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Abstract—In this paper, we address the design and
analysis of multi-variable extremum seeking for static maps
subject to arbitrarily long time delays. Both Gradient and
Newton-based methods are considered. Multi-input sys-
tems with different time delays in each individual input
channel as well as output delays are dealt with. The
phase compensation of the dither signals and the inclusion
of predictor feedback with a perturbation-based (averag-
ing-based) estimate of the Hessian allow to obtain local
exponential convergence results to a small neighborhood
of the optimal point, even in the presence of delays. The
stability analysis is carried out using backstepping trans-
formation and averaging in infinite dimensions, capturing
the infinite-dimensional state due the time delay. In partic-
ular, a new backstepping-like transformation is introduced
to design the predictor for the Gradient-based extremum
seeking scheme with multiple and distinct input delays.
The proposed Newton-based extremum seeking approach
removes the dependence of the convergence rate on the
unknown Hessian of the nonlinear map to be optimized,
being user-assignable as in the literature free of delays. A
source seeking example illustrates the performance of the
proposed delay-compensated extremum seeking schemes.

Index Terms—Averaging in infinite dimensions, back-
stepping transformation, delay systems, Gradient and
Newton-based extremum seeking (ES), predictor feedback,
source seeking.

I. INTRODUCTION

EXTREMUM seeking (ES) is a real-time, model-
independent adaptive control technique for tuning param-

eters to optimize an unknown nonlinear map. The most
popular ES approach relies on a small periodic excitation, usu-
ally sinusoidal, to disturb the parameters being tuned [1]–[7].
This approach quantifies the effects of the parameters on the
output of the nonlinear map, then uses that information to
generate the search of the optimal values.

In recent years, there have been a lot of advances in theory
and applications of ES. This list includes the proof of local
[1]–[3] or semi-global [6] stability properties of the search
algorithm even in the presence of local extrema [7], its exten-
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sion to the multi-variable case [8] and advances in parameter
convergence and performance improvement [4], [5], [9], [11].
The book [13] also presents stochastic versions of the algorithm
with filtered noise perturbation signals.

Despite the large number of publications on delay compen-
sation via predictor feedback [14], to the best of our knowledge,
there is no work in the literature which rigorously concerns
ES in the presence of time delays. The motivation for this
study is that there are applications in which post-processing
of the plant’s measured output translates into a considerable
delay in generating the control input to be applied to the plant.
Such is the case with the image processing that takes place
in laser-based light sources for photolithography in semicon-
ductor manufacturing [15], [16], or in various chemical and
biochemical processes where analysis of samples takes place.
For instance, the phase lag observed in batch cultures applied
to bioreactors [17], [18] illustrates the delay phenomenon oc-
curring in the biological optimizing process. These delays are
typically known, constant, and relatively large.

In this paper, we propose a solution to the problem of
designing multi-variable ES algorithms for delayed systems via
predictors. Predictor feedback requires a known model. In our
problem the model (and, most notably, the Hessian of the map)
is unknown. So we present two approaches to construct a pre-
dictor based on perturbation-based estimates of the model. One
of our approaches is based on gradient optimization where we
estimate the Hessian [8], [20] for the purpose of implementing
a predictor that compensates the delay. Our other approach
is based on the Newton optimization where we estimate the
Hessian’s inverse for the purpose of making the convergence
rate independent of the unknown parameters of the map and,
as a bonus, obviate the predictor design because the average
plant for which the predictor is designed becomes, essentially,
an integrator with a known gain.

We employ a semi-model-based approach due to the treat-
ment of the delay. While we assume a known delay, our pre-
dictor construction follows a model-free approach. We do not
estimate the map parametrically as was done in [4]–[7], [9]–
[12] for ES in the absence of delays—and, in particular, we do
not estimate the Hessian parametrically. We estimate the Hessian
with the same demodulating signal used to seek the extremum,
but with a different additive perturbation. So we employ a pre-
dictor that is “partially model-based”: the delay is known but the
plant model is unknown and is estimated using perturbations.

In order to compensate multiple distinct delays in multi-
variable ES, we have had to develop an extension, from scratch,
of the predictor feedback approach for the multi-input case with
distinct delays. We developed an elegant and explicit solution
to this problem through the introduction of a new successive-
backstepping transformation [19].

Our paper also presents an innovation in the analysis method-
ology. Our analysis presents a carefully constructed sequence
of analytical steps, a predictor-based infinite-dimensional
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backstepping transformation, a synthesist of a Lyapunov func-
tional, and a computation of a Lyapunov estimate, for the
overall infinite-dimensional system with nonlinearities, peri-
odic perturbations, and distributed delays. The analysis process
involving so many steps has a large number of possible
permutations—all of which but one would be wrong. We show
how to properly sequence the steps of averaging, backstepping,
and Lyapunov functional analysis, to prove stability. This new
“analysis pathway” will serve the needs of future researchers
who deal with ES under delays.

Inspired by the reference [21], numerical results for an
autonomous vehicle target tracking problem without position
measurements and under actuator/sensor delays is portrayed.

Notation and Norms: The 2-norm of a finite-dimensional
(ODE) state vector X(t) is denoted by single bars, |X(t)|. In
contrast, norms of functions (of x) are denoted by double bars.
By default, ‖ · ‖ denotes the spatial L2[0, D] norm, i.e., ‖ · ‖ =
‖ · ‖L2[0,D]. For example, the L2[0, D] norm of the PDE state

variable u(x, t) in x ∈ [0, D] is ‖u(t)‖ = (
∫ D

0 u2(x, t)dx)
1/2

.
Now, consider a generic nonlinear system ẋ = f(t, x, ε), where
x ∈ R

n, f(t, x, ε) is periodic in t with period T , i.e., f(t+
T, x, ε) = f(t, x, ε). Thus, for ε > 0 sufficiently small, we
can obtain its average model given by ẋav = fav(xav), with
fav(xav) = 1/T

∫ T

0 f(τ, xav, 0)dτ , where xav(t) denotes the
average version of the state x(t) [22]. As defined in [22], a
vector function f(t, ε) ∈ R

n is said to be of order O(ε) over
an interval [t1, t2] if there exist positive constants k and ε∗ such
that |f(t, ε)| ≤ kε, ∀ ε ∈ [0, ε∗] and ∀ t ∈ [t1, t2].

II. PROBLEM STATEMENT

Multi-parameter or multi-variable ES considers applications
in which the goal is to maximize (or minimize) the scalar
output y ∈ R of an unknown and convex nonlinear static map
y = Q(θ) by varying the input vector θ = [θ1 θ2 , . . . , θn]

T .

A. Basic Idea of ES Algorithms Free of Delays

In maximum seeking problem, there exists θ∗ ∈ R
n such that

∂Q(θ∗)

∂θ
=0 (1)

∂2Q(θ∗)

∂θ2
=H < 0, H = HT (2)

where θ∗ and H are considered unknown. Referring to the
Taylor series expansion of the nonlinear map around the peak
θ∗, we have

y = y∗ +
1

2
(θ − θ∗)TH(θ − θ∗) +R(θ − θ∗) (3)

where R(θ − θ∗) stands for higher order terms in θ − θ∗ and
y∗ = Q(θ∗) is the extremum.

The basic Gradient ES algorithm measures the scalar signal
y(t) and with the help of the dither signals

S(t) = [a1 sin(ω1t) , . . . , an sin(ωnt)]
T (4)

M(t) =

[
2

a1
sin(ω1t) , . . . ,

2

an
sin(ωnt)

]T
(5)

construct G(t) = M(t)y(t) to estimate the unknown gradient
∂Q(θ)/∂θ of the nonlinear map Q(θ). The actual input θ(t) :=

θ̂(t) + S(t) is based on the real-time estimate θ̂(t) of θ∗, but
is perturbed by S(t). The estimate θ̂ is generated with the in-
tegrator θ̂ = (K/s)G which locally approximates the gradient

update law ˙̂
θ(t) = KH(θ̂(t)− θ∗), tuning θ̂(t) to θ∗, if θ̂(0)

is close of θ∗. The adaptation gain (diagonal matrix K > 0)
controls the speed of estimation, but it cannot be arbitrarily
increased a priori due to the limitations on the averaging
analysis [1].

To guarantee convergence, the user should choose appropri-
ate frequencies ωi �= ωj and nonzero small amplitudes ai. The
former is a key condition that differentiates the multi-input case
[8] from the single-input case [1]. The sinusoid feature of (4)
and (5) is only one choice for the dither signals—many other
perturbations, from square waves to stochastic noise, can be
used in lieu of it, provided they are of zero mean [13], [23].

However, the convergence rate depends on the unknown
Hessian H . This weakness of the Gradient-based ES algorithm
is removed with the Newton-based ES and will be detailed
later on in the paper. Briefly, a multiplicative excitation denoted
by N(t) is introduced to generate the estimate of the Hessian
H as Ĥ(t) = N(t)y(t) [20]. According to [8], then a Riccati
differential equation inverts this Hessian’s estimate and cancels
out the term H from the convergence rate, making it user-
assignable. A fair overview of Gradient- and Newton-based
versions of ES free of delays can be found in [3].

