXxcitation, and our estimates of, ;, and® converge to the
second-order P&dapproximation of a pure time delay (it istrue values. The constants, a2, b1, andb; needed in (60)
not clear why the pure delay would be a better description 8hd (61) are determined from the (69)—(72). The destabilizing

the heat release process anyway), which, for a time dglay values ofKp and K'p used for identification should be small
is given by when compared to the critical values for the existence of limit

cycles as obtained from (33) and (34). The resulting pressure
(s) = s°T? — 45T + 8 (94) signal in this case is closer to the sum of two sinusoids and
5272 +4sT 4 8’ hence the measure of the phase between them is more accurate

Th ¢ ¢ 5 ds identified when the LMS method is used.
'he system parameters, 72, o1 and o, are identifie The closed-loop simulations show that the controller drives
using the procedure described in Section VII. The system

. . . . the oscillation amplitudes to zero. The time traces of the
was simulated with various small destabilizing valuesios ressure and the control input to the system are given in Fig. 7
and Kp. The (79) and (80) require accurate valuesrof b P Y g g- 7

r2, and cos(®). These three quantities are found using thed- 8 shows the variation ik, and K with time. The

pressure signal as follows. The phasef the pressure signal Values ofKp and K> increase from zero to stabilizing values
. T . which reduce oscillation amplitudes to zero.

observed by Fourier analysis using MATLAB and shown in

Fig. 6, has sharp jumps at the two modal frequencies. HerEe

the value ofcos(®) obtained from the Fourier transform—"

is not sufficiently accurate. Instead, we use an LMS basedSimulations were also carried out to observe the effects

identification procedure to identify;, 7, and®. The pressure Of actuator limits on the system. While implementing the

Simulations with Magnitude and Rate Saturations

signal is assumed to be of the form saturation ofu;, o %mm (rate saturation) is simple, the
saturation ofrhy, (magnitude saturation) requires more care.
p =risin(wit + ¢1) + rosin(wat + ¢2) (95) To saturatern,, the time derivative ofin;, is set to zero
when|r;,| exceeds the maximum and the derivative is in the
which can be represented linearly as direction of increase in this quantity.

The time trace of the pressure under magnitude and rate
limit is given in Fig. 9. The limit cycles are observed to
decrease but not go to zero. The uniformly rate limited
decreasing trend ofny, in the first 20-30 s is arrested by

p=XTW (96)

where the “parameter” vector is

W =[ricos(¢1) risin(pr) rocos(p) rosin(epe)]” the limit on |7i;,| and the subsequent time trace shows large
(97) vAariations in7;,. Fig. 10 shows the variation ik, and
and the regressor vector is Kp with time. These gains continue to increase since they

are updated using the amplitudes of the modes which do not
X = [sin(wit) cos(wit) sin(wst) sin(wet)]*. (98) decrease to zero in this case. Even in the absence of magnitude
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Fig. 7. Nonaverage system with control, pressure ang versus time.
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Fig. 8. Nonaverage system with contrdi,p and Kp versus time.
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Fig. 9. Nonaverage system with control (magnitude and rate saturation)—pressure;angrsus time.

limits (when only the rate limit is present), the parameter drifaw [14] such as fixed leakage, switching leakage, projection,
occurs. We deal with the effects of parameter drift at the ermdc. The latter two would requira priori knowledge of a set

of this section. of stabilizing values ofK, and K, and the estimates would
usually converge to the boundary of the set, which means that
C. Robustification with Leakage the controller would end up being as conservative as a robust

It is observed in the previous cases with magnitude and®@®ntroller designed only on the basis of a priori information
rate saturation that the amplitudes of the modes do not gnd not on the basis of on-line information and learning the
to zero. The parameter drift observed fhf, and K, can System). For this reason, we resort to fixed leakage, which is
be expected from the (27) and (28). We can prevent theown to introduce a bias in regulation even in the absence
parameter drift by using tools for robustification of the updatef the nonparametric uncertainty that is causing the parameter
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Fig. 11. Magnitude and rate saturation with leakage—pressureriandversus time.
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Fig. 12. Magnitude and rate saturation with leakagés- and Kp versus time.

drift. In the case of the model in this paper, the fixed leakageheres; and o, are positive constants. With rate saturation
would result in a limit cycle even in the absence of actuatend magnitude saturation as in the previous subsection, a
limitations. If small, we regard such a bias acceptable becausgall leakage is found to affect the size of limit cycles
in the presence of actuator limitations, the feedback can omfynimally, see the pressure and;, plots in Fig. 11. As
reduce the size of the limit cycle but cannot completel§bserved in Fig. 12, the gainkp and Kp converge to
eliminate it. A leakage term is hence introduced in the updat@lues larger than in Fig. 8. The boundedness of signals
laws (60) and (61) (local) under leakage can be rigorously established using
3 . - the same type of Lyapunov analysis (lengthy but straight-
IfD = —(a1p” + axp®) - 01{(’3 (101) forward) asy?n [14] Zm% employin)g/; the( Ly%pt):nov functi%n
Kp = —(b1p? + bop?) — 02 Kp (102) (25).
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IX. CONCLUSION [8] M. Fleifil, A. M. Annaswamy, J. P. Hathout, and A. F. Ghoniem,

. . . . “The origin of secondary peaks with active control of thermoacoustic
This paper presents an adaptive design and analysis of instability,” submitted toCombustion Sci. TechnpMar. 1997.

implementation issues for a two model Galerkin truncation of9] Y.-T. Fung and V. Yang, “Active control of nonlinear pressure os-

a nonlinear model of combustion instabilities. The following ~ Salons in combustion chambers). Propulsion Powervol. 8, pp.

questions are beyond the scope of this paper and remaip@ v.-T. Fung, V. Yang, and A. Sinha, “Active control of combustion
subject for future work: 1) validation on higher order models instabilities with distributed actuatorsCombustion Sci. Technphol.

; : : ; 78, pp. 217-245, 1991.
and deSIQn of controllers of hlghel’ dynamlc order for hlgh 51] A. Gulati and R. Mani, “Active control of unsteady combustion-induced

order models; 2) incorporation of a more detailed model * oscillations,”J. Propulsion Powervol. 8, pp. 1109-1115, 1992.

of heat release into the control design; and 3) experiment&] W.M. Haddad, A. Leonessa, J. R. Corrado, and V. Kapila, “State-space
verification modeling and robust reduced-order control of combustion instabilities,”

in Proc. 1997 Amer. Contr. Confpp. 3125-3129.
[13] J. P. Hathout, A. M. Annaswamy, M. Fleifil, and A. F. Ghoniem,
APPENDIX “A model-based active control design for thermoacoustic instability,”
submitted toCombustion Sci. TechnpMay 1997.

Calculation ofyy, 2, 81, andé, from the data in [9]. The [14] P. A. loannou and J. SuRRobust Adaptive Control Englewood Cliffs,

. . - NJ: Prentice-Hall, 1995.
optlmal values ofK';, and K'p from [9] with an unstable first [15] M. Krsti¢, “Invariant manifolds and asymptotic properties of adaptive
mode are 0.013 and0.0144. The valuesy.; = 0.0053 and nonlinear systemsJEEE Trans. Automat. Contrvol. 41, pp. 817-829,
a2 = —0.0582 are used in the expression fat,, [(20)] to 1996. _ , _
find — _0.3144 dé = 0.3482. H th d [16] W. Lang, T. Poinsot, and S. Candel, “Active control of combustion
Ind v = —=U. ando, = 0. - Aere, the seconadary instability,” Combustion and Flamevol. 7, pp. 281-289, 1987.
fuel is modeled as a 15-point actuator. The spatial distributigtv] P. J. Langhorne, A. P. Dowling, and N. Hooper, “Practical active control
of the actuator power outpuiy, is represented by a one- systems for combustion oscillations]” Propulsion Powervol. 6, pp.
. . . . . 324-333, 1990.
dimensional t_rapezmdal fgnctlon. The total time delay of t_hﬁs] K. R. McManus, U. Vandsburger, and C. T. Bowman, “Combustor
fuel combustion process is taken as one-quarter of the time performance enhancement through direct shear layer excitaGumi-

eriod of the fundamental modE,. Thus~; is obtained b bustion and Flamevol. 82, pp. 75-92, 1990.
P d& n y [19] A. H. Nayfeh, Perturbation Methods New York: Wiley, 1973.

muItipIyipg_ a quarter COSin? wave Wi_th the .di§tribuFion W@f  [20] Y. Neumeier and B. T. Zinn, “Active control of combustion instabilities
[(20)]. Similarly, a quarter sine wave is multiplied with thg using real time identification of unstable combustor modes,Piac.

distribution to giveél. Asw, = 1 andws = 2, using (20), we gghSIEEE Conf. Contr. Applicat.Albany, NY, Sept. 1995, pp. 691—

have v, nearly equal to zero as a trapezoidal distribution i1] | G. Paparizos and F. E. C.Culick, “The two-mode approximation
multiplied by a cosine distribution from zero to Since some to nonlinear acoustics in combustion chambers 1: Exact solution for

time delay is also associated with the computation process in igg%”d'orde’ acousticsCombustion Sci. Technpbol. 65, pp. 39-65,
the feedback the value ab is not chosen as zero but taken ago; T. poinsot, F. Bourienne, S. Candel, and E. Esposito, “Suppression of
—0.1. The value’; is approximately the summation over zero  combustion instabilities by active control> Propulsion Powervol. 5,

x ; . ; Ctrig i pp. 14-20, 1989.
0 3 of a:me multlplyl_ng a trapezoidal dlstrlbutlon_ betweeTZS] J. D. Sterling, “Nonlinear analysis and modeling of combustion insta-
zero and3. The quantityé, would be the summation over bilities in a laboratory combustorCombustion Sci. Technphol. 89,
zero ton of a sine multiplying a trapezoidal distribution over[ , pp. 167-179, 3993. | o il . )

; ; 24] J. E. Tierno and J. C. Doyle, “Multimode active stabilization of a Rijke
zero andr. Therefore, the value af; is chosen as 0.3 which wbe.” in DSC-Vol. 36, ASME Winter Annu. Meet992.
is slightly less than the value @ . [25] V. Yang, A. Sinha, and Y.-T. Fung, “State feedback control of longitu-
dinal combustion instabilities,J. Propulsion Powervol. 8, 1992.
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