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Inverse Optimal Stabilization of a Rigid Spacecraft We employ theinverse optimakontrol approach which circumvents
the task of solving a Hamilton—-Jacobi equation and results in a
Miroslav Krstic and Panagiotis Tsiotras controller optimal with respect to a meaningful cost functional. This

approach, originated by Kalman to establish certain gain and phase
Abstract—The authors present an approach for constructing optimal margins of linear quadratic regulators [28], was introduced into
feedlbacﬁhcqntrol Iawstfor rlegul?ticlm of a rolf]atir;]g Ligi,d spacectrafttr.] T?eyk nonlinear control in [29], and has been long dormant until it was
employ the inverse optimal control approach which circumvents the tas . ; :
of se)lv)i/ng a HamiItonBJacobi equatio?]pand results in a controller optimal recently rQV'Ved in [30] to de\_/el()p a methOdc’lOgy for_ des'g_” of
with respect to a meaningful cost functional. The inverse optimality robustnonlinear controllers. While [29] establishes a certain nonlinear
approach requires the knowledge of a control Lyapunov function and a “return difference” inequality which implies robustness to some input

stabilizing control law of a particular form. For the spacecraft problem,  nonlinearities, the full analogy with the linear stability margins was
they are both constructed using the method of integrator backstepping. only recently established in [31]
The authors give a characterization of (nonlinear) stability margins '

achieved with the inverse optimal control law. The inverse optimality approach used in this paper requires the

) o o knowledge of a control Lyapunov function and a stabilizing control
b”i'g/d‘fg(a:gei:]“;S;’;‘E;Iti‘;‘;zo‘;omm" backstepping, inverse optimality, sta- |5y of a particular form. For the spacecraft problem, we construct
' ' them both using the method of integrator backstepping [32]. The re-
sulting design includes a penalty on the angular velocity, orientation,
I. INTRODUCTION and the control torque. The weight in the penalty on the control
Optimal control of rigid bodies has a long history stemming frorlepends on the current state and decreases for states away from
interest in the control of rigid spacecraft and aircraft [1]-[5]. Théhe origin. We also present a result which puts a constant (identity)
main thrust of this research has been directed, however, toward WRight on control and possesses stability margins analogous to the
time-optimal and fuel-optimal control problems [6]—[11]. The optimainfinite gain margin and the 8(hase margins for the linear quadratic
regulation problem over a finite or infinite horizon has been treatéggulators. It should be pointed out that global stabilizing controllers
in the past mainly for the angular velocity subsystem and for speckging the inverse optimality approach of [30] have also been presented
quadratic costs [10], [12]-[16]. The case of general quadratic codts[33]-
has also been addressed in [17]. Optimal control for the completeThe paper is organized as follows. Section Il reviews the basics
attitude problem, i.e., including the orientation equations, is mofé the inverse optimality approach and presents it in a format
difficult and has been addressed in terms of trajectory planniggnvenient fordesignof controllers. Section IV contains the main
[18], [19] or in semifeedback form [20]. The main obstructiorfesult—the construction of the inverse optimal feedback law for a
in constructing feedback control laws in this case stems from tRgid spacecraft, which is specialized in Section IV-B to the case of a
difficulty in solving the Hamilton—Jacobi equation, especially wheBymmetric spacecraft. A numerical example in Section V illustrates
the cost includes a penalty term on the control effort. In [21] thé&e theoretical result of the paper.
authors obtain closed-form optimal solutions for special cases of
guadratic costs without penalty on the control effort. These control
laws asymptotically recover the optimal cost for the kinematics but
may lead to high-gain controllers. When a control penalty is included e consider nonlinear systems affine in the control variable
in the performance index, linear control laws have been constructed &= flz)+ g(x)u (1)
which provide an upper bound for a quadratic cost in some spemﬁ\%eref: R" — R" and: R” — IR"*™ are smooth, vector-

compact set of initial conditions. Suboptimal results can be obtamgﬂd matrix-valued functions, respectively, with0) = 0. Moreover,

