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Inverse Optimal Stabilization of a Rigid Spacecraft

Miroslav Krstíc and Panagiotis Tsiotras

Abstract—The authors present an approach for constructing optimal
feedback control laws for regulation of a rotating rigid spacecraft. They
employ the inverse optimal control approach which circumvents the task
of solving a Hamilton–Jacobi equation and results in a controller optimal
with respect to a meaningful cost functional. The inverse optimality
approach requires the knowledge of a control Lyapunov function and a
stabilizing control law of a particular form. For the spacecraft problem,
they are both constructed using the method of integrator backstepping.
The authors give a characterization of (nonlinear) stability margins
achieved with the inverse optimal control law.

Index Terms—Attitude control, backstepping, inverse optimality, sta-
bility margins, stabilization.

I. INTRODUCTION

Optimal control of rigid bodies has a long history stemming from
interest in the control of rigid spacecraft and aircraft [1]–[5]. The
main thrust of this research has been directed, however, toward the
time-optimal and fuel-optimal control problems [6]–[11]. The optimal
regulation problem over a finite or infinite horizon has been treated
in the past mainly for the angular velocity subsystem and for special
quadratic costs [10], [12]–[16]. The case of general quadratic costs
has also been addressed in [17]. Optimal control for the complete
attitude problem, i.e., including the orientation equations, is more
difficult and has been addressed in terms of trajectory planning
[18], [19] or in semifeedback form [20]. The main obstruction
in constructing feedback control laws in this case stems from the
difficulty in solving the Hamilton–Jacobi equation, especially when
the cost includes a penalty term on the control effort. In [21] the
authors obtain closed-form optimal solutions for special cases of
quadratic costs without penalty on the control effort. These control
laws asymptotically recover the optimal cost for the kinematics but
may lead to high-gain controllers. When a control penalty is included
in the performance index, linear control laws have been constructed
which provide an upper bound for a quadratic cost in some specified
compact set of initial conditions. Suboptimal results can be obtained
by minimizing this upper bound [21]. Alternatively, one can penalize
only the high-gain portion of the control input. This approach is
based on the optimality results of [22] and it has been used both for
axisymmetric [23] and nonsymmetric bodies [24]. The most advanced
efforts toward designing optimal feedback controllers have been made
in [26] and [27] in the framework on nonlinearH1 design. However,
the authors in [27] solve the Hamilton–Jacobi–Isaacsinequality
which, in general, only guarantees an upper bound of the cost for
the zero-disturbance case.

In this paper we follow an alternative approach in order to derive
optimal feedback control laws for the complete rigid body system.

Manuscript received October 2, 1996. Recommended by Associate Editor,
C. Canudas de Wit. The work of M. Krsti´c was supported in part by the
National Science Foundation under Grant ECS-9624386 and in part by the
Air Force Office of Scientific Research under Grant F496209610223. The
work of P. Tsiotras was supported by the National Science Foundation under
Grant CMS-9624188.
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We employ theinverse optimalcontrol approach which circumvents
the task of solving a Hamilton–Jacobi equation and results in a
controller optimal with respect to a meaningful cost functional. This
approach, originated by Kalman to establish certain gain and phase
margins of linear quadratic regulators [28], was introduced into
nonlinear control in [29], and has been long dormant until it was
recently revived in [30] to develop a methodology for design of
robustnonlinear controllers. While [29] establishes a certain nonlinear
“return difference” inequality which implies robustness to some input
nonlinearities, the full analogy with the linear stability margins was
only recently established in [31].

The inverse optimality approach used in this paper requires the
knowledge of a control Lyapunov function and a stabilizing control
law of a particular form. For the spacecraft problem, we construct
them both using the method of integrator backstepping [32]. The re-
sulting design includes a penalty on the angular velocity, orientation,
and the control torque. The weight in the penalty on the control
depends on the current state and decreases for states away from
the origin. We also present a result which puts a constant (identity)
weight on control and possesses stability margins analogous to the
infinite gain margin and the 60� phase margins for the linear quadratic
regulators. It should be pointed out that global stabilizing controllers
using the inverse optimality approach of [30] have also been presented
in [33].

The paper is organized as follows. Section II reviews the basics
of the inverse optimality approach and presents it in a format
convenient fordesignof controllers. Section IV contains the main
result—the construction of the inverse optimal feedback law for a
rigid spacecraft, which is specialized in Section IV-B to the case of a
symmetric spacecraft. A numerical example in Section V illustrates
the theoretical result of the paper.