B. Input-Output Delays

The main contribution of the present paper is to additionally
consider that the nonlinear map to be optimized in real time
is subject to delays in the actuator path and/or measurement
system. In order to start to formulate the problem, we can
initially assume the simplest case of delays in the scalar output.
In this case, there exists a constant delay denoted by Dout ≥ 0
in the measurement system such that the output is given by

y(t) = Q (θ(t−Dout)) . (6)

However, it is not difficult to show that input delays could be
handled in the same way noting that input delays, denoted by
Din ≥ 0, can be moved to the output of the static map. The re-
striction here is that the delay must be the same in each individ-
ual input channel. The scenario when input and output delays
occur simultaneously could also be coped with assuming that
the total delay to be counteract would be Dtotal = Din +Dout.

In a more general framework, we can assume the following
input-output delay representation

y(t) = Q (θ(t−D)) = e−Ds [Q (θ(t))] (7)

where the constant delay matrix D = diag{D1, . . . , Dn} must
have the same component delays Di in each individual input
channel of θ(t) ∈ R

n, i.e., D1 ≡ D2 ≡ · · · ≡ Dn ≥ 0 for non
distinct input delays (or output delays). Nevertheless, the main
advantage of this representation is the possibility of including
multiple and distinct input delays. In this case, without loss of
generality, we assume that the inputs have distinct delays which
are ordered so that

D = diag{D1, . . . , Dn}, 0 ≤ D1 ≤ D2 ≤ · · · ≤ Dn. (8)

In addition, we consider that the constants Di must be known
for all i ∈ {1, 2, . . . , n}. We mix the time and frequency
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domains in (7) by using the brackets [·] to denote that the
transfer function acts as an operator on a time-domain function.

C. Locally Quadratic Maps With Delays

Without loss of generality, let us consider the maximum
seeking problem such that the maximizing value of θ is denoted
by θ∗, satisfying (1) and (2). For the sake of simplicity, we
assume that the nonlinear map (7) is at least locally quadratic

Q(θ) = y∗ +
1

2
(θ − θ∗)TH(θ − θ∗) (9)

within a neighborhood of the unknown extremum point
(θ∗, y∗), where θ∗ ∈ R

n, y∗ ∈ R andH = HT < 0 is the n× n
unknown Hessian matrix of this static map.

By plugging (9) into (7), we obtain the locally quadratic
static map with delay:

y(t) = y∗ +
1

2
(θ(t−D)− θ∗)T H (θ(t−D)− θ∗) . (10)

In the general case of multiple and distinct delays in the control
channels, the delayed input vector can be represented by

θ(t−D) :=

⎡
⎢⎢⎢⎣
θ1(t−D1)
θ2(t−D2)

...
θn(t−Dn)

⎤
⎥⎥⎥⎦ . (11)

D. System and Signals

Let θ̂ be the estimate of θ∗ and

θ̃(t) = θ̂(t)− θ∗ (12)

be the estimation error. Moreover, let us define

G(t) = M(t)y(t), θ(t) = θ̂(t) + S(t) (13)

where the vector dither signals are given by

S(t) = [a1 sin (ω1(t+D1)) , . . . , an sin (ωn(t+Dn))]
T (14)

M(t) =

[
2

a1
sin(ω1t) , . . . ,

2

an
sin(ωnt)

]T
(15)

with nonzero perturbation amplitudes ai.
The elements of the n× n demodulating matrix N(t) to

construct the signal

Ĥ(t) = N(t)y(t) (16)

are given by:

Ni,i(t) =
16

a2i

(
sin2(ωit)−

1

2

)
(17)

Ni,j(t) =
4

aiaj
sin(ωit) sin(ωjt), i �= j. (18)

The probing frequencies ωi’s can be selected as

ωi = ω′
iω = O(ω), i ∈ 1, 2, . . . , n (19)

where ω is a positive constant and ω′
i is a rational number. One

possible choice is given in [8] as

ω′
i �∈
{
ω′
j,

1

2

(
ω′
j + ω′

k

)
, ω′

j + 2ω′
k, ω

′
j + ω′

k ± ω′
l

}
(20)

for all distinct i, j, k and l.

Notice that (14) is different from the additive dither signal
(4) used in standard ES algorithms free of delays. As it will
be shown, the input/output delays can always be transferred for
analysis purposes to the integrator output of the estimation error
dynamics (or, equivalently, to its input), thus, the phase shift
+ωiDi is applied to compensate the delay effect in the dither
signal S(t).

E. Basic Averaging Properties

In [8], the following two averaging properties were proved:

1

Π

Π∫
0

N(σ)ydσ =H (21)

1

Π

Π∫
0

M(σ)ydσ =Hθ̃av (22)

if a quadratic map as in (9) is considered, which are still valid
even in the presence of delays. In other words, we obtain the
average signals

Ĥav =(Ny)av = H (23)

Gav(t) = (My)av = Hθ̃av(t−D) (24)

for Ĥ(t) and G(t) with

θ̃av(t−D) =
[
θ̃av1 (t−D1) , . . . , θ̃

av
n (t−Dn)

]T
(25)

and Π defined as

Π = 2π × LCM

{
1

ωi

}
, ∀ i ∈ {1, 2, . . . , n} (26)

where LCM stands for the least common multiple.
Basically, we can say that the signals Ĥ(t) and G(t) provide

averaging-based estimates for the Hessian and the delayed
Gradient of the nonlinear map (9) and (10). These properties
are fundamental for the predictor design and stability analysis
of the Gradient and Newton-based ES schemes developed in the
next sections.

III. GRADIENT-BASED ES WITH OUTPUT DELAYS

For the sake of clarity, we start considering output delays
(or same delay in the input channels) for Gradient ES before
moving on to the more complex case of multiple and distinct
input delays. Therefore, the variables Di in (10) and (11) are
equal along of this section and D > 0 can be faced as a single
known constant. The proposed Gradient ES under output delays
is shown in the block diagram of Fig. 1.

A. Averaging Analysis Without Predictor Compensation

If the filtered predictor based controller was not applied in
Fig. 1, but the standard Gradient ES [1] feedback law U(t) =

KG(t), one could write ˙̃θ(t) =
˙̂
θ(t) = KG(t), where K > 0

is a n× n positive diagonal matrix. From (13), the closed-loop
system equation would be written as:

˙̃θ(t) = KM(t)y(t) (27)
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Fig. 1. Block diagram of the basic prediction scheme for output-
delay compensation in multi-variable Gradient-based ES, where the
delay D ≥ 0 is a simple scalar. The predictor with a perturbation-
based estimate of the Hessian obeys equation (38), and the additive-
multiplicative dither signals are given by: S(t)=[a1 sin(ω1(t +D)), . . . ,
an sin(ωn(t+D))]T and M(t)=[(2/a1) sin(ω1t), . . . ,
(2/an) sin(ωnt)]T . The demodulating matrix N(t) is computed
by (17) and (18).

and using the identity (22) to average (27), we would obtain the
following average model:

dθ̃av(t)

dt
= KHθ̃av(t−D). (28)

From (28), it is clear that the equilibrium θ̃eav = 0 of the average
system is not necessarily stable for arbitrary values of the
delay D. This reinforces the necessity of applying the predic-
tion U(t) = KG(t+D), ∀ t ≥ 0, to stabilize the system.

B. Predictor Feedback With a Perturbation-Based
Estimate of the Hessian

From Fig. 1, the error dynamics of (12) is written as

˙̃
θ(t−D) = U(t−D). (29)

The average version of the vector signal (13) is given by (24).
Hence, from (29), the following average models can be obtained

˙̃θav(t−D) =Uav(t−D) (30)

Ġav(t) =HUav(t−D) (31)

where Uav ∈ R
n denotes the resulting average control for

U ∈ R
n. Given the stabilizing diagonal matrix K > 0 for the

undelayed system, our wish is to have a controller that achieves

Uav(t) = KGav(t+D), ∀ t ≥ 0 (32)

and it appears to be nonimplementable since it requires future
values of the state. However, by applying the variation of
constants formula to (31) we can express the future state as

Gav(t+D) = Gav(t) +H

t+D∫
t

Uav(τ −D)dτ (33)

where the current state Gav(t) is the initial condition. Shifting
the time variable under the integral in (33), we obtain

Gav(t+D) = Gav(t) +H

t∫
t−D

Uav(τ)dτ (34)

which gives the future state Gav(t+D) in terms of the average
control signal Uav(τ) from the past window [t−D, t]. It yields
the following feedback law

Uav(t) = K

⎡
⎣Gav(t) +H

t∫
t−D

Uav(τ)dτ

⎤
⎦ . (35)

Hence, from (34) and (35), the average feedback law (32) can
be obtained indeed as desired. Consequently,

˙̃θav(t) = KGav(t+D), ∀ t ≥ 0. (36)

Therefore, from (24), one has

dθ̃av(t)

dt
= KHθ̃av(t), ∀ t ≥ D (37)

with an exponentially attractive equilibrium θ̃eav = 0, since
KH < 0. It means that the delay is perfectly compensated in
D seconds, namely, the system evolves as if the delay were
absent after D seconds.

The feedback law (35) seems to be implicit since Uav is pre-
sent on both sides. However, the input memory Uav(τ), where
τ ∈ [t−D, t], is part of the state of an infinite-dimensional
system, and thus the control law is effectively a complete-
state-feedback controller. However, the analysis sketched above
in the spirit of “finite spectrum assignment” does not cap-
ture the entire cascade system consisting of the ODE in (29)
and the infinite-dimensional (PDE) subsystem of the input
delay.