by minimizing th'$ Upper bound [21].Altern§t|vely, one can penallz_g € R" and v« € IR™ denote the state and control vectors,
only the high-gain portion of the control input. This approach is .
oo . espectively.
based on the optimality results of [22] and it has been used both for I . .
- . ! . Proposition 1 [29], [31]: Assume that the static state feedback
axisymmetric [23] and nonsymmetric bodies [24]. The most advanced
A . ca)ntrol law
efforts toward designing optimal feedback controllers have been made . T
in [26] and [27] in the framework on nonline@f.. design. However, w=r(z) = — R (x) <m/ y(:L’)) @
the authors in [27] solve the Hamilton—-Jacobi—Isa&wsquality dx
which, in general, only guarantees an upper bound of the cost {ghere R: R™ — IR"*" is a positive definite matrix-valued function
the zero-disturbance case. (i.e., R(z) = R"(x) > 0 for all = € R"), stabilizes the system in
In this paper we follow an alternative approach in order to deria) with respect to a positive definite radially unbounded Lyapunov
optimal feedback control laws for the complete rigid body systenfunction V(). Then the control law

Il. INVERSE OPTIMAL CONTROL APPROACH
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BecausedV/dz(f(x) + g(z)x(z)) < 0,Yz # 0, we have wherew € R? is the angular velocity vector in a body-fixed frame,
I(x) > 0 for all = # 0 and the performance index in (5) represents € IR? is the Cayley—Rodrigues parameters vector [25] describing
a meaningful cost, in the sense that it includes a positive penalty the body orientationy € IR® is the acting control torque, and
the state and a positive penalty on the control for each is the (positive definite) inertia matrix. The symh8(-) denotes a

The cost (5) depends on the particular system dynamics. TBis< 3 skew-symmetric matrix, that is
is understandable, since by requirimjpsed-form solutiondo a
nonlinear optimal feedback problem it is sensible to choose costs 0 Wy Tw2
which are compliant with the system dynamics. In other words, the S(w) = |~ws 0w 12)
cost should reflect somehow, and take into account, the form of w2 Twl 0
the nonlinearity _of the system. This restricts of cour;e the (_:hoi%%d the matrix-valued functiofl: R* — R**® denotes the
of performance indexes. On the other hand, one avoids solving E(lﬁematics Jacobian matrix for the Cayley—Rodrigues parameters
often formidable Hamilton—Jacobi equation. . b ’

The result of Proposition 1 was given in [31] for = 2. The given by
e>_(tension that we give he_re for > 2 is straightforwar_d and gi\_/er_l _ H(p):= 1 (I-S(p)+ opt) (13)
without proof. However, this extension already establishes an infinite
gain margin of the inverse optimal controller, a well-known propertwherel denotes the X 3 identity matrix. The matrix (p) satisfies
of linear quadratic regulators [28]. An equivalent of the phase mardihe following identity [24]:
was also given in [31] and it requires that the functi@n®(z) )
be locally bounded. Under this condition, there exists a continuous o H(p)w = <1 + [l ) ol w (14)
positive functions;(-) such that 2

R (x) < n(V(x))I, Ve eR" (6) for all w, p € R®, where|| - || denotes the Euclidean norm, i.e.,

. . . ) lzl)? = 2", for 2 € R™.
Whl_ch_follows from the ra_dlal unboundedness 16 z). V_v'th th'_s Observe that the system in (11) is in cascade interconnection,
deflnltlon, we state thg main result on robustngss margins athev l&t is, the kinematics subsystem (11b) is controlled only indirectly
using the Inverse o!otl_rn_allty "’?pp“’ach- In the linear case, th|§ re Fough the angular velocity vectar. Stabilizing control laws for
gives pre_c!sely the infinite gain margha_qd the 60 phase_ margin. systems in this hierarchical form can be efficiently designed using
Proposition 2 [31]: Under the conditions of Proposition 1 and

: _ . the method ofbacksteppind32]. According to this approach, one
Liy
assuming thafi™"(z) is locally bounded, the control law thinks of w as thevirtual control in (11b) and designs a control law,

* v T saywaq(p), which stabilizes this system. Subsequently, one designs
v=r(2) = =Fn(V(x)) <8;r 9(‘”)) 522 (7))  theactual control input so as to stabilize the system in (11a) without
destabilizing the system in (11b) by forcing, for example— w,.
is globally asymptotically stabilizing for (1) with the input dynamicsrhe main benefits of this methodology is that it is flexible and lends
u = a(I +P)v, wherea > 1// is a constant an@® is a strictly jiself to0 a systematic construction of stabilizing control laws along

passivé (possibly nonlinear) system. with the corresponding Lyapunov functions.
Note that the form of the control law (7) is
N T
. oV, IV. CoNTROL DESIGN
K (x) = —,’3(8 g(;v)) (8)
x
A. Backstepping

where

The first step for applying the results of Proposition 1 is to
. -V (@) . .
Vi(z) = / n(r)dr (9) construct a control-Lyapunov function for the system in (11). For
0 systems with cascade interconnection structure, such as the rigid
is a positive definite and radially unbounded Lyapunov function. TH®dY equations, one can use the method of integrator backstepping to

control law (7) minimizes the cost functional achieve this objective. Sontag and Sussmann were the first to notice
oo this property for the rigid body in [36], where they used backstepping
J = / {i(m) + uTu}dt (10) to design smooth feedback control laws for an underactuated rigid
0 body. The same technique was also used in [37] for stabilization of
wherei(z) > n(V)i(z) is positive definite. an axisymmetric spacecraft using two control torques. Here we use

backstepping in order to derive a control-Lyapunov function, along
with a stabilizing controller of a particular form for the system in (11).
Control of the Kinematic SubsystenConsider the kinematics

In this section we use the inverse optimal results of Proposition 1dfibsystem in (11b) withy promoted to a control input and let
order to derive control laws which are optimal with respect to a cogte control law

which includes a penalty on the control input as well as the angular

IIl. THE RiciIb Boby MODEL

position and velocity of a rigid spinning spacecraft. The complete wa = —kip, ki > 0. (15)

attitude motion of a rigid spacecraft can be described by the state

equations [24], [25] With this control law the closed-loop system becomes
G=J7'S(W)Jw+JT (11a) p=—kiH(p)p. (16)
p=H(p)w (11b)

The system in (16) is globally exponentially stable. To see this,
1See also [35] for a discussion on gain margins for nonlinear optimebnsider the following Lyapunov function:

regulators.
2In the sense of the definition in [34]. Vi(p) = 3 loll*. 17)

2
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Using (14) the derivative o¥; along the trajectories of (16) is With the choice of the feedback control law in (24) and (27), (26)

given by yields
Vo= Ba e < —mvio <o vezo. a®) v b -
1= PIEIPIE < =R Vi <0, p# 0 V= (1+2||P|| el = = {p - ZJS(M)J z
'1
Global exponential stability with rate of decay/2 follows. I 2 N
Control of the Full Rigid Body Model:Consider now the error vy <[ + .~ JS5Ww) )3 = k|2l (29)
variable

and the equilibriuny = w = 0 is rendered globally asymptotically
= w=—wg=w+ kip. (19)  staple.
From Proposition 1, fopp = 2, we get the following result.

The differential equation for the kinematics is written as
Theorem 1: The control law

p=—kiH(p)p+ H(p)z (20)

o . ut = —J{(2k2+gkl)1+klpp7
and, as shown above, it is globally exponentially stablezfes 0.

The differential equation for is +ki ']715(@1"]25(@']71 . (30)
:(J_1S(w)J+k1H(p))z !
C (J—ls(w)J_i_ ki H (0))p + Il 1) minimizes the cost functional
‘ o ) o N,
We want to findu = u(p, z) such that the system of (20) and (21) J= /0 {llp, w) +u R(p, wyu}dt 31)

is globally asymptotically stable. To this end, consider the foIIowm\%h

candidate Lyapunov function:

1(p. w) = (L+ 2l pl")lpll* + 4k [lw + Eapl|”
2

. 9c, . K , 1 .
Ve ) = KVl + g I = S + 21 @2)

In order to use the results of Proposition 1 we need a stabilizing

+ ki p—

2 _
= JS() T w4+ kip)

f ;i e B 2
ﬁ(;gtrol law of the form in (2). Noticing that with” as in (22) one s <I n 2 .]S(w),]’1>(;u + ) 32)
k1
N gy (23) and R(p, w) as in (27).
9z The performance index in (31) represents a meaningful cost since
we are looking for a control law of the form I(p, w) > 0 and R(p, w) > 0 for all (p, w) # (0, 0); therefore,
w=—-R""(p,w)J "z (24) it penalizes both the statgsandw, as well as the control effort.