II. I NVERSE OPTIMAL CONTROL APPROACH

We consider nonlinear systems affine in the control variable

_x = f(x) + g(x)u (1)

where f : IRn ! IRn and g: IRn ! IRn�m are smooth, vector-
and matrix-valued functions, respectively, withf(0) = 0. Moreover,
x 2 IRn and u 2 IRm denote the state and control vectors,
respectively.

Proposition 1 [29], [31]: Assume that the static state feedback
control law

u = �(x) := �R�1(x)
@V

@x
g(x)

T

(2)

whereR: IRn ! IRn�n is a positive definite matrix-valued function
(i.e., R(x) = RT (x) > 0 for all x 2 IRn), stabilizes the system in
(1) with respect to a positive definite radially unbounded Lyapunov
function V (x). Then the control law

u = �
�(x) := � �(x); � � 2 (3)

is optimal with respect to the cost

J =
1

0

fl(x) + u
T
R(x)ug dt (4)

where

l(x) = � 2�
@V

@x
(f(x) + g(x)�(x))

+ �(� � 2)
@V

@x
g(x)R�1(x)

@V

@x
g(x)

T

: (5)
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Because@V=@x(f(x) + g(x)�(x)) < 0; 8x 6= 0, we have
l(x) > 0 for all x 6= 0 and the performance index in (5) represents
a meaningful cost, in the sense that it includes a positive penalty on
the state and a positive penalty on the control for eachx.

The cost (5) depends on the particular system dynamics. This
is understandable, since by requiringclosed-form solutionsto a
nonlinear optimal feedback problem it is sensible to choose costs
which are compliant with the system dynamics. In other words, the
cost should reflect somehow, and take into account, the form of
the nonlinearity of the system. This restricts of course the choice
of performance indexes. On the other hand, one avoids solving the
often formidable Hamilton–Jacobi equation.

The result of Proposition 1 was given in [31] for� = 2. The
extension that we give here for� � 2 is straightforward and given
without proof. However, this extension already establishes an infinite
gain margin of the inverse optimal controller, a well-known property
of linear quadratic regulators [28]. An equivalent of the phase margin
was also given in [31] and it requires that the functionR�1(x)
be locally bounded. Under this condition, there exists a continuous
positive function�(�) such that

R�1(x) � �(V (x))I; 8x 2 IRn (6)

which follows from the radial unboundedness ofV (x). With this
definition, we state the main result on robustness margins achievable
using the inverse optimality approach. In the linear case, this result
gives precisely the infinite gain margin1 and the 60� phase margin.

Proposition 2 [31]: Under the conditions of Proposition 1 and
assuming thatR�1(x) is locally bounded, the control law

v = ��(x) := �� �(V (x))
@V

@x
g(x)

T

; � � 2 (7)

is globally asymptotically stabilizing for (1) with the input dynamics
u = a(I + P)v, wherea � 1=� is a constant andP is a strictly
passive2 (possibly nonlinear) system.

Note that the form of the control law (7) is

��(x) := ��
@V̂

@x
g(x)

T

(8)

where

V̂ (x) =
V (x)

0

�(r) dr (9)

is a positive definite and radially unbounded Lyapunov function. The
control law (7) minimizes the cost functional

J =
1

0

fl̂(x) + uTug dt (10)

where l̂(x) � �(V )l(x) is positive definite.

III. T HE RIGID BODY MODEL

In this section we use the inverse optimal results of Proposition 1 in
order to derive control laws which are optimal with respect to a cost
which includes a penalty on the control input as well as the angular
position and velocity of a rigid spinning spacecraft. The complete
attitude motion of a rigid spacecraft can be described by the state
equations [24], [25]

_! = J�1S(!)J! + J�1u (11a)

_� =H(�)! (11b)

1See also [35] for a discussion on gain margins for nonlinear optimal
regulators.

2In the sense of the definition in [34].

where! 2 IR3 is the angular velocity vector in a body-fixed frame,
� 2 IR3 is the Cayley–Rodrigues parameters vector [25] describing
the body orientation,u 2 IR3 is the acting control torque, andJ
is the (positive definite) inertia matrix. The symbolS(�) denotes a
3 � 3 skew-symmetric matrix, that is

S(!) :=
0 !3 �!2

�!3 0 !1

!2 �!1 0
(12)

and the matrix-valued functionH: IR3 ! IR3�3 denotes the
kinematics Jacobian matrix for the Cayley–Rodrigues parameters,
given by

H(�) := 1
2 (I � S(�) + ��T ) (13)

whereI denotes the 3� 3 identity matrix. The matrixH(�) satisfies
the following identity [24]:

�TH(�)! =
1 + k�k2

2
�T! (14)

for all !; � 2 IR3, wherek � k denotes the Euclidean norm, i.e.,
kxk2 = xTx, for x 2 IRn.

Observe that the system in (11) is in cascade interconnection,
that is, the kinematics subsystem (11b) is controlled only indirectly
through the angular velocity vector!. Stabilizing control laws for
systems in this hierarchical form can be efficiently designed using
the method ofbackstepping[32]. According to this approach, one
thinks of! as thevirtual control in (11b) and designs a control law,
say!d(�), which stabilizes this system. Subsequently, one designs
the actual control inputu so as to stabilize the system in (11a) without
destabilizing the system in (11b) by forcing, for example,! ! !d.
The main benefits of this methodology is that it is flexible and lends
itself to a systematic construction of stabilizing control laws along
with the corresponding Lyapunov functions.

IV. CONTROL DESIGN

A. Backstepping

The first step for applying the results of Proposition 1 is to
construct a control-Lyapunov function for the system in (11). For
systems with cascade interconnection structure, such as the rigid
body equations, one can use the method of integrator backstepping to
achieve this objective. Sontag and Sussmann were the first to notice
this property for the rigid body in [36], where they used backstepping
to design smooth feedback control laws for an underactuated rigid
body. The same technique was also used in [37] for stabilization of
an axisymmetric spacecraft using two control torques. Here we use
backstepping in order to derive a control-Lyapunov function, along
with a stabilizing controller of a particular form for the system in (11).

Control of the Kinematic Subsystem:Consider the kinematics
subsystem in (11b) with! promoted to a control input and let
the control law

!d = �k1�; k1 > 0: (15)

With this control law the closed-loop system becomes

_� = �k1H(�)�: (16)

The system in (16) is globally exponentially stable. To see this,
consider the following Lyapunov function:

V1(�) =
1
2
k�k2: (17)
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Using (14) the derivative ofV1 along the trajectories of (16) is
given by

_V1 = �
k1
2

(1 + k�k2) k�k2 � �k1V1 < 0; 8 � 6= 0: (18)

Global exponential stability with rate of decayk1=2 follows.
Control of the Full Rigid Body Model:Consider now the error

variable

z = ! � !d = ! + k1�: (19)

The differential equation for the kinematics is written as

_� = �k1H(�)�+H(�)z (20)

and, as shown above, it is globally exponentially stable forz = 0.
The differential equation forz is

_z = J�1S(!)J + k1H(�) z

� k1 J�1S(!)J + k1H(�) �+ J�1u: (21)

We want to findu = u(�; z) such that the system of (20) and (21)
is globally asymptotically stable. To this end, consider the following
candidate Lyapunov function:

V (�; z) = k21V1(�) +
1

2
kzk2 =

k21
2
k�k2 +

1

2
kzk2: (22)

In order to use the results of Proposition 1 we need a stabilizing
control law of the form in (2). Noticing that withV as in (22) one
has

@V

@z
J�1 = zTJ�1 (23)

we are looking for a control law of the form

u = �R�1(�; !)J�1z (24)

whereR(�; !) > 0; 8 �; ! 2 IR3. Taking the derivative ofV along
the trajectories of (20) and (21) one obtains

_V = �
k31
2

(1 + k�k2)k�k2 � k1z
TJ�1S(!)J�+ zTJ�1S(!)Jz

+ zT
k1
2

(I + ��T )z + J�1u (25)

and upon completion of squares

_V = �
k31
4

(1 + 2k�k2) k�k2 �
k31
4

� �
2

k2
1

JS(!)J�1z
2

�
k1
4

I +
2

k1
JS(!)J�1 z

2

+ zT
k1
2

3

2
I + ��T

2

k1
J�1S(!)TJ2S(!)J�1 z

+ J�1u : (26)

Denote

R(�; !) =J�1 k2 +
3

4
k1 I +

k1
2
��T

+
2

k1
S(!)J�1

T

J2S(!)J�1
�1

J�1 (27)

wherek2 > 0. Then (26) becomes

_V = �
k31
4

(1 + 2k�k2)k�k2 �
k31
4

��
2

k2
1

JS(!)J�1z
2

�
k1
4

I +
2

k1
JS(!)J�1 z

2

� k2kzk
2

+ zTJ�1 R�1(�; !)J�1z + u : (28)

With the choice of the feedback control law in (24) and (27), (26)
yields

_V = �
k31
4

(1 + 2k�k2)k�k2 �
k31
4

� �
2

k2
1

JS(!)J�1z
2

�
k1
4

I +
2

k1
JS(!)J�1 z

2

� k2kzk
2 (29)

and the equilibrium� = ! = 0 is rendered globally asymptotically
stable.

From Proposition 1, for� = 2, we get the following result.
Theorem 1: The control law

u� = � J 2k2 +
3

2
k1 I + k1��

T

+
4

k1
J�1S(!)TJ2S(!)J�1 z (30)

minimizes the cost functional

J =
1

0

fl(�; !) + uTR(�; !)ug dt (31)

where

l(�; !) = k31(1 + 2k�k2)k�k2 + 4k2k!+ k1�k
2

+ k31 � �
2

k2
1

JS(!)J�1(!+ k1�)
2

+ k1 I +
2

k1
JS(!)J�1 (! + k1�)

2

(32)

andR(�; !) as in (27).
The performance index in (31) represents a meaningful cost since

l(�; !) > 0 and R(�; !) > 0 for all (�; !) 6= (0; 0); therefore,
it penalizes both the states� and!, as well as the control effortu.
As � and! increase, the penalty on the control decreases. This is
a desirable feature of the optimal control law, since it implies more
aggressive control action far away from the equilibrium. Indeed, as
the system state starts deviating from the intended operating point
the controller allows for increasingly corrective action. For� and!
large we have

l(�; !) � 2k31k�k
4 +

8

k1
JS(!)J�1(!+ k1�)

2

(33a)

R(�; !) �
k1
2
J��T J +

2

k1
S(!)TJ2S(!)

�1

: (33b)

One can see thatk2 has no effect on the large-signal performance.
In addition, larger values ofk1 tend to put more penalty on� while
smaller values ofk1 tend to put more penalty on!. At the same
time, for � and! small we have that

l(�; !) � 2k31k�k
2 + (4k2 + k1)k!+ k1�k

2 (34a)

R(�; !) � k2 +
3

4
k1

�1

J�2 (34b)

so, close to the origin, the control law reduces to a linear quadratic
regulator (LQR)-type linear control law. The control law in this case
minimizes the LQR cost

J =
1

0

[!T �T ]Q
!
�

+ uTRu dt (35)

where

Q =
4k2 + k1 k1(4k2 + k1)

k1(4k2 + k1) k21(3k1 + 4k2)

R =
4

4k2 + 3k1
J�2: (36)

It is important to realize that the optimal control law in (30) avoids the
cancellation of the nonlinearities. Notice, for example, that from (25)
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Fig. 1. Orientation parameters for the kinematics.

Fig. 2. Angular velocity for the kinematics.

one can globally asymptotically stabilize the system by choosing the
control law

u = �k2Jz �
k1

2
J(I + ��

T )z � S(!)J! (37)

which renders

_V = �
k31

2
(1+k�k2)k�k2�k2kzk

2
< 0; 8 (�; z) 6= (0; 0): (38)

There are no obvious optimality characteristics associated with this
control law. In fact, as was pointed out in [31] and [38], controllers
which cancel nonlinearities are, in general,nonoptimal since the

nonlinearity may be actually beneficial in meeting the stabilization
and/or performance objectives.

An undesirable feature of the optimal control law in (30) is that it
depends on the moment of inertia matrixJ , which may not be always
accurately known. The robustness properties of the optimal control
law will be addressed in the future.

B. The Symmetric Case

When the rigid body is symmetric, its inertia matrix is a multiple
of the identity matrix and

S(!)J! � 0; 8! 2 IR3
: (39)
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Fig. 3. Angular velocity!1.

Fig. 4. Orientation parameter�1.

In this case the optimal control law simplifies to

u
� = �J (2k2 + k1)I + k1 ��

T
z (40)

which minimizes the cost in (4) where

l(!; �) = 2k31(1 + k�k2)k�k2 + 4k2k! + k1�k
2 (41a)

R(!; �) =J
�1

k2 +
k1

2
I +

k1

2
��

T

�1

J
�1

: (41b)

This control law reduces to an LQR-type feedback control law close
to the origin with

Q =
4k2 4k1k2
4k1k2 2k21(k1 + 2k2)

and

R =
2

2k2 + k1
J
�2

: (42)

We note that the symmetric case has been previously addressed by
Wie et al. [39], where a Euler parameter description for the kinematics
was used.
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Fig. 5. Control inputu1.

Fig. 6. Norm of R(!; �).

C. A Controller with Stability Margins

We now set out to derive a control law that has stability margins
described in Proposition 2. Lengthy calculations show that

R�1(�; !) ��2max(J) k2 +
3

4
k1 +

9

k1
V (�; z) I;

8 �; ! 2 IR3: (43)

By Proposition 2, the control law

u� = � �2max(J) k2 +
3

4
k1 +

9

2k1
k21k�k

2 + k! + k1�k
2

� J�1(!+ k1�) (44)

where�max(J) is the maximum eigenvalue of the matrixJ , is robust
to the input dynamicsa(I + P), wherea � 1=2 is a constant and
P is a strictly passive (possibly nonlinear) system. For example, the
controller (44) will be stabilizing when passed through linear input
dynamicsa(s + z)=(s + p) for any z � p > 0 and anya � 1=2
because the transfer function(z� p)=(s+ p) is strictly positive real.

V. NUMERICAL EXAMPLE

Numerical simulations were performed to establish the validity
of the theory. We assume a rigid spacecraft with inertia matrix
J = diag(10; 15; 20) kg m. A rest-to-rest maneuver is considered,
thus!(0) = 0. First, we consider the kinematics subsystem in (11b)
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with ! regarded as the control input. Let the initial conditions�(0) =
[1:4735; 0:6115; 2:5521]T in terms of the Cayley–Rodrigues param-
eters. These initial conditions correspond to a principal axis/angle
pair ê = [0:4896; 0:2032; 0:8480]T and� = 2:5 rad and describe
an almost “upside-down” initial orientation. The trajectories of the
system with the control law in (15) withk1 = 0:5 are shown in
Figs. 1 and 2. The exponential stability of the closed-loop system is
evident from these figures. At this step the choice ofk1 is basically
dictated by the required speed for the completion of the rest-to-rest
maneuver.

For the stabilization of the complete system we use the control
law in (30). The state trajectories for different values of the gain
k2 are depicted in Figs. 3 and 4. The optimal trajectories have a
very uniform behavior which is essentially independent of the value
of k2 and they follow very closely the corresponding trajectories
for the kinematics subsystem. From Fig. 5 it is seen that the control
action varies a great deal, however, withk2. The initial control action
consists, essentially, in making! ! �k1�. This is clearly shown in
Fig. 3.

Finally, Fig. 6 shows the time history of the Frobenious norm of
the control penalty matrixR(!; �). The control penalty is decreased
rapidly at the initial portion of the trajectory when increased control
action is necessary in order to “match”! with !d within a short
period of time.

VI. CONCLUSIONS

Due to the difficulty in obtaining closed-form solutions to the
Hamilton–Jacobi–Bellman equation, thedirect optimal control prob-
lem for nonlinear systems remains open. However, the knowledge of
a control Lyapunov function allows us to solve theinverseoptimal
control problem, i.e., find a controller which is optimal with respect
to a meaningful cost. The inverse optimal stabilization design for a
rigid spacecraft in this paper is, to the authors’ knowledge, the first
feedback control law that minimizes a cost that incorporates a penalty
on both the state (angular velocity and orientation) and the control
effort (torque).
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[32] M. Krstić, I. Kanellakopoulos, and P. Kokotovi´c, Nonlinear and Adap-
tive Control Design. New York: Wiley, 1995.

[33] M. Osipchuk, S. Bharadwaj, and K. Mease, “Achieving good perfor-
mance in global attitude stabilization,” inProc. American Control Conf.,
Albuquerque, NM, 1997, pp. 403–407.

[34] C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback
equivalence, and the global stabilization of minimum phase nonlinear
systems,”IEEE Trans. Automat. Contr.,vol. 36, pp. 1228–1240, 1991.

[35] S. T. Glad, “On the gain margin of nonlinear and optimal regulators,”
IEEE Trans. Automat. Contr.,vol. 29, pp. 615–620, 1984.

[36] E. Sontag and H. Sussmann, “Further comments of the stabilizability
of the angular velocity of a rigid body,”Syst. Contr. Lett.,vol. 12, pp.
213–217, 1988.

[37] P. Tsiotras and J. M. Longuski, “Spin-axis stabilization of symmetric
spacecraft with two control torques,”Syst. Contr. Lett.,vol. 23, pp.
395–402, 1994.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 5, MAY 1999 1049

[38] R. A. Freeman and P. V. Kokotović, “Optimal nonlinear controllers for
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Systems with Finite Communication
Bandwidth Constraints—II: Stabilization

with Limited Information Feedback

Wing Shing Wong and Roger W. Brockett

Abstract—In this paper a new class of feedback control problems is
introduced. Unlike classical models, the systems considered here have
communication channel constraints. As a result, the issue of coding
and communication protocol becomes an integral part of the analysis.
Since these systems cannot be asymptotically stabilized if the underlying
dynamics are unstable, a weaker stability concept called containability
is introduced. A key result connects containability with an inequality
equation involving the communication data rate and the rate of change
of the state.

Index Terms—Asymptotic stability, containability, feedback control,
Kraft inequality.

I. INTRODUCTION

In the early part of this decade several papers appeared which
investigated various information related aspects of decision and
control. These included work by Delchamps [4], Kabamba and
Hara [6], and Williamson [10]. For example, Delchamps studied the
problem of stabilizing a discrete-time linear system with quantized
state feedback. Quantization is, of course, a crucial consideration,
but informationally related issues involve a much wider range of
questions. In a previous paper by the authors [11], a class of
estimation problems with communication constraints was introduced
and analyzed. It was shown, in particular, that the performance of
estimation algorithms is closely related to the data rate and the
time scale of the underlying dynamical system. The motivation for
investigating these systems came from a variety of sources including
neurobiological systems, social-economical systems, and remotely
controlled systems, (see, for example, the problem of power control
in wireless communication studied in [9]). This class of systems is
substantially different from those studied in [4], [6], and [10] because
the issues of coding, communication protocol, and delays are not
only explicitly considered but actually form the focal point of the
investigation. Recent papers by Borkar and Mitter [2] and Li and
Wong [8] also adopt a similar perspective.

In this paper, we continue the analysis of communication con-
strained systems, studying the effect of the communication rate on
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a class of linear feedback control problems. The model studied here
can be viewed as a variant of the classical linear feedback control
problem. However, unlike the classical problem where the assumption
is that the plant and the feedback controller are either colocated or
they can communicate with each other over a channel with infinite
capacity, the crux of the problem studied here is that the plant and
the feedback controller communicate over a digital channel with
finite capacity. This simple change in the basic assumption has a
substantial effect on the complexity of the problem. First of all, the
issue of coding and communication protocol becomes an integral part
of the analysis and cannot be decoupled from the control law design.
Second, there is an inherent delay in the feedback control that further
complicates matters. In particular, one simple consequence is that
such communication constrained systems can never be asymptotically
stabilized if the uncontrolled dynamics are unstable. Instead, a weaker
stability concept calledcontainability is introduced. The concept of
containability is closely related to what has been calledpractical
stability [7]. A key result in this paper connects containability with
the Kraft inequality [3] and a newly derived inequality that involves
the communication data rate and the rate of change of the state.

II. THE FINITE COMMUNICATION CONTROL PROBLEM

Consider a system with linear dynamics

d

dt
x(t) = Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t)

(1)

where the statex(t) is an element in<n, u(t) is a m-dimensional
vector of control,y(t) is ap-dimensional observation, andA, B, and
C aren by n, n by m, andp by n constant matrices, respectively.

The observation ofx(t), y(t) is transmitted to a remote decision-
maker for computing the appropriate level of feedback control. The
communication channel is assumed to have a data rate ofR bits
per second. For simplicity, we ignore the detailed implementation
issues in the communication protocol and simply assume that it takes
� = 1=R s to send one bit from the plant to the controller and vice
versa from the controller to the plant. Hence, if a bit is sent at time
zero, it will be received at time� at the receiver. Unlike classical
models, the observed information is not transmitted continuously.
Hence, we assume thatx(t) is sampled at time instancesfrig1i=0
with r0 = 0; the other sample instances will be defined later. Before
an observation can be transmitted, it must be quantized and coded
for the transmission. We assume thatprefix codesare used so that
the termination of a codeword is immediately recognizable [3]. The
quantization and coding function can be symbolically represented by
a functionh from the state spaceRp to B whereB stands for the
set of finite length strings of symbols from aD-ary symbol set.ci,
the ith transmitted codeword from the plant to the controller, can be
represented as

ci = h(y(ri)): (2)

It is assumed in this paper thath is a measurable function so that
h�1(c) for any codewordc is measurable.

We use variable length codewords. The codeword length function
is denoted byl. Denote the time theith codewordci is received
at the feedback decision-maker bysi. Once the coded observation
is received, it is decoded and the feedback control is computed and
then coded for transmission back to the plant. We assume there is
no computation delay. However, there is a transmission delay due
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