Another difficulty arises in the application of Averaging
Theorem to infinite dimensions (see Appendix). For the class
of functional differential equations (FDEs) studied here, there
is no “off the shelf” averaging theorem result oriented for input-
output delays. In general, the theory applies only to state-delay
systems. This fact lead us to propose a simple modification of
the basic predictor-based controllers, which employs a low-pass
filter [24], to achieve our control objectives.

Thus, the averaging-based predictor feedback used in order
to compensate output delays is redefined by

U(t) =
c

s+ c

⎧⎨
⎩K

⎡
⎣G(t) + Ĥ(t)

t∫
t−D

U(τ)dτ

⎤
⎦
⎫⎬
⎭ (38)

where c > 0 is sufficiently large. The predictor feedback is of
the form of a low-pass filtered of the non-average version of
(35). With some abuse of notation, now we mix again the time
and frequency domains in (38) by using the braces {·} to denote
that the lag transfer function acts as an operator on a time-
domain function.

The predictor (38) is infinite-dimensional because the inte-
gral involves the control history over the interval [t−D, t].
Furthermore, it is averaging-base (perturbation-based) because
Ĥ is updated according to the estimate (16) of the unknown
Hessian H , satisfying the averaging property (21).
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Fig. 2. Block diagram of Gradient-based ES for multiple-input de-
lay compensation, where D = diag{D1, . . . ,Dn}. The predictor feed-
back is implemented according to (49). The additive dither signal
is S(t) = [a1 sin(ω1(t +D1)) , . . . , an sin(ωn(t +Dn))]T and the
demodulating signals M(t) and N(t) are given by M(t) =
[(2/a1) sin(ω1t) , . . . , (2/an) sin(ωnt)]T and (17), (18), respectively.

IV. GRADIENT-BASED ES WITH MULTIPLE AND

DISTINCT INPUT DELAYS

Now, let us consider the case where the input delaysDiare dis-
tinct and satisfy (8). From Fig. 2 and (12), we can easily write

˙̃θ(t−D) =

⎡
⎢⎢⎢⎣
U1(t−D1)
U2(t−D2)

...
Un(t−Dn)

⎤
⎥⎥⎥⎦, ˙̃θi(t−Di) = Ui(t−Di) (39)

and the average model below by using (24):

Ġav(t) =

n∑
i=1

HiU
av
i (t−Di) = H

⎡
⎢⎢⎢⎣
Uav
1 (t−D1)

Uav
2 (t−D2)

...
Uav
n (t−Dn)

⎤
⎥⎥⎥⎦ (40)

since

˙̃
θav(t−D) =

⎡
⎢⎢⎢⎣
Uav
1 (t−D1)

Uav
2 (t−D2)

...
Uav
n (t−Dn)

⎤
⎥⎥⎥⎦ . (41)

In(40), Uav
i (t)∈R for all i∈{1,2, . . . ,n} are the elements of the

average control Uav(t) ∈ R
n and the Hessian matrix H = (H1,

H2, . . . , Hn)∈R
n×n. In this case, there always exists a positive

diagonal matrix K=(K1,K2, . . . ,Kn)
T ∈ R

n×n such that
HK is Hurwitz. For the sake of clarity, we say that Hi are col-
umn vectors of H and KT

i are row vectors of K, i = 1, . . . , n.
Henceforth, the purpose of this section is to find a control

feedback which has to perform prediction of the cross-coupling
of the channels in (40). By applying the variation of constants
formula to (40) gives

Gav(t+Di) = Gav(t) +

n∑
j=1

t−(Dj−Di)∫
t−Dj

HjU
av
j (τ)dτ (42)

such that the predictor feedback realizes

Uav
i (t) = KT

i Gav(t+Di). (43)

From (8), each control input Uav
i arrives at the plant at a

different time. Since the system is causal, values of Uav
j with

j > i on the interval (t− (Dj −Di), t) provide no information

for prediction of Gav(t+Di). On the other hand, values of
Uav
j with j < i on the interval (t, t+Di −Dj) are necessary

to calculate (42), but they are unavailable future values. For
i, j ∈ {1, . . . , n} with i < j, we have

t−(Dj−Di)∫
t−Dj

(∗)dτ =

t∫
t−Dj

(∗)dτ +

t+Di−Dj∫
t

(∗)dτ. (44)

Differently from the results in Section III, the variation of
constants formula contains an extra term

∫ t+Di−Dj

t (∗)dτ .
In what follows, we will provide a predictor based controller

that is more consistent with (42). To derive it, we have had
to extend the backstepping approach [14] introducing a new
successive backstepping-like transformation [19]. The explicit
equation of this transformation of the delay state is given in the
proof of the main theorem.

First of all, let us define the following notation:

Ai :=

i∑
j=1

HjK
T
j , i ∈ {0, 1, 2, . . . , n} (45)

being obvious that A0 = 0n×n and An = HK . In addition, the
matrix-valued function Φ can be represented as [19]

Φ(x, ζ) =eAi−1(x−Di−1)eAi−2(Di−1−Di−2) · · · eAj−1(Dj−ζ),

Di−1 ≤ x < Di, Dj−1 ≤ ζ < Dj (46)

for any i, j ∈ {1, 2, . . . , n} satisfying i > j, and

Φ(x, ζ) = eAi−1(x−ζ), Di−1 ≤ ζ ≤ x ≤ Di (47)

∀ i ∈ {1, 2, . . . , n}, where we need to treat D0 as 0.
In a few words, Φ can be seen as the state-transition matrix

of the time varying system Ẋ(t) = A(t)X(t), ∀ t ≥ 0, where
A(t) ∈ R

n×n is a piecewise constant function defined by

A(t) =

⎧⎪⎨
⎪⎩
0n×n, t ≤ D1,

Ai, Di < t ≤ Di+1, i = 1, . . . , n− 1,

An, t > Dn.

(48)

As it will be shown in the next section, the following predictor-
based controller

Ui(t) =
c

s+ c

⎧⎪⎨
⎪⎩KT

i Φ̂(Di, 0)G(t)+

KT
i

⎛
⎜⎝ i∑

j=1

t∫
t−Dj

Φ̂(Di, τ − t+Dj)Ĥj(t)Uj(τ)dτ+

n∑
j=i+1

t∫
t−Di

Φ̂(Di, τ − t+Di)Ĥj(t)Uj (τ − (Dj −Di)) dτ

⎞
⎟⎠
⎫⎪⎬
⎪⎭

(49)

guarantees exponential stability for the closed-loop system,
with Φ̂ defined as in (46) and (47) but replacing Ai in (45)
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by Âi(t) :=
∑i

j=1 Ĥj(t)K
T
j , the vector signal G(t) given

in (13) and Ĥj being the columns of the Hessian estimate
Ĥ = (Ĥ1, Ĥ2, . . . , Ĥn) ∈ R

n×n given by (16). For ω in (19)
sufficiently large and ai in (14)–(16) sufficiently small, the
average version of the predictor-feedback form (49) can be
numerically approximated by

Uav
i (t) =

c

s+ c

⎧⎪⎨
⎪⎩KT

i Φ(Di, 0)Gav(t)+

KT
i

⎛
⎜⎝ i∑

j=1

t∫
t−Dj

Φ(Di, τ − t+Dj)HjU
av
j (τ)dτ+

n∑
j=i+1

t∫
t−Di

Φ(Di, τ− t+Di)HjU
av
j (τ− (Dj−Di)) dτ

⎞
⎟⎠
⎫⎪⎬
⎪⎭.
(50)

From (48), it is possible to show the term between braces in
(50) by itself, if applied to (40), is enough to conclude that
the closed-loop system Ġav(t) = AnGav(t) is totally delay-
compensated ∀ t ≥ Dn, since An = HK is Hurwitz. However,
due to technical limitations involving averaging results in infi-
nite dimensions, we must include a low-pass filter c/(s+ c) in
the predictor control loop, as was done in (49) and (50).

V. STABILITY ANALYSIS FOR GRADIENT-BASED ES
UNDER TIME DELAYS

The exponential stability estimate in L2-norm of the closed-
loop infinite-dimensional system is stated in the next theorem
for Gradient ES subject to multiple and distinct input delays.

Theorem 1 (Multiple and Distinct Input Delays): Consider
the control system in Fig. 2 with multiple and distinct input
delays according to (7)–(11) and locally quadratic nonlinear
map (9). There exists c∗ > 0 such that, ∀ c ≥ c∗, ∃ω∗(c) >
0 such that, ∀ω > ω∗, the closed-loop delayed system (39)
and (49) with state θ̃i(t−Di), Ui(τ), ∀ τ ∈ [t−Di, t] and
∀ i ∈ {1, 2, . . . , n}, has a unique locally exponentially stable
periodic solution in t of period Π, denoted by θ̃Πi (t−Di),
UΠ
i (τ), ∀ τ ∈ [t−Di, t], satisfying, ∀ t ≥ 0:⎛
⎝ n∑

i=1

[
θ̃Πi (t−Di)

]2

+
[
UΠ
i (t)

]2
+

t∫
t−Di

[
UΠ
i (τ)

]2
dτ

⎞
⎠

1
2

≤ O
(
1

ω

)
. (51)

Furthermore,

lim sup
t→+∞

|θ(t)− θ∗| =O (|a|+ 1/ω) (52)

lim sup
t→+∞

|y(t)− y∗| =O
(
|a|2 + 1/ω2

)
(53)

where a = [a1, a2 , . . . , an]
T .

Proof: The demonstration follows the Steps 1 to 7.

Step 1: Transport PDE for Delay Representation
Each individual delay Di in equation (39) can be represented

using a transport PDE as

˙̃θi(t−Di) = ui(0, t) (54)

∂tui(x, t) = ∂xui(x, t), x ∈ [0, Di] (55)

ui(Di, t) =Ui(t), i = 1, 2, . . . , n (56)

where the solution of (55), (56) is

ui(x, t) = Ui(t+ x−Di) (57)

and u(x, t) = [u1(x, t), . . . , un(x, t)]
T is the state of the total

delay infinite-dimensional subsystem.
Step 2: Average Model of the Closed-loop System
From (54)–(56), we can rewrite (40) as

Ġav(t) =

n∑
i=1

Hiu
av
i (0, t) (58)

∂tu
av
i (x, t) = ∂xu

av
i (x, t), x ∈ [0, Di] (59)

uav
i (Di, t) =Uav

i (t), i = 1, 2, . . . , n (60)

where the solution of (59), (60) is

uav
i (x, t) = Uav

i (t+ x−Di) (61)

and the PDE state is uav(x, t) = [uav
1 (x, t), . . . , uav

n (x, t)]T .
By representing the integrand in (50) using the transport PDE

state, one has the average control law

Uav
i (t) =

c

s+ c

⎧⎪⎨
⎪⎩KT

i

⎛
⎜⎝Φ(Di, 0)Gav(t)

+

n∑
j=1

φj(Di)∫
0

Φ(Di, σ)Hju
av
j (σ, t)dσ

⎞
⎟⎠
⎫⎪⎬
⎪⎭ (62)

with φj : [0, Dn] → [0, Dj], j ∈ {1, 2, . . . , n} being the func-
tion defined by

φj(x) =

{
x, 0 ≤ x ≤ Dj

Dj , Dj < x < Dn.
(63)

Finally, substituting (62) into (60), we have

Ġav(t) =

n∑
i=1

Hiu
av
i (0, t) (64)

∂tu
av
i (x, t) = ∂xu

av
i (x, t), x ∈ [0, Di] (65)

d

dt
uav
i (Di, t) = −cuav

i (Di, t)

+cKT
i

⎛
⎜⎝Φ(Di, 0)Gav(t)+

n∑
j=1

φj(Di)∫
0

Φ(Di, σ)Hju
av
j (σ, t)dσ

⎞
⎟⎠.

(66)
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Step 3: Successive Backstepping-like transformation, its
inverse and the target system

Consider the new infinite-dimensional backstepping-like
transformation [19] of the delay state

wi(x, t) = uav
i (x, t)

−KT
i

⎛
⎜⎝Φ(x, 0)Gav(t)+

n∑
j=1

φj(x)∫
0

Φ(x, σ)Hju
av
j (σ, t)dσ

⎞
⎟⎠ (67)

which maps the system (64)–(66) into the target system:

Ġav(t) =AnGav(t) +
n∑

i=1

Hiwi(0, t) (68)

∂twi(x, t) = ∂xwi(x, t)−
i−1∑
j=1

λij(x)wj(Dj , t), x ∈ [0, Di]

(69)

wi(Di, t) = − 1

c
∂tu

av
i (Di, t), i = 1, 2, . . . , n (70)

where An = HK and the coefficients λij : [0, Di] → R are

λij(x) =

{
0, 0 ≤ x ≤ Dj

KT
i Φ(x,Dj)Hj , Dj < x ≤ Di.

(71)

Note that the PDE for wi is not a simple transport equation
unless wi vanishes at the right boundary. Using (67) for x = Di

and the fact that uav
i (Di, t) = Uav

i (t), we can directly obtain
(66) and (62) from (70).

On the other hand, the inverse of (67) is given by

uav
i (x, t) = wi(x, t)

+KT
i

⎛
⎜⎝eAnxGav(t) +

n∑
j=1

φj(x)∫
0

eAn(x−σ)Hjwj(σ, t)dσ

⎞
⎟⎠ .

(72)

For later use, we find an expression for ∂twi(Di, t). Differenti-
ating (72) with respect to x ∈ (Di−1, Di), gives

∂xu
av
i (x, t) = ∂xwi(x, t) +

n∑
j=i

KT
i Hjwj(x, t)

+KT
i An

⎛
⎜⎝eAnxGav(t)+

n∑
j=1

φj(x)∫
0

eAn(x−σ)Hjwj(σ, t)dy

⎞
⎟⎠ .

(73)

In light of (65), (66) and (69)–(71), we arrive at

∂twi(Di, t) = − cwi(Di, t)−
i∑

j=1

KT
i Φ(Di, Dj)Hjwj(Dj , t)

−
n∑

j=i+1

KT
i Hjwj(Di, t)− γi(0)

TGav(t)

−
n∑

j=1

φj(Di)∫
0

γi(σ)
THjwj(σ, t)dσ (74)

where γi(x) := eA
T
n (Di−x)AT

nKi for each i ∈ {1, 2, . . . , n}.

Note that the right-hand side contains wj(Di, t) for each
j greater than i, which is not a boundary value of wj . For
this reason, a key feature of the Lyapunov functional is the
necessity of breaking the domain of integration for the terms
(1 + x)wi(x, t)

2, as shown in the next step.
Step 4: Lyapunov-Krasovskii Functional
Let V be the candidate of Lyapunov function defined by

V (t) = Gav(t)
TPGav(t)

+

n∑
i=1

i∑
j=1

āj
2

Dj∫
Dj−1

(1+x)wi(x, t)
2dx+

1

2

n∑
i=1

wi(Di, t)
2 (75)

where P =PT ∈R
n×n is the solution of the Lyapunov equation

PAn +AT
nP = −Q for some Q = QT > 0. The real con-

stant ā1 = 4λmax(PHHTP )/λmin(Q). The other constants
ā2, . . . , ān are arbitrary real numbers satisfying ā1 < ā2 <
· · · < ān. To shorten notation, we define a function w : [0, 1]×
[0,+∞) → R

n by

w(ξ, t)=(w1(D1ξ, t), w2(D2ξ, t) , . . . , wn(Dnξ, t))
T (76)

for 0 ≤ ξ ≤ 1. In addition, we omit the dependence on the
temporal variable t for simplicity. For instance, we write V
and wi(x) instead of V (t) and wi(x, t). Differentiating V with
respect to t yields

V̇ = −GT
avQGav + 2GT

avPHw(0)

+
n∑

i=1

i∑
j=1

āj
2

Dj∫
Dj−1

(1 + x)2wi(x)∂twi(x)dx

+ w(1)T ∂tw(1)

= −GT
avQGav + 2GT

avPHw(0)− ā1
2
w(0)Tw(0)

−
n∑

i=2

i−1∑
j=1

αj

2
wi(Dj)

2 + w(1)T ∂tw(1)

−
n∑

i=1

i−1∑
�=1

i∑
j=�+1

ājw�(D�)

×
Dj∫

Dj−1

(1 + x)KT
i Φ(x,D�)H�wi(x)dx

+
1

2
w(1)TΔw(1)−

n∑
i=1

n∑
j=i

āi
2

Di∫
Di−1

wj(x)
2dx (77)

where αj > 0 and Δ ∈ R
n×n are defined by

αj =(āj+1 − āj)(1+Dj), j ∈ {1, 2, . . . , n−1} (78)
Δ =diag {ā1(1+D1), ā2(1+D2), . . . , ān(1+Dn)}. (79)

After lengthy calculations omitted here due to space limitations,
we can conclude

V̇ ≤ −1

4
GT

avQGav

− ā1
4

n∑
i=1

Di∫
0

wi(x)
2dx− w(1)T (cIn×n + R̄)w(1) (80)
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where R̄ is an appropriate matrix with elements depending on
H , K and D. Hence, if c>λmin(R), there exists μ>0 such that

V̇ ≤ −μV. (81)

Thus, the closed-loop system is exponentially stable in the
sense of the full state norm⎛
⎝Gav(t)

TGav(t) +

n∑
i=1

Di∫
0

wi(x, t)
2dx+wi(Di, t)

2

⎞
⎠

1
2

(82)

i.e., in the transformed variable (Gav, w).
Step 5: Exponential Stability Estimate (in L2 norm) for the

Average System (64)–(66)
To obtain exponential stability in the sense of the norm

Υ(t)
Δ
=

⎛
⎝|Gav(t)|2 +

n∑
i=1

Di∫
0

[uav
i (x, t)]2 dx+ [uav

i (Di, t)]
2

⎞
⎠

1
2

(83)
we must show there exist positive α1 and α2 such that

α1Υ(t)2 ≤ V (t) ≤ α2Υ(t)2. (84)

This is straightforward to establish by using (67), (72), (75) and
employing the Cauchy-Schwartz inequality and other calcula-
tions, as in the proof of [14, Theorem 2.1].

Hence, with (81), we get

|Gav(t)|2 +
n∑

i=1

Di∫
0

[uav
i (x, t)]2 dx+ [uav

i (Di, t)]
2

≤α2

α1
e−μt

⎛
⎝|Gav(0)|2+

n∑
i=1

Di∫
0

[uav
i (x, 0)]2 dx+[uav

i (Di, 0)]
2

⎞
⎠

(85)

which completes the proof of exponential stability in the origi-
nal variable (Gav, uav).

Step 6: Invoking Averaging Theorem
First, note that the closed-loop system (39) and (49) can be

rewritten as:

˙̃θi(t−Di) =Ui(t−Di), i = 1, . . . , n (86)

U̇i(t) = − cUi(t) + cKT
i

{
Φ̂(Di, 0)G(t)

+

i∑
j=1

t∫
t−Dj

Φ̂(Di, τ − t+Dj)Ĥj(t)Uj(τ)dτ

+

n∑
j=i+1

t∫
t−Di

Φ̂(Di, τ − t+Di)Ĥj(t)

× Uj (τ − (Dj −Di)) dτ
}

(87)

where η(t)=[θ̃(t−D)T , U(t)T ]T is the state vector. Moreover,
from the definitions of Φ̂ in (49), G(t) in (13), Ĥ(t) in (16), and
(19), one can conclude they are implicit functions of ωt such
that (86) and (87) can be given in the next compact form

η̇(t) = f(ωt, ηt) (88)

where ηt(Θ) = η(t+Θ) for −Dn ≤ Θ ≤ 0 and f is an ap-
propriate continuous functional. Thus the averaging theorem by
[25], [26] in Appendix can be applied with ω = 1/ε.

From (85), the origin of the average closed-loop system
(64)–(66) with transport PDE for delay representation is locally
exponentially stable. Then, from (24) and (25), we can conclude
the same results in the norm⎛
⎝ n∑

i=1

[
θ̃avi (t−Di)

]2
+

Di∫
0

[uav
i (x, t)]2 dx+ [uav

i (Di, t)]
2

⎞
⎠

1
2

since H is non-singular, i.e., |θ̃avi (t−Di)| ≤ |H−1||Gav(t)|.
Thus, there exist positive constants α and β such that all

solutions satisfy Ψ(t) ≤ αe−βtΨ(0), ∀ t ≥ 0, where Ψ(t)
Δ
=∑n

i=1[θ̃
av
i (t−Di)]

2 +
∫Di

0 [uav
i (x, t)]2dx+ [uav

i (Di, t)]
2, or

equivalently,

Ψ(t)
Δ
=

n∑
i=1

[
θ̃avi (t−Di)

]2
+

t∫
t−Di

[Uav
i (τ)]2 dτ + [Uav

i (t)]2

(89)

using (61). Then, according to the averaging theorem by [25],
[26] in Appendix, for ω sufficiently large, (54)–(56) or (39) and
(49), has a unique locally exponentially stable periodic solution
around its equilibrium (origin) satisfying (51).

Step 7: Asymptotic Convergence to the Extremum (θ∗, y∗)

By using the change of variables ϑ̃i(t) := θ̃i(t−Di) and
then integrating both sides of (54) within [t, σ +Di], we have:

ϑ̃i(σ +Di) = ϑ̃i(t) +

σ+Di∫
t

ui(0, s)ds, i = 1, . . . , n.

(90)
From (57), we can rewrite (90) in terms of U , namely

ϑ̃i(σ +Di) = ϑ̃i(t) +

σ∫
t−Di

Ui(τ)dτ. (91)

Now, note that

θ̃i(σ) = ϑ̃i(σ +Di), ∀σ ∈ [t−Di, t]. (92)

Hence,

θ̃i(σ) = θ̃i(t−Di) +

σ∫
t−Di

Ui(τ)dτ, ∀σ ∈ [t−Di, t].

(93)
Applying the supremum norm to both sides of (93), we have

sup
t−Di≤σ≤t

∣∣∣θ̃i(σ)∣∣∣
≤ sup

t−Di≤σ≤t

∣∣∣θ̃i(t−Di)
∣∣∣+ sup

t−Di≤σ≤t

t∫
t−Di

|Ui(τ)| dτ

≤
∣∣∣θ̃i(t−Di)

∣∣∣+
t∫

t−Di

|Ui(τ)| dτ (by Cauchy-Schwarz)

≤
∣∣∣θ̃i(t−Di)

∣∣∣+√Di

⎛
⎝ t∫

t−Di

U2
i (τ)dτ

⎞
⎠

1
2

. (94)
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Now, it is easy to check

∣∣∣θ̃i(t−Di)
∣∣∣ +√Di

⎛
⎝ t∫

t−Di

U2
i (τ)dτ

⎞
⎠

1
2

≤ (1 +
√
Di)

⎛
⎝∣∣∣θ̃i(t−Di)

∣∣∣2 +
t∫

t−Di

U2
i (τ)dτ

⎞
⎠

1
2

. (95)

From (94), it is straightforward to conclude that

∣∣∣θ̃i(t)∣∣∣ ≤ (1 +
√
Di)

⎛
⎝∣∣∣θ̃i(t−Di)

∣∣∣2 +
t∫

t−Di

U2
i (τ)dτ

⎞
⎠

1
2

.

(96)
Inequality (96) can be given in terms of the periodic solution
θ̃Πi (t−Di), UΠ

i (τ), ∀ τ ∈ [t−Di, t] as follows

∣∣∣θ̃i(t)∣∣∣≤(1+
√
Di)

⎛
⎝∣∣∣θ̃i(t−Di)−θ̃Πi (t−Di)+θ̃Πi (t−Di)

∣∣∣2

+

t∫
t−Di

[
Ui(τ)− UΠ

i (τ) + UΠ
i (τ)

]2
dτ

⎞
⎠

1
2

. (97)

By applying Young’s inequality and some algebra, the right-
hand side of (97) and |θ̃i(t)| can be majorized by∣∣∣θ̃i(t)∣∣∣ ≤ √

2(1 +
√
Di)

×

⎛
⎝∣∣∣θ̃i(t−Di)− θ̃Πi (t−Di)

∣∣∣2 + ∣∣∣θ̃Πi (t−Di)
∣∣∣2

+

t∫
t−Di

[
Ui(τ)−UΠ

i (τ)
]2

dτ+

t∫
t−Di

[
UΠ
i (τ)

]2
dτ

⎞
⎠

1
2

. (98)

According to the averaging theorem by [25], [26], we can
conclude that the actual state converges exponentially to
the periodic solution, i.e., θ̃i(t−Di)− θ̃Πi (t−Di) → 0 and∫ t

t−Di
[Ui(τ) − UΠ

i (τ)]
2
dτ → 0, exponentially. Hence,

lim sup
t→+∞

|θ̃i(t)| =
√
2
(
1 +
√
Di

)

×

⎛
⎝∣∣∣θ̃Πi (t−Di)

∣∣∣2 +
t∫

t−Di

[
UΠ
i (τ)

]2
dτ

⎞
⎠

1
2

.

Then, from (51), we can write lim supt→+∞ |θ̃(t)| = O(1/ω).
From (12) and reminding that θ(t) = θ̂(t) + S(t) with S(t) in
(14), one has that θ(t)− θ∗ = θ̃(t) + S(t). Since the first term
in the right-hand side is ultimately of order O(1/ω) and the
second term is of order O(|a|), then we state (52). From (10)
and (52), we get (53). �

Corollary 1 (Gradient ES Under Output Delays): It is
easy to show that the controller (49) becomes (38) in the
case of output delays or equal inputs delays. Hence, the local

Fig. 3. Block diagram of the basic prediction scheme for output-delay
compensation in multi-variable Newton-based ES, where D ≥ 0 is a
simple scalar. The predictor feedback with a perturbation-based esti-
mate of the Hessian’s inverse obeys equation (116). The dither vector
signals are given by S(t) = [a1 sin(ω1(t +D)) , . . . , an sin(ωn(t +
D))]T and M(t) = [(2/a1) sin(ω1t) , . . . , (2/an) sin(ωnt)]T . The de-
modulating signal N(t) is computed by (17) and (18).

stability/convergence results of the multi-parameter Gradient
ES in Fig. 1 with delayed output (10) and D ≥ 0 being simply a
scalar can be directly stated for the closed-loop delayed system
(29) and (38) from Theorem 1 (for more details, see [37]).

VI. NEWTON-BASED ES WITH OUTPUT DELAYS

The convergence rate of the Gradient algorithms introduced
above are severely dependent of the parameters K and H ac-
cording to (37), for instance. Since the elements of the diagonal
matrix K are of order O(1), then, the speed of the response is
governed by the unknown Hessian matrix H . Once more, we
start to consider the case where D ≥ 0 is simply a scalar and in
Section VII we move on to the more involved case of multiple
and distinct input delays.

A. Hessian’s Inverse Estimation

In [8], the authors presented a multi-variable version of the
Newton ES algorithm (free of delays), which also ensures that
its convergence rate can be user-assignable, rather than being
dependent on the Hessian of the static map. In Fig. 3, we
introduce our generalization of such a Newton-based ES in the
presence of output delays.

As proved in [8], the Riccati differential equation

Γ̇ = ωrΓ− ωrΓĤΓ (99)

where ωr > 0 is a design constant, generates an estimate of the
Hessian’s inverse, avoiding inversions of the Hessian estimates
that may be zero during the transient phase. The estimation
error of the Hessian’s inverse can be defined as

Γ̃(t) = Γ(t)−H−1 (100)

and its dynamic equation can be written from (99), (100) by

˙̃Γ = ωr[Γ̃ +H−1]×
[
In×n − Ĥ(Γ̃ +H−1)

]
. (101)

For the quadratic map (9), and in the absence of the predic-
tion action, it is easy to conclude that the average model in the
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error variables θ̃ and Γ̃ would be

dθ̃av(t)

dt
= −Kθ̃av(t−D)−KΓ̃av(t)Hθ̃av(t−D)

(102)

dΓ̃av(t)

dt
= − ωrΓ̃av(t)− ωrΓ̃av(t)HΓ̃av(t). (103)

From (102), it is clear the importance of using a delay
compensation. Differently from (38), this time we introduce a
prediction scheme using (99) to estimate H−1.

B. Predictor Feedback via Hessian’s Inverse Estimation

First of all, let us define the measurable vector signal

z(t) = Γ(t)G(t). (104)

Using averaging, we can verify from (13) and (104) that

zav(t) =
1

Π

Π∫
0

ΓM(λ)ydλ = Γav(t)Hθ̃av(t−D). (105)

From (100), equation (105) can be written in terms of Γ̃av(t) =
Γav(t)−H−1 as

zav(t) = θ̃av(t−D) + Γ̃av(t)Hθ̃av(t−D). (106)

The second term in the right side of (106) is quadratic in
(Γ̃av, θ̃av), thus, the linearization of Γav(t) at H−1 and θ̃av(t)
at zero results in the linearized version of (105) given by

zav(t) = θ̃av(t−D). (107)

From Fig. 3 and (12), we can repeat the error dynamics (29)

˙̃θ(t−D) = U(t−D) (108)

and obtain the following average models by using (107), (108):

˙̃
θav(t−D) =Uav(t−D) (109)

żav(t) =Uav(t−D) (110)

where Uav ∈ R
n is the resulting average control for U ∈ R

n.
In order to motivate the predictor feedback design, the idea

again is to compensate for the delay by feeding back the future
state z(t+D), or zav(t+D) in the equivalent average system.
To obtain it with the variation of constants formula to (110), the
future state is written as

zav(t+D) = zav(t) +

t∫
t−D

Uav(τ)dτ (111)

in terms of the average control signal Uav(τ) from the past
window [t−D, t]. Given the same diagonal matrix K > 0 used
before, the average control would be given by

Uav(t) = −K

⎡
⎣zav(t) +

t∫
t−D

Uav(τ)dτ

⎤
⎦ (112)

resulting in the average control feedback

Uav(t) = −Kzav(t+D), ∀ t ≥ 0 (113)

as desired. Hence, the average system would be, ∀ t ≥ D:

dθ̃av(t)

dt
= −Kθ̃av(t)−KΓ̃av(t+D)Hθ̃av(t) (114)

dΓ̃av(t)

dt
= − ωrΓ̃av(t)− ωrΓ̃av(t)HΓ̃av(t). (115)

Since KΓ̃avHθ̃av is quadratic in (Γ̃av, θ̃av) and ωrΓ̃avHΓ̃av is
quadratic in Γ̃av, the linearization of the system (114) and (115)
has all its eigenvalues determined by −K and −ωr. Therefore,
the (local) exponential stability of the algorithm could be
guaranteed with a convergence rate which is independent of the
unknown Hessian H , being user-assignable.

As was done for the Gradient case, we propose a predictor
feedback in the form of a low-pass filtered [24] of the non-
average version of (112), given by

U(t) =
c

s+ c

⎧⎨
⎩−K

⎡
⎣z(t) +

t∫
t−D

U(τ)dτ

⎤
⎦
⎫⎬
⎭ (116)

where c > 0 is sufficiently large. Recall the low pass filtering is
particularly required in the stability analysis when the averag-
ing theorem in infinite dimensions [25], [26] is invoked.

The predictor feedback control (116) is averaging-base be-
cause z in (104) is updated according to the estimate Γ(t) for
the unknown Hessian’s inverse H−1 given by (99), with Ĥ(t)
in (16) satisfying the averaging property (21).

VII. NEWTON-BASED ES WITH MULTIPLE

AND DISTINCT INPUT DELAYS

From Fig. 4 and (12), we can write

˙̃θ(t−D) =

⎡
⎢⎢⎢⎣
U1(t−D1)
U2(t−D2)

...
Un(t−Dn)

⎤
⎥⎥⎥⎦ , ˙̃θi(t−Di) = Ui(t−Di)

(117)
and its average model

˙̃θavi (t−Di) = Uav
i (t−Di). (118)

Analogously to the averaging steps performed before to
obtain (105)–(107), we still verify that

zav(t) = Γav(t)Hθ̃av(t−D) (119)

and its linearized version given by

zav(t) = θ̃av(t−D) (120)

with θ̃av(t−D) = [θ̃av1 (t−D1) , . . . , θ̃avn (t−Dn)]
T . Thus,

from (118) and (120), the following average model with state
zav(t) can be obtained:

żav(t) =

⎡
⎢⎢⎢⎣
żav1 (t)
żav2 (t)

...
żavn (t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Uav
1 (t−D1)

Uav
2 (t−D2)

...
Uav
n (t−Dn)

⎤
⎥⎥⎥⎦ . (121)
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Fig. 4. Block diagram of the Newton-based ES for multiple-input delay
compensation, where D = diag{D1, . . . ,Dn}. The predictor feedback
(123) is implemented in its vector form with F (s) = diag{c1/(s+
c1), . . . , cn/(s+ cn)} and K = diag{k1, . . . , kn}. The additive dither
is modified to be S(t) = [a1 sin(ω1(t +D1)), . . . , an sin(ωn(t+
Dn))]T and the demodulating signals M(t) and N(t) are defined
as in standard Newton-based ES [8], i.e., given by M(t)=
[(2/a1) sin(ω1t), . . . , (2/an) sin(ωnt)]T and (17), (18), respectively.

Since the input channels in system (121) are totally decou-
pled, we can apply a predictor of the form

Uav
i (t) =

ci
s+ ci

⎧⎨
⎩−ki

⎡
⎣zavi (t) +

t∫
t−Di

Uav
i (τ)dτ

⎤
⎦
⎫⎬
⎭ (122)

to each individual subsystem in (121) in order to fully stabilize
it. Motivated by the control law (122) for the average model
(121), we propose the following predictor feedback to compen-
sate the delays in the non-average model (117)

Ui(t) =
ci

s+ ci

⎧⎨
⎩−ki

⎡
⎣zi(t) +

t∫
t−Di

Ui(τ)dτ

⎤
⎦
⎫⎬
⎭ (123)

for all ki > 0, ci > 0, i = 1, 2, . . . , n.

VIII. STABILITY ANALYSIS FOR NEWTON-BASED

ES UNDER TIME DELAYS

Due to its decoupling property, (121) can be represented as
a set of n cascades of first order ODE plus PDE equations.
Exponential stability of the closed-loop infinite-dimensional
system can be guaranteed according to the following theorem.

Theorem 2 (Multiple and Distinct Input Delays): Con-
sider the control system in Fig. 4 with multiple and distinct
input delays (7)–(11) and locally quadratic nonlinear map (9).
There exists c∗ > 0 such that, ∀ ci ≥ c∗, ∃ω∗(ci) > 0 such that,
∀ω > ω∗, the closed-loop delayed system (101), (117) and
(123) with state Γ̃(t), θ̃i(t−Di), Ui(τ), ∀ τ ∈ [t−Di, t] and
∀ i ∈ {1, 2, . . . , n}, has a unique locally exponentially stable
periodic solution in t of period Π, denoted by Γ̃Π(t), θ̃Πi (t−
D), UΠ

i (τ), ∀ τ ∈ [t−Di, t], satisfying, ∀ t ≥ 0:

⎛
⎝∣∣∣Γ̃Π(t)

∣∣∣2 + n∑
i=1

[
θ̃Πi (t−Di)

]2

+
[
UΠ
i (t)

]2
+

t∫
t−Di

[
UΠ
i (τ)

]2
dτ

⎞
⎠

1
2

≤ O
(
1

ω

)
. (124)

Furthermore,

lim sup
t→+∞

|θ(t) − θ∗| =O (|a|+ 1/ω) (125)

lim sup
t→+∞

|y(t)− y∗| =O
(
|a|2 + 1/ω2

)
(126)

where a = [a1, a2 , . . . , an]
T .

Proof: The demonstration is organized in order to fol-
low the steps presented in the proof of Theorem 1. In the
following we highlight the main differences.

Step 1: PDE Representation for the Closed-Loop System
After representing the delay in (117) using a transport PDE

as was done in (54)–(56) and representing the integrand in (123)
using the transport PDE state, one has

˙̃
θi(t−Di) =ui(0, t) (127)

∂tui(x, t) = ∂xui(x, t), x ∈ [0, Di] (128)

u(Di, t) =
ci

s+ ci

⎧⎨
⎩−ki

⎡
⎣zi(t) +

Di∫
0

ui(σ, t)dσ

⎤
⎦
⎫⎬
⎭ .

(129)

Step 2: Average Model of the Closed-loop System
From (120) and denoting

ϑ̃(t) = θ̃(t−D) (130)

we have ϑ̃av(t) = zav(t) = θ̃av(t−D) and the linearized aver-
age version of system (127)–(129) can be obtained:

˙̃
ϑav
i (t) =uav

i (0, t) (131)

∂tu
av
i (x, t) = ∂xu

av
i (x, t), x ∈ [0, Di] (132)

d

dt
uav
i (D, t) = − ciu

av
i (Di, t)

− ciki

⎡
⎣ϑ̃av

i (t) +

Di∫
0

uav
i (σ, t)dσ

⎤
⎦ (133)

where the solution of the transport PDE (132), (133) is

uav
i (x, t) = Uav

i (t+ x−Di). (134)

On the other hand, by using (21), the average model for the
Hessian’s inverse estimation error in (101) can be deduced as in
(115). Then, its linearized version at Γ̃av = 0n×n is given by

dΓ̃av(t)

dt
= −ωrΓ̃av(t). (135)

Step 3: Standard Backstepping Transformation, its inverse
and the target system

Consider the infinite-dimensional backstepping transforma-
tion of the delay state

wi(x, t) = uav
i (x, t) + ki

⎛
⎝ϑ̃av

i (t) +

x∫
0

uav
i (σ, t)dσ

⎞
⎠ (136)

which maps the system (131)–(133) into the target system:
˙̃
ϑav
i (t) = − kiϑ̃

av
i (t) + wi(0, t) (137)

∂twi(x, t) = ∂xwi(x, t), x ∈ [0, Di] (138)

wi(Di, t) = − 1

ci
∂tu

av
i (Di, t), i=1, 2, . . . , n. (139)



1922 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 4, APRIL 2017

Using (136) for x = Di and the fact that uav
i (Di, t) = Uav

i (t),
from (139) we get (133), i.e.,

Uav
i (t) =

ci
s+ ci

⎧⎨
⎩−ki

⎡
⎣ϑ̃av

i (t) +

Di∫
0

uav
i (σ, t)dσ

⎤
⎦
⎫⎬
⎭ . (140)

Let us now consider wi(Di, t). It is easily seen that

∂twi(Di, t) = ∂tu
av
i (Di, t) + kiu

av
i (Di, t) (141)

where ∂tuav
i (Di, t) = U̇av

i (t). The inverse of (136) is

uav
i (x, t) = wi(x, t)− ki

⎡
⎣e−kixϑ̃av

i (t)

+

x∫
0

e−ki(x−σ)wi(σ, t)dσ

⎤
⎦ . (142)

Plugging (139) and (142) into (141), we get

∂twi(Di, t) = −ciwi(Di, t) + kiwi(Di, t)

− k2i

⎡
⎣e−kiDi ϑ̃av

i (t) +

Di∫
0

e−ki(Di−σ)wi(σ, t)dσ

⎤
⎦ . (143)

Step 4: Lyapunov-Krasovskii Functional
The exponential stability of the overall system is established

with the Lyapunov functional

V (t) =

n∑
i=1

Vi(t), i = 1, . . . , n (144)

where Vi(t) are functionals

Vi(t) =
1

2

[
ϑ̃av
i (t)

]2
+

āi
2

Di∫
0

(1 + x)w2
i (x, t)dx +

1

2
w2

i (Di, t)

(145)

for each subsystem in (137)–(139) and āi > 0 being appropriate
constants to be chosen later. Thus, we have

V̇i(t) = − ki

[
ϑ̃av
i (t)

]2
+ ϑ̃av

i (t)wi(0, t)

+ āi

Di∫
0

(1 + x)wi(x, t)∂xwi(x, t)dx

+ wi(Di, t)∂twi(Di, t)

= − ki

[
ϑ̃av
i (t)

]2
+ ϑ̃av

i (t)wi(0, t)

+
āi(1 +Di)

2
w2

i (Di, t)−
āi
2
w2

i (0, t)

− āi
2

Di∫
0

w2
i (x, t)dx + wi(Di, t)∂twi(Di, t)

≤ − ki

[
ϑ̃av
i (t)

]2
+

1

2āi

[
ϑ̃av
i (t)

]2
− āi

2

Di∫
0

w2
i (x, t)dx

+ wi(Di, t)

[
∂twi(Di, t) +

āi(1 +Di)

2
wi(Di, t)

]
.

Reminding that ki > 0, let us choose āi = 1/ki. Then

V̇i(t) ≤ − 1

2āi

[
ϑ̃av
i (t)

]2
− āi

2

Di∫
0

w2
i (x, t)dx

+ wi(Di, t)

[
∂twi(Di, t) +

āi(1 +Di)

2
wi(Di, t)

]
. (146)

Now we consider (146) along with (143). With a completion of
squares, we obtain

V̇i(t) ≤ − 1

4āi

[
ϑ̃av
i (t)

]2
− āi

4

Di∫
0

w2
i (x, t)dx

+ āi
∣∣k2i e−kiDi

∣∣2 w2
i (Di, t)

+
1

āi

∥∥∥k2i e−ki(Di−σ)
∥∥∥2 w2

i (Di, t)

+

[
āi(1 +Di)

2
+ ki

]
w2

i (Di, t)− ciw
2
i (Di, t)

(147)

where the spatial variable σ ∈ [0, Di] and ‖ · ‖ denotes the L2

norm in σ. Then, from (147), we arrive at

V̇i(t)≤− 1

4āi

[
ϑ̃av
i (t)

]2
− āi

4

Di∫
0

w2
i (x, t)dx−(ci−c∗i)w

2(D, t)

(148)
where

c∗i =
āi(1 +Di)

2
+ ki+ āi

∣∣k2i e−kiDi
∣∣2+ 1

āi

∥∥∥k2i e−ki(Di−σ)
∥∥∥2 .

(149)

Hence, from (148), if ci is chosen such that ci > c∗i , we obtain

V̇i(t) ≤ −μiVi(t) or V̇ (t) ≤ −μV (t) (150)

for some μi > 0 and μ = nμi. Thus, the closed-loop system is
exponentially stable in the sense of the full state norm⎛
⎝∣∣∣ϑ̃av(t)

∣∣∣2 + n∑
i=1

Di∫
0

w2
i (x, t)dx + w2

i (Di, t)

⎞
⎠

1
2

(151)

i.e., in the transformed variable (ϑ̃av, w).
Step 5: Exponential Stability Estimate ( in L2 norm) for the

Average System (131)–(133)
To obtain exponential stability in the sense of the norm

Υ(t)
Δ
=

⎛
⎝|ϑ̃av(t)|2 +

n∑
i=1

Di∫
0

[uav
i (x, t)]2 dx+ [uav

i (Di, t)]
2

⎞
⎠

1
2

(152)
we show from (136), (142)and (144), (145) that there exist posi-
tive numbers α1 and α2 such that α1Υ(t)2 ≤ V (t) ≤ α2Υ(t)2.
Hence, with (150), we get

Υ(t) ≤ α2

α1
e−μtΥ(0) (153)

which completes the proof of exponential stability in the origi-
nal variable (ϑ̃av, uav).
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Step 6: Invoking Averaging Theorem
First, note that the closed-loop system (117), (123) and (101)

can be rewritten as:

˙̃
θi(t−Di)=Ui(t−Di), i=1, . . . , n (154)

U̇i(t)= − ciUi(t)−ciki

⎡
⎣zi(t)+

t∫
t−Di

Ui(τ)dτ

⎤
⎦ (155)

˙̃Γ(t)=ωr

[
Γ̃(t)+H−1

]
×
[
In×n−Ĥ(t)

(
Γ̃(t)+H−1

)]
(156)

where χ(t) = [Γ̃(t)T , θ̃(t−D)T , U(t)T ]T is the state vector.
From the definitions of Ĥ(t) in (16) and z(t) in (104), one
has they are implicit functions of ωt such that the averaging
theorem by [25], [26] in Appendix can be directly applied
considering ω =1/ε and χt(Θ)=χ(t+Θ) for −Dn ≤ Θ ≤ 0.

From (153), the origin of the average closed-loop system
(131)–(133) with transport PDE for delay representation is
locally exponentially stable. In addition, we can conclude that
the equilibrium Γ̃av(t) = 0 of the linearized error system (135)
is also exponentially stable since ωr > 0. Thus, using (130)
and (134), there exist constants α, β > 0 such that all solutions
satisfy Ψ(t) ≤ αe−βtΨ(0), ∀ t ≥ 0, in the sense of the norm

Ψ(t)
Δ
=
∣∣∣Γ̃av(t)

∣∣∣2 + n∑
i=1

[
θ̃avi (t−Di)

]2

+

t∫
t−Di

[Uav
i (τ)]2 dτ + [Uav

i (t)]2 . (157)

Then, by applying the averaging theorem [25], [26] in
Appendix, for ω sufficiently large, we can conclude (124).

Step 7: Asymptotic Convergence to the Extremum (θ∗, y∗)
Finally, to obtain (125) and (126), we only have to use the

change of variables (130) and then integrate both sides of (127)
within the interval [t, σ +Di] to get

ϑ̃i(σ +Di) = ϑ̃i(t) +

σ+Di∫
t

ui(0, s)ds, i = 1, . . . , n.

(158)

After that, we have to reproduce exactly the developments
presented in Step 7 of the proof of Theorem 1. �

Corollary 2 (Newton ES Under Output Delays): Analo-
gously to Corollary 1, local exponential stability of the multi-
variable Newton-based ES in Fig. 3 with delayed output (10)
and D ≥ 0 being a simple scalar can be obtained from Theorem
2 regarding the closed-loop delayed system (101), (108) and
the predictor based control law (116). For more details, see
reference [37].

IX. SOURCE SEEKING APPLICATION

In this example, multi-variable ES is used for finding a
source of a signal (chemical, acoustic, electromagnetic, etc.)
of unknown concentration field as in (9) with Hessian and its
inverse given by:

H =

[
−2 −2
−2 −4

]
, H−1 =

[
−1 0.5
0.5 −0.5

]
.

Fig. 5. Source seeking under delays for velocity-actuated point mass
with additive dither Ṡ(t) = [a1ω1 cos(ω1(t +D1)) a2ω2 cos(ω2(t +
D2))]T . The signals M(t) and N(t) are chosen according to (15)
and (17), (18). The predictor-based controllers (49) or (123) are used
in the ES loop to compensate the total delay D1 = Din

1 +Dout and
D2 = Din

2 +Dout in Gradient and Newton schemes, respectively.

The strength of this field decays with the distance and has
a local maximum at y∗ = 1 and unknown maximizer θ∗ =
(θ∗1, θ

∗
2) = (0, 1). This is achieved without the measurement

of the position vector θ = (θ1, θ2) and using only the mea-
surement of the output scalar signal y with delay Dout = 5 s.
The two actuator paths of the vehicle are also under distinct
delays Din

1 = 10 s and Din
2 = 20 s. Thus, the total delays to be

compensated by the predictors are D1 = 15 s and D2 = 25 s.
The proposed schemes are slightly modified for the stated

task in Fig. 5 by observing that the integrator, a key adaptation
element, is already present in vehicle models where the primary
forces or moments acting on the vehicle are those that provide
thrust/propulsion [21]. Thus, an application of our result for
single and double integrators in control of autonomous vehicles
modeled as point mass is possible. However, due to lack of
space, we consider the simplest case of a velocity-actuated
point mass only, where the additive dither in (14) is changed by
Ṡ(t) since the integrator of the vehicle dynamics can be moved
to the ES loop for analysis purposes. For the double integrator
case, it would be needed to replace the lag filters used in
(49) and (123) by lead compensators of the form sci/(s+ ci),
whose role is to recover some of the phase in feedback loop lost
due to the addition of the second integrator [21].

We show next that the predictor feedback based ES con-
trollers drive the autonomous vehicle modeled by

θ̇1 = v1, θ̇2 = v2 (159)

to (θ∗1, θ
∗
2), whereas the ES automatically tunes v1, v2 to lead

the vehicle to the peak of Q(θ).
We initially present numerical simulations for the Newton

case with predictor (123), where c1 = c2 = 20, z is given by
(104) with G in (13) and Γ in (99). The control gain matrix
was set to K = diag{1, 1} and ωr = 0.1. We perform our tests
with the parameters: a1 = a2 = 0.05, ω = 5, ω1 = 7ω, ω2 =

5ω, θ̂(0) = (−1, 2) and Γ(0) = −1/200diag{2, 1}.
Fig. 6 shows the system output y(t) in 3 situations: (a) free

of delays, (b) in the presence of input-output delays but without
any delay compensation and (c) with input-output delays and
predictor based compensation. Fig. 7 presents relevant variables
for ES. It is clear the remarkable evolution of the new prediction
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Fig. 6. Newton-based ES under input-output delays (time response of
y(t)): (a) basic ES works well without delays; (b) ES goes unstable in
the presence of delays (Dtotal=D2=Din

2 +Dout is the longest delay);
(c) predictor fixes this.

Fig. 7. Newton-based ES under input-output delays: (a) parameter θ(t);
(b) the control signal U(t); (c) Hessian’s inverse estimate Γ(t). The
elements of Γ(t) converge to the unknown elements of H−1.

scheme in searching the maximum and the Hessian’s inverse
H−1. This exact estimation allows us to cancel the Hessian H
and thus guarantee convergence rates that can be arbitrarily
assigned by the user.

In order to make a fair comparison with the Gradient ES, all
common parameters are chosen the same, except for the gain
matrix K . According to [8], we should select KG = KNΓ(0),
where KG and KN denote here the gain matrices for Gradient-
based ES and Newton-based ES, respectively. Hence, we apply
the predictor (49) for Gradient ES with averaging-based esti-
mate of the Hessian Ĥ in (16), function Φ̂ given as (45)–(47)

Fig. 8. Newton-based ES versus Gradient ES: Time response of the
output y(t) subject to input-output delays.

for Âi(t) rather than Ai, gain matrix K = 10−2diag{1, 0.5}
and c = 20. For the case n = 2 (two control inputs), equation
(49) is simply:

U1(t) =
c

s+ c

⎧⎨
⎩KT

1

⎛
⎝G(t) +

t∫
t−D1

Ĥ1U1(τ)dτ

+

t∫
t−D1

Ĥ2U2 (τ − (D2 −D1)) dτ

⎞
⎠
⎫⎬
⎭

(160)

U2(t) =
c

s+ c

⎧⎪⎨
⎪⎩KT

2

⎛
⎜⎝eÂ1(D2−D1)G(t)

+ eÂ1(D2−D1)

t∫
t−D1

Ĥ1U1(τ)dτ

+ eÂ1(D2−D1)

t∫
t−D1

Ĥ2U2(τ−(D2−D1))dτ

+

t∫
t−(D2−D1)

eÂ1(t−τ)Ĥ2U2(τ)dτ

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

(161)

The issue of robustness to the approximation of the integral
terms for prediction was raised by Mondié and Michiels in [27].
It was subsequently showed by Mirkin [28] that it is simply the
result of a poor choice of the approximation scheme for the
integral. Furthermore, numerical approximation schemes that
are robust have been provided recently in [29].

Fig. 8 shows the estimate of the maximum for both ap-
proaches. As expected, the Newton ES converges faster than
the Gradient ES, even in the presence of delays.

X. CONCLUSION

New extremum seeking controllers were developed for multi-
variable real-time optimization in the presence of actuator
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and sensor delays. The control scheme introduced here for
output delay compensation uses prediction feedback with
perturbation-based estimate of the Hessian or its inverse as-
sociated with an adequate tune of the dither signals. Two dif-
ferent predictor designs for Gradient-based and Newton-based
extremum seeking control are formulated. The generalization
for multi-input-single-output maps with distinct input delays is
also addressed. While the Newton based version for distinct
input delays can be obtained via conventional backstepping
method, the Gradient extremum seeking is based on a novel
successive backstepping-like state transformation. The predic-
tor in the Newton case is much simpler than in the Gradient
case. The Newton algorithm effectively “diagonalizes” the map
and allows “decentralized” predictors for each control channel,
whereas the Gradient algorithm has to perform prediction of the
cross-coupling of the channels.

Results are given for static plants and the extension to include
general nonlinear dynamics seems to be an open problem. We
have found many interesting results in the literature of singular
perturbations for FDEs and delayed systems. However, we
have not found any theorem that is directly applicable to our
problem and which would allow us to prove stability in the
presence of plant dynamics, as done in the absence of delays
in [1] and in papers by Tan, Nesić, and coworkers [6], [7], [20].
We need singular perturbation results that apply to distributed
delays due to the the presence of a (filtered) predictor feedback
in our design. In general, the existing works consider a point
(fixed) delay, which must be small [30]. There are cases of
time-varying or even state-dependent delays but restricted to
lower order (scalar or second order) systems [31]. In some
cases, the delay is distributed but it is also scaled by the small
parameter and occurs in the fast dynamics [32]. There do exist
results for linear systems with distributed delays in the slow
dynamics, but they are not adequate since they assume that the
slow/reduced model has an equilibrium at the origin when the
small parameter is set to zero, i.e., that the reduced model is
perturbation-free [33]. As a reminder from [1], the averaging
step comes second in the stability analysis, which means that,
after the singular perturbation approximation, the resulting
slow/reduced model must still have the sinusoidal perturbation
AND the delayed input, along with the predictor feedback.
On the other hand, reference [34] solves the ES problem of
dynamic plants where delays are not directly taken into account,
but they may be addressed as a sufficiently large dwell-time
in the algorithm. However, it would require waiting D time-
delay units or longer for each function evaluation, making the
transient last for many D’s, whereas our transient lasts only
D plus whatever the exponential transient of the delay-free
ES is.

Even though we can easily compensate known time-varying
delays, and unknown time-varying delays that vary sufficiently
slowly, the averaging result for FDEs ( Appendix) assumes
the delay to be constant. In addition, we can apply our ap-
proach adaptively to unknown constant delays, as in [35].
However, because of the nonlinear parametrization of the delay,
the result would necessarily be local (the initial estimate of
the delay would have to be close to the actual delay). This
would offer little advantage over the existing robustness of the
predictor to small perturbations in the delay, which is proved
in [36].

APPENDIX

Theorem 3 (Averaging for FDEs [25], [26])

Consider the delay system

ẋ(t) = f

(
t

ε
, xt

)
, for t > 0 (162)

where ε is a real parameter, xt(Θ) = x(t +Θ) for −r ≤ Θ ≤
0, and f : R× Ω → R

n is a continuous functional from a
neighborhood Ω of 0 of the supremum-normed Banach space
X = C([−r, 0];Rn) of continuous functions from [−r, 0] to
R

n. Assume that f(t, ϕ) is periodic in t uniformly with
respect to ϕ in compact subsets of Ω and that f has a
continuous Fréchet derivative ∂f(t, ϕ)/∂ϕ in ϕ on R× Ω.
If y = y0 ∈ Ω is an exponentially stