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Self-Tuning Control of a Nonlinear Model
of Combustion Instabilities

Miroslav Krstic, Ashish Krupadanam, and Clas Jacobson,Member, IEEE

Abstract—We present a self-tuning scheme for adapting the
parameters of a proportional integral (PI) controller proposed
by Fung and Yang for stabilization of a Culick-type model
of nonlinear acoustic oscillations in combustion chambers. Our
adaptation criterion is Lyapunov-based and its objective is the
regulation of nonlinear pressure oscillations to zero. We focus
on a two-mode model and first develop a design based on an
assumption that the amplitudes of the two modes are available for
measurement. The adaptation mechanism is designed to stabilize
both modes and prevent the phenomenon observed by Candel
and coworkers whose adaptive controller stabilizes the first but
(under some conditions) apparently destabilizes the second mode.
We also prove that the adaptation mechanism is robust to a time
delay inherent to the actuation approach via heat release. In
order to avoid requirements for sophisticated sensing of the mode
amplitudes needed for feedback, we also develop an adaptation
scheme which employs only one pressure sensor. In order for
the adaptation scheme to be implementable, it is also necessary
to know the control input matrix of the system. Rather than
performing a linear ID procedure with input excitation, we
propose a simple nonlinear ID approach based on limit cycles
(internal excitation) which exploits the quadratic character of
the nonlinearities. Simulations illustrate the scheme’s capability
to attenuate limit cycles and its robustness to magnitude- and
rate-saturation of the actuator.

Index Terms—Adaptive control, averaging, combustion control,
Galerkin approximation, nonlinear acoustics.

I. INTRODUCTION

A COUSTIC instabilities in combustion chambers have
been a significant problem in the design of propulsion

systems. The instabilities are generated by the feedback cou-
pling between the acoustic resonances and the heat release
of the combustion processes. The instability problem can be
alleviated by changing the design of the chamber to either
increase the damping in the system or reduce the coupling
between flow oscillations and unsteady combustion. However,
these passive techniques are neither systematic, nor robust
in the face of changes in operating conditions or aging.
For this reason, active control of combustion instabilities
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is a field that has grown in significance over the last few
years, and already seen remarkable advances [1]–[4], [7]–[13],
[16]–[18], [20], [22], [24], [25]. With respect to the actuation
mechanism, it is possible to categorize the control methods into
two groups: 1) mechanical methods which use loudspeakers
or moving bodies (less feasible for propulsion systems be-
cause they require a large amount of power) and 2) methods
which use a secondary supply of fuel (more promising for
propulsion systems). Another categorization, to experiment-
based and model-based control, was given by Fleifilet al.
[8] who note that, in some of the experiment-based designs
[3], [4], [11], [16]–[18], [22], the suppression of the primary
pressure peak is accompanied by excitation of secondary
peaks.

Combustion instabilities take a form of nonlinear oscil-
lations—limit cycles. A nonlinear model of acoustic waves
in a combustion environment has been developed by Culick
[5] (a large volume of other literature on this topic also
exists which we do not attempt to review here). Reduced-
order models obtained by Galerkin projection, averaging, and
truncation to the first few modes were studied by Culick and
coworkers (see, e.g., [21] and references therein) and shown
to give a satisfactory qualitative match with experimental
results.

Fung and Yang [9] and Funget al. [10] were the first to
develop control-oriented extensions of Culick-type models and
to propose the use of various control techniques motivated by
their models. In particular, Fung and Yang [9] studied in detail
the effect of PI compensators and showed that they can achieve
stability in at least two-mode truncations of their models.

The selection of gains in Fung and Yang’s PI controller
[9] requires the knowledge of the model parameters. If these
parameters are not known or change with operating conditions,
it is possible that the mistuned controller makes one or
more modes unstable. The need to use adaptation was first
recognized by Billoudet al. [3] who used a least mean square
(LMS) adaptive filter to suppress pressure oscillations. Even
though not model-based, their approach was experimentally
successful. However, they did observe that the suppression of
the first mode is (under certain conditions) accompanied by
the destabilization of the second mode.

In this paper we build upon the model-based control results
of Fung and Yang [9] and develop a technique for self-tuning
of the parameters of a PI controller to ensure the stabilization
of both the first and the second mode. We achieve this by
pursuing a Lyapunov-based adaptation criterion which takes
both modes into account.
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We first develop adaptation laws under the assumption that
the amplitudes of the modes are available for measurement.
The derivation and the proof of stability in Section III are fol-
lowed by simulations in Section IV. In Section V we establish
robustness of this scheme to a time delay inherent in the actu-
ation mechanism. Then in Section VI we relax the assumption
from Section III and derive update laws which do not require
the modal amplitudes but only pressure measurements from a
single sensor in the combustion chamber. In Section VII we
propose anonlinearidentification procedure for estimating the
input matrix of the system necessary for implementation of the
adaptive scheme in Sections III and VI. Instead of performing
a complicated linear identification of this matrix, we exploit the
quadratic character of the model nonlinearities and estimate the
matrix from steady-state limit-cycle data. Section VIII presents
a simulation study on the nonaverage model. In the absence of
actuator limitations, our adaptive scheme drives both modes to
zero. When the actuator is both magnitude- and rate-saturated,
our adaptive controller only reduces the size of the limit cycle.
To prevent parameter drift, we employ update law leakage
which stops the drift without increasing the size of limit cycles
and without requiringa priori knowledge of a set of stabilizing
parameter values.

II. CONTROLLED MODAL MODEL

The mass, momentum (inviscid), and energy conservation
equations for a two-phase mixture in a combustor are [6]

(1)

(2)

(3)

where is the local density of the mixture, is the local
velocity of the gas phase, is the local pressure, is the
averaged ratio of specific heats, and, , and account,
respectively, for the exchange of mass, momentum, and energy
(including the heat of combustion) between the fuel and the
gas. The energy equation is written with the pressure as the
dependent variable using the perfect gas law. From the above
equations, after separating , , and into the steady and
fluctuating components, Culick [5] derives a wave equation
with associated boundary conditions

(4)

(5)

where is the pressure fluctuation and is the speed of
sound in the mixture. The quantities and accommodate
all influences of acoustic motions, mean flow, and combustion
response, under conditions without external forcing. The terms

and account for the effects of the control inputs. Funget
al. [10] have derived the relationship between the mass flow
rate of the injected secondary fuel and the source term

(we briefly review their derivation in this section keeping
only details indispensable for our presentation). The distributed
control action of the secondary fuel is approximated by an

Fig. 1. Diagram of the feedback control system with distributed actuation
via secondary fuel.

assembly of point actuators, as in Fig. 1, and is given
by [10]

(6)

where is the spatial distribution of the actuator
output, is the time delay relative to the moment
of injection for the th point actuator, is the Dirac delta
function, and is a scaled version of the mass flow rate of
the secondary fuel

(7)

where the coefficient is the constant volume specific heat
of the fuel mixture, is the heat of combustion of the fuel,
and is the gas constant of the mixture. As the source terms
in (4) and (5) are treated as small perturbations to the acoustic
field, the solution can be approximated by

(8)

within second-order accuracy. The quantity is the normal
mode function satisfying

(9)

(10)

Pure longitudinal oscillations in a uniform chamber give
. The set of ordinary differential equations that

represents the amplitudes of each mode obtained from (4),
(8), and (9) via Galerkin projection is

(11)

(see Culick [5] for the expressions for the -
coefficients), where and the control input
to the th mode is

(12)
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When we use no control, i.e., , which implies ,
the system (11) has an unstable linearization and, due to the
quadratic terms, for realistic values of the parameters, the
solutions converge to a periodic orbit, as shown and discussed
in Paparizos and Culick [21] and the references therein. The
purpose of active control is to add feedback terms in
through to stabilize the system (11), (12). To a reader
with experience in control theory it is obvious that this is a
very difficult problem because 1) the control input drives
the system through time delays; 2) various coefficients in (11)
and (12) cannot be assumed to be known accurately; and 3) the
control cannot apply feedback of but only a feedback of
a variable that is physically measurable, such as, for example,
the instantaneous pressure

(13)

where is the location of the pressure sensor.
Fung and Yang [9] proposed a PI controller for the sec-

ondary fuel injection , which, due to the differentiation in
(7), gives a PD control law

(14)

where is the delay due to measurement, computation and
actuation in the implementation of control. Substituting (14)
into (12) we get

(15)

where . Fung and Yang [9] showed that,
when all the parameters of the system are known, (at least)
the two-mode truncation of the system (15) can be stabilized
by properly choosing and . The next section shows
how to tune and on-line when the parameters of the
system are unknown.

III. A DAPTIVE CONTROLLER FOR

THE AVERAGE TWO-MODE MODEL

In this paper we develop an adaptation technique for the PI
controller (14). We replace the constant gains and by
estimates and

(16)

In (15) this modification is accommodated by replacing
and by and , respectively.

Under the assumption that and are updated slowly,
time averaging (see Nayfeh [19] for this particular application)
of the model (15) gives equations for the modes in terms of
their amplitudes and phases . The two mode model given
in Fung and Yang [9] is

(17)

(18)

(19)

where is the phase difference between the modes, defined
as . The constant is given by

and and , the closed-loop growth coefficients, are given
by the expressions

(20)

(21)

The quantity is the spatial distribution of the control input
which is modeled as a set of point actuators, is the total
time delay for the control input at each point, and is the
frequency of each mode. We point out that in (19) we have
corrected a sign error that appears in Fung and Yang [9].

When the coefficients and are known, the gains
and can be selected fixed to achieve desired values

of damping coefficients and . When and are
unknown or vary with operating conditions, and are
continuously updated with the objective of driving and
to zero. In order to derive the update laws for and ,
in this section we assume that they enter (20) and (21) with

. The stability of the system with the delays included
will be proved in Section V.

Combining (17)–(19) with (20) and (21), the equations for
the closed-loop adaptive system are represented as

(22)

(23)

(24)

The quantities , and correspond to the terms
multiplying and in (20) and (21).
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Our design of a tuning mechanism for and is based
on a Lyapunov function

(25)

where and are parameter estimation errors

with constants and yet to be defined. The weighting
coefficients , are referred to as the adaptation gains.
The control objective is to drive and to zero, while
keeping the errors and bounded. Taking the time
derivative of , we get

(26)

To cancel the cross-terms generated by the parameter estima-
tion errors and , we select the update laws

(27)

(28)

Then becomes

(29)

To guarantee (global) stability of the equilibrium
and the regulation of and to zero, we wish

to have

(30)

(31)

The constants and , which have thus far remained
undefined, can always be selected to satisfy (30) and (31)
provided

(32)

This condition amounts to a linear controllability condition
with a PD controller. When this condition is not satisfied, it is
possible that the PD controller (both the constant one and the
self-tuning one) could increase the damping of one mode (for
instance, a mode that is open-loop unstable) while decreasing
the damping of the other mode or making it even unstable.
When the “controllability” condition (32) is satisfied, the self-
tuning controller will guarantee that and go to zero,while

a designer without exact knowledge of and would not be
able to select constant and to satisfy(30) and (31).

A fine point worth noting is that our analysis does not an-
swer whether the “closed-loop damping coefficients”

and
converge to negative values or not. Indeed, all that

we have set as an objective and achieved is that and
go to zero. Following the results on invariant manifolds

of adaptive nonlinear systems [15], it is possible that from a
set of initial conditions of measure zero (that is, with zero
probability), and converge to positive values.
This, however, will not prevent and from going to
zero, as the Lyapunov analysis shows.

As it can be seen in (27) and (28), the implementation of
the update laws requires the knowledge of the parameters,

, , and in (22)–(24), which is a major modeling re-
quirement. In Section VII we present anonlinear identification
procedure for determining these parameters from steady-state
limit cycle data.

IV. SIMULATIONS FOR THE AVERAGE MODEL

To illustrate the self-tuning controller, we carried out simu-
lations for the uncontrolled and controlled two mode models.
These simulations are for the model (22)–(24) with the update
laws (27) and (28).

The values of the parameters in these simulations were
chosen as given by Fung and Yang [9]. The conditions for
the existence of stable limit cycles in open loop are

(33)

(34)

The equilibrium is given by

(35)

(36)

(37)

The values of the parameters , and are taken as
0.0144, 0.0559, 0.0062, and 0.0178, respectively [9]. The
value of the specific heat ratio is taken as 1.2 as in [9].

Open-loop simulations. Fig. 2 shows the equilibrium
(35)–(37) in the - plane for three different initial
conditions and the phase variation with time.

Simulations with control. To prepare for the closed-loop
simulations, we first calculate the constants, , , and

from the data in [9]. This calculation is explained in
Appendix A. As shown in Fig. 3, our adaptive controller
drives the oscillation amplitudes to zero (versus plot),
although the phase need not necessarily converge to a constant.
Fig. 4 shows the variation of and with time. The
values of and increase from zero to some values
which are optimal for the particular initial conditions on the
amplitudes.
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Fig. 2. Uncontrolled system.

Fig. 3. Controlled system.

Fig. 4. Controlled system,^KD and ^KP versus time.

V. ROBUSTNESS TODELAY IN PARAMETER ESTIMATES

While the adaptation law in Section III were derived by
assuming that and enter the systemwithout the time
delays , in this section we ensure that stability is preserved
in the presence of the delays. We consider the closed-loop
system

(38)

(39)

(40)
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where

(41)

(42)

Assuming that “controllability condition” (32) holds, we select
and such that

(43)

(44)

Now, let us take a Lyapunov function

(45)

where and are positive constants yet to be determined,

and

(46)

(47)

Note that for , the Lyapunov function reduces to the

Lyapunov function in (25). Then we have

(48)

Let us denote and

(49)

(50)

Then (48) yields

(51)

where denotes the 2-norm of . We see that if

(52)

(53)

for all , then . Denoting
, we see that

(54)

Then, if we select

(55)

(56)

the set

(57)

is positively invariant. This is easy to see because (57) along
with (57) implies (52), (53), which, due to (55), (56), means
that in the set (57) we have

(58)

In addition, (58) proves that the equilibrium
is stable, and that the set (57) also belongs to

its region of attraction. Finally, by LaSalle’s theorem, (58)
guarantees that and converge to zero.

It is important to properly interpret the regional result we
have just established. From (45) and (57) it is clear that we are
restricting the initial conditions on the estimation errors
and to be sufficiently small. Since and

, where and are constants selected
in our analysis to satisfy (43) and (44), it follows that we need
initial conditions on the estimates and to be close to
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someof many possiblestabilizing values of and . If
we select the initial gains and to be zero, then from
(45) and (57) we require that there existsome and
that satisfy (43), (44), and

(59)

We stress that the robustness result established in this section
is achieved without any tools for update law robustification
(leakage, projection, etc.). As we shall see in Section VIII-B,
these tools will become necessary in the presence of substantial
actuator limitations.

VI. I MPLEMENTATION OF THE UPDATE

LAWS USING A SINGLE PRESSURESENSOR

While the control law of Fung and Yang [9] involves only
the pressure measurements from a single sensor, it may appear
that a sophisticated scheme (with distributed sensors) would be
necessary to measure the mode amplitudesand needed to
implement the update laws (27) and (28). Fortunately, this is
not the case and we can employ a single pressure sensor which
in the average sense performs the same task of adaptation as
the scheme which employs the mode amplitudes.

We now postulate, and later prove, that the update laws (27)
and (28) can be replaced by the following expressions for
and :

(60)

(61)

In the following, we show that the constants, , , and
can be found such that the average equations of (60) and

(61) are given by (27) and (28). Using (13)

(62)

we get (60) and (61) in the form

(63)

(64)

where and represent the values of the mode functions
at the point of measurement. Substituting the modeby

(65)

and its derivative by its approximation

(66)

after averaging we get

(67)

(68)

Comparing these equations to the expressions (27) and (28)
we solve for , , , and

(69)

(70)

(71)

(72)

The coefficient can be eliminated by replacing and
in the Lyapunov function (25) by and ,

respectively. Thus, in order to implement the update laws (60),
(61), we need only the knowledge of the mode shapes, mode
frequencies, and the constants, , , and , which we
estimate in the next section.

Remark 6.1: Even though high pressure sensors are avail-
able, and one can obtain clean measurements of pressure
which allow the calculation of , in some situations it may
be desirable to avoid using the derivative of pressure. Such
situations are easy to accommodate by replacing the derivative
of pressure by its integral in (60) and (61)

(73)

(74)

where . In this case the coefficients
(69)–(72) would be defined by

(75)

(76)

(77)

(78)

VII. I DENTIFICATION OF THE CONSTANTS , , AND

In this paper we are concerned with the problem of stabi-
lization in the presence of a varying equivalence ratio, and
assume that its variation affects only the open-loop growth
coefficients and but not the control input coefficients

, , , and . The coefficients , , and need to be
known in order for the adaptation laws (27), (28), or (60), (61),
and (69)–(72) to be implemented. These coefficients would be
difficult to identify if the model were linear. Our approach to
the problem via a nonlinear model allows us to identify those
coefficients easily using onlysteady-statelimit cycle data.

Consider an identification experiment with fixed values of
and , denoted simply as and . The equilibrium
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equations for (22) and (23) have the form

(79)

(80)

We now outline a procedure for identifying
and . These quantities can be employed in (27), (28), or
(69)–(72) instead of , , , and by treating as a part
of the adaptation gain.

Equations (79) and (80) have the linear form

(81)

(82)

where and for , and

(83)

(84)

(85)

We can therefore use the least-squares linear regression to find
the best estimate of , , and from a series
of experiments in which we measure, , and . Let ,

, and denote the values of , , and in different
experiments. Then the estimates

(86)

(87)

are easily shown to be the minimizers of the cost functional

(88)

with respect to and .
Note that in the above procedure and are treated

as unknown but constant. Once the identification of ,
, and is performed for a constant equivalence

ratio, the adaptation laws (27), (28) can be used to adapt the
PD controller to the actual and which vary with the
equivalence ratio.

The key for implementing the procedure (83)–(88) is the
availability of the amplitudes of the modes and and the
phase shift . Computing these quantities (in particular)
from time traces of for a system in a limit cycle, turns out
to be a nontrivial task. In Section VIII we explain how, ,
and are calculated using an LMS algorithm.

Fig. 5. Nonaverage system without control, pressure versus time.

VIII. SIMULATION FOR NONAVERAGE MODEL

The update law using a single pressure sensor was imple-
mented on the nonaverage two-mode model

(89)

where and Numerical values of , , and and
are taken from [9] as in the averaged case. The expressions
for and are taken from Culick [5] and are given as

(90)

(91)

where

(92)

With the assumption that oscillations are purely longitudinal
in a uniform chamber, the mode functions are given as

.
Open-loop simulations of the system show a limit cycle as

in the averaged case. The time trace of the pressure for this
model, as sensed at one end of the chamber, is given in Fig. 5.

A. Closed-Loop Simulations Without Actuator Limits

The simulations are carried out with the assumption that
the distribution of the control input is uniform in space, i.e.,

for all points in the discrete approximation. The
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Fig. 6. The power spectral density and the phase of the Fourier transform of the pressure in the nonaverage uncontrolled system.

pressure sensor is assumed to be at one end of the chamber
where . is taken as unity assuming that the
length over which the secondary fuel burns is small. Secondary
fuel combustion is approximated by four point actuators, i.e.,

and the time delay is taken as one fourth of the time
period of the first mode. The delayed values of

(93)

are needed to obtain . This is implemented using the
second-order Padé approximation of a pure time delay (it is
not clear why the pure delay would be a better description of
the heat release process anyway), which, for a time delay,
is given by

(94)

The system parameters , , and are identified
using the procedure described in Section VII. The system
was simulated with various small destabilizing values of
and . The (79) and (80) require accurate values of,

, and . These three quantities are found using the
pressure signal as follows. The phaseof the pressure signal,
observed by Fourier analysis using MATLAB and shown in
Fig. 6, has sharp jumps at the two modal frequencies. Hence
the value of obtained from the Fourier transform
is not sufficiently accurate. Instead, we use an LMS based
identification procedure to identify , , and . The pressure
signal is assumed to be of the form

(95)

which can be represented linearly as

(96)

where the “parameter” vector is

(97)
and the regressor vector is

(98)

The estimation error, at any instant, can be expressed as

(99)

The parameter update law is

(100)

Since we have four “parameters” in , and two sinusoids
with distinct frequencies in the regressor, we have persistent
excitation, and our estimates of, , and converge to the
true values. The constants , , , and needed in (60)
and (61) are determined from the (69)–(72). The destabilizing
values of and used for identification should be small
when compared to the critical values for the existence of limit
cycles as obtained from (33) and (34). The resulting pressure
signal in this case is closer to the sum of two sinusoids and
hence the measure of the phase between them is more accurate
when the LMS method is used.

The closed-loop simulations show that the controller drives
the oscillation amplitudes to zero. The time traces of the
pressure and the control input to the system are given in Fig. 7.
Fig. 8 shows the variation in and with time. The
values of and increase from zero to stabilizing values
which reduce oscillation amplitudes to zero.

B. Simulations with Magnitude and Rate Saturations

Simulations were also carried out to observe the effects
of actuator limits on the system. While implementing the
saturation of (rate saturation) is simple, the
saturation of (magnitude saturation) requires more care.
To saturate , the time derivative of is set to zero
when exceeds the maximum and the derivative is in the
direction of increase in this quantity.

The time trace of the pressure under magnitude and rate
limit is given in Fig. 9. The limit cycles are observed to
decrease but not go to zero. The uniformly rate limited
decreasing trend of in the first 20–30 s is arrested by
the limit on and the subsequent time trace shows large
variations in . Fig. 10 shows the variation in and

with time. These gains continue to increase since they
are updated using the amplitudes of the modes which do not
decrease to zero in this case. Even in the absence of magnitude
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Fig. 7. Nonaverage system with control, pressure and_min versus time.

Fig. 8. Nonaverage system with control,^KD and ^KP versus time.

Fig. 9. Nonaverage system with control (magnitude and rate saturation)—pressure and_min versus time.

limits (when only the rate limit is present), the parameter drift
occurs. We deal with the effects of parameter drift at the end
of this section.

C. Robustification with Leakage

It is observed in the previous cases with magnitude and/or
rate saturation that the amplitudes of the modes do not go
to zero. The parameter drift observed for and can
be expected from the (27) and (28). We can prevent the
parameter drift by using tools for robustification of the update

law [14] such as fixed leakage, switching leakage, projection,
etc. The latter two would requirea priori knowledge of a set
of stabilizing values of and , and the estimates would
usually converge to the boundary of the set, which means that
the controller would end up being as conservative as a robust
controller designed only on the basis of a priori information
(and not on the basis of on-line information and learning the
system). For this reason, we resort to fixed leakage, which is
known to introduce a bias in regulation even in the absence
of the nonparametric uncertainty that is causing the parameter
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Fig. 10. Nonaverage system with control (magnitude and rate saturation)—^KD and ^KP versus time.

Fig. 11. Magnitude and rate saturation with leakage—pressure and_min versus time.

Fig. 12. Magnitude and rate saturation with leakage—^KD and ^KP versus time.

drift. In the case of the model in this paper, the fixed leakage
would result in a limit cycle even in the absence of actuator
limitations. If small, we regard such a bias acceptable because,
in the presence of actuator limitations, the feedback can only
reduce the size of the limit cycle but cannot completely
eliminate it. A leakage term is hence introduced in the update
laws (60) and (61)

(101)

(102)

where and are positive constants. With rate saturation
and magnitude saturation as in the previous subsection, a
small leakage is found to affect the size of limit cycles
minimally, see the pressure and plots in Fig. 11. As
observed in Fig. 12, the gains and converge to
values larger than in Fig. 8. The boundedness of signals
(local) under leakage can be rigorously established using
the same type of Lyapunov analysis (lengthy but straight-
forward) as in [14] and employing the Lyapunov function
(25).
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IX. CONCLUSION

This paper presents an adaptive design and analysis of
implementation issues for a two model Galerkin truncation of
a nonlinear model of combustion instabilities. The following
questions are beyond the scope of this paper and remain a
subject for future work: 1) validation on higher order models
and design of controllers of higher dynamic order for higher
order models; 2) incorporation of a more detailed model
of heat release into the control design; and 3) experimental
verification.

APPENDIX

Calculation of , , and from the data in [9]. The
optimal values of and from [9] with an unstable first
mode are 0.013 and 0.0144. The values, and

are used in the expression for [(20)] to
find and . Here, the secondary
fuel is modeled as a 15-point actuator. The spatial distribution
of the actuator power output is represented by a one-
dimensional trapezoidal function. The total time delay of the
fuel combustion process is taken as one-quarter of the time
period of the fundamental mode . Thus is obtained by
multiplying a quarter cosine wave with the distribution of
[(20)]. Similarly, a quarter sine wave is multiplied with the
distribution to give . As and , using (20), we
have nearly equal to zero as a trapezoidal distribution is
multiplied by a cosine distribution from zero to. Since some
time delay is also associated with the computation process in
the feedback the value of is not chosen as zero but taken as

0.1. The value is approximately the summation over zero
to of a sine multiplying a trapezoidal distribution between
zero and . The quantity would be the summation over
zero to of a sine multiplying a trapezoidal distribution over
zero and . Therefore, the value of is chosen as 0.3 which
is slightly less than the value of .
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