As p andw increase, the penalty on the control decreases. This is
whereR(p, w) > 0, Vp, w € IR*. Taking the derivative of” along a desirable feature of the optimal control law, since it implies more

the trajectories of (20) and (21) one obtains aggressive control action far away from the equilibrium. Indeed, as
. . . the system state starts deviating from the intended operating point
V=--= (1 +lolP)llpll® = k=" T S(w)Jp+ =" J7'S(w)J=  the controller allows for increasingly corrective action. Foand

large we have
+ z <7 (I+pp )Z+.]711L) (25) a4 8 ! )
2 Up, w) ~ 203Nl + = IS @) T @+ ip)]| (330)
and upon completion of squares . o ) 1
" ) Rip.w) ~ |5 100" + ki SIS . (33b)
Z 1

y k% 2 2
7= — 2L (14 2||p -
V= =2l Il -

Pz JS(w)J_lz
ky

One can see thdt; has no effect on the large-signal performance.

hk <[ + 2 ISy ) In addition, larger values of; tend to put more penalty op while
4 smaller values ofi; tend to put more penalty om. At the same
n zT{|: < )ki _ T I2S()) } time, for p andw small we have that |
Hp. w) ~ 2 |IplI> + (4ks + k) lw + kipl*  (34a)
+ .]_lu}. (26) R(p,w)~ (ko4 2ky) 1T (34b)
Denote so, close to the origin, the control law reduces to a linear quadratic
3 X regulator (LQR)-type linear control law. The control law in this case
R(p, w)=J"" |:<kz +7 k1>I+ 71 oo’ minimizes the LQR cost
T ! ;7:/00 { ot H +u" R, } it 35
+k3 (S(w)J_l)IJZS(w)J_l} I @D , 1@, e B (35)
1
here k 0. Then (26) b where
where k- . Then ecomes
2>J (26) ’ , Q_|: 4ko + ky k1(4k‘2+k1):|
. k : 2 _ T k(4 + K E2(3k 4k:
v = = 5 a2 - 5o - & s k) KSR Ak
1 L _o
b el R= ()™ (36

— k|||

<I + — JS(w)J™ )z
4 Itis important to realize that the optimal control law in (30) avoids the
+ " TTHR  (pow)T e+ ud (28) cancellation of the nonlinearities. Notice, for example, that from (25)
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Fig. 2. Angular velocity for the kinematics.

one can globally asymptotically stabilize the system by choosing thenlinearity may be actually beneficial in meeting the stabilization

control law and/or performance objectives.
. . An undesirable feature of the optimal control law in (30) is that it
u=—koJz— = J(I+pp" )z = S(w)Jw (37)  depends on the moment of inertia matfixwhich may not be always
accurately known. The robustness properties of the optimal control
which renders law will be addressed in the future.
3
V= _k?_l (1+||f’||2)||/’||2_k'2 |z ’< 0, V(p,z)#(0,0). (38) B. The Symmetric Case

When the rigid body is symmetric, its inertia matrix is a multiple

There are no obvious optimality characteristics associated with thiPthe identity matrix and

control law. In fact, as was pointed out in [31] and [38], controllerf .
which cancel nonlinearities are, in generabroptimal since the S(w)Jw =0, Yw e R, (39)
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_0.6F

Fig. 3. Angular velocityw;.

Time (sec)

k2_
2=10 |

Fig. 4. Orientation parametep; .

In this case the optimal control law simplifies to
w = —J[(2k2 kO + ppT]z

which minimizes the cost in (4) where
Hw, p) =2k (1 + [lpl)llpll* + 4 k.

[k R R
R(w, p)=J kz—i—f I—l—?pp J.

o+ hapl”

Time (sec)

(40)

(41a)

(41b)

This control law reduces to an LQR-type feedback control law close
to the origin with
Q= | 4k 4ky ko
T 4kike 2K3 (k1 4 2ko)
and

2 —2
R_<42k2+kl)J : (42)

We note that the symmetric case has been previously addressed by
Wie et al.[39], where a Euler parameter description for the kinematics
was used.
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C. A Controller with Stability Margins

Time (sec)

wherel...x (J) is the maximum eigenvalue of the mateix is robust

We now set out to derive a control law that has stability margirf@ the input dynamics(I +7), wherea > 1/2 is a constant and

described in Proposition 2. Lengthy calculations show that

P is a strictly passive (possibly nonlinear) system. For example, the
controller (44) will be stabilizing when passed through linear input

B (p, ) < N {h n %h n ]‘g Vi, 2)}1, dynamicsa(s + z)/(s + p) for any z > p > 0 and anya > 1/2
1

Vp, w € IR

By Proposition 2, the control law

u == /\;me(']) |:]<72 + Zkl +

x J N w+ kip)

9
2]1“,1 (

because the transfer function— p)/(s+ p) is strictly positive real.
(43)
V. NUMERICAL EXAMPLE
Numerical simulations were performed to establish the validity
K llpl* + ||W,_|_k1p||2)} of the theory. We assume a rigid spacecraft with inertia matrix

J = diag(10, 15, 20) kg m. A rest-to-rest maneuver is considered,
(44) thusw(0) = 0. First, we consider the kinematics subsystem in (11b)
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with w regarded as the control input. Let the initial conditi@ig) =
[1.4735, 0.6115, 2.5521)" in terms of the Cayley—Rodrigues param-
eters. These initial conditions correspond to a principal axis/ang[ljé)]
pair & = [0.4896, 0.2032, 0.8480]" and® = 2.5 rad and describe

an almost “upside-down” initial orientation. The trajectories of the1)
system with the control law in (15) wittk; = 0.5 are shown in
Figs. 1 and 2. The exponential stability of the closed-loop system is
evident from these figures. At this step the choice:pfis basically
dictated by the required speed for the completion of the rest-to-regs)
maneuver.

For the stabilization of the complete system we use the control
law in (30). The state trajectories for different values of the gaiPr
ko are depicted in Figs. 3 and 4. The optimal trajectories have a
very uniform behavior which is essentially independent of the valygs;
of k, and they follow very closely the corresponding trajectories
for the kinematics subsystem. From Fig. 5 it is seen that the contféf]
action varies a great deal, however, with The initial control action
consists, essentially, in making— —k;p. This is clearly shown in [17]
Fig. 3.

Finally, Fig. 6 shows the time history of the Frobenious norm of
the control penalty matri®(w, p). The control penalty is decreased[18l
rapidly at the initial portion of the trajectory when increased control
action is necessary in order to “match” with w, within a short [19]
period of time.

El

VI. CONCLUSIONS [20]

Due to the difficulty in obtaining closed-form solutions to the
Hamilton—Jacobi—Bellman equation, tb&ect optimal control prob- [21]
lem for nonlinear systems remains open. However, the knowledge of
a control Lyapunov function allows us to solve tmerseoptimal
control problem, i.e., find a controller which is optimal with respecﬁzz]
to a meaningful cost. The inverse optimal stabilization design for 33]
rigid spacecraft in this paper is, to the authors’ knowledge, the first
feedback control law that minimizes a cost that incorporates a penalty
on both the state (angular velocity and orientation) and the contig#l
effort (torque).
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[39] \Q{A\}Vi{fﬁ’ Vp\)lgis?grzwazz.zz-rapostathis, “Quaternion feedback regulat rroblem. However, unlike the classical problem where the assumption
for spacecraft eigenaxis rotation]” Guidance, Contr. Dynamvol. 12, 1S that the plant and the feedback controller are either colocated or
pp. 375-380, 1989. they can communicate with each other over a channel with infinite
capacity, the crux of the problem studied here is that the plant and
the feedback controller communicate over a digital channel with
finite capacity. This simple change in the basic assumption has a
substantial effect on the complexity of the problem. First of all, the
. . L issue of coding and communication protocol becomes an integral part
Systgms with F'r_“te Commumgatpn of the analysis and cannot be decoupled from the control law design.
Bandwidth Constraints—II: Stabilization Second, there is an inherent delay in the feedback control that further
with Limited Information Feedback complicates matters. In particular, one simple consequence is that
such communication constrained systems can never be asymptotically
stabilized if the uncontrolled dynamics are unstable. Instead, a weaker
stability concept calledontainability is introduced. The concept of

) . containability is closely related to what has been caliedctical

Abstract—In this paper a new class of feedback control problems is tability [71. A k It in thi t tainabilit ith
introduced. Unlike classical models, the systems considered here haveS& ility [ ,]' ey result In this paper (.:0nngc S Con ana ',' y wi
communication channel constraints. As a result, the issue of coding the Kraft inequality [3] and a newly derived inequality that involves
and communication protocol becomes an integral part of the analysis. the communication data rate and the rate of change of the state.
Since these systems cannot be asymptotically stabilized if the underlying
dynamics are unstable, a weaker stability concept called containability
is introduced. A key result connects containability with an inequality Il. THE FINITE COMMUNICATION CONTROL PROBLEM
equation involving the communication data rate and the rate of change Consider a system with linear dynamics
of the state.
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Index Terms—Asymptotic stability, containability, feedback control, —z(t) = Az(t) + Bu(t), z(0)=zo
Kraft inequality. dt (1)
y(t) = Cx(t)
|. INTRODUCTION where the state:(¢) is an element ifR"™, u(t) is am-dimensional

n th I  of this decad | d hv ctor of controly(t) is ap-dimensional observation, ant, B, and
n the early part of this decade several papers appeared Wniety e , 1y, 4, by m, andp by n constant matrices, respectively.

investigated various information related aspects of decision andThe observation of(¢), y(t) is transmitted to a remote decision-

control. These _ir!cluded work by Delchamps [4], Kabampa ar}ﬁaker for computing the appropriate level of feedback control. The
Hara [6], and Williamson [10]. For example, Delchamps studied t mmunication channel is assumed to have a data ratB bfts

problem of stabilizing a discrete-time linear system with quantiz r second. For simplicity, we ignore the detailed implementation

state feedback. Quantization is, of course, a crucial considerati ues in the communication protocol and simply assume that it takes

but in_formationally rel_ated issues involve a much wider range gf 1/R s to send one bit from the plant to the controller and vice
qugstlo_ns. In a previous paper _by _the author_s [11], a class rsa from the controller to the plant. Hence, if a bit is sent at time
estimation problems with communication constraints was |ntr0duc§ ro. it will be received at time at the receiver. Unlike classical

antql ar:alyze?' It_t\évas s_hovxlln, '? par|t|<t:ucliart, trlﬁt tk(;etperfc:rmanget odels, the observed information is not transmitted continuously.
estimation algoritnms 15 closely re‘ated fo the cala rate an nce, we assume thai¢) is sampled at time instancds; }:2,

time scale of the underlying dynamical system. The motivation f%th ro = 0; the other sample instances will be defined later. Before

mvestlbgaltmg thlese L:,ystems C"?‘”l’e from a_valnety tOf sourceds includ observation can be transmitted, it must be quantized and coded
neurobiological systems, socla-economical Syslems, and remolsy yne yransmission. We assume thefix codesare used so that

fR& termination of a codeword is immediately recognizable [3]. The
antization and coding function can be symbolically represented by
functionh from the state spac®” to B where 5 stands for the
and delays are 1% of finite length strings of symbols froma-ary symbol setc;,

_only e_xph_cntly considered but actually form the_ focal point Of_ the(heith transmitted codeword from the plant to the controller, can be
investigation. Recent papers by Borkar and Mitter [2] and Li anldepresented as

Wong [8] also adopt a similar perspective.
In this paper, we continue the analysis of communication con- ci = h(y(r:)). 2
strained systems, studying the effect of the communication rate on . . . i
It is assumed in this paper thatis a measurable function so that
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R. W. Brockett is with the Division of Engineeriﬁg and Applied Scienced> received, it is decod.ed.and the feedback control is computed an.d
Harvard University, Cambridge, MA 02138 USA. then coded for transmission back to the plant. We assume there is
Publisher Item Identifier S 0018-9286(99)02118-2. no computation delay. However, there is a transmission delay due

in wireless communication studied in [9]). This class of systems
substantially different from those studied in [4], [6], and [10] becau
the issues of coding, communication protocol,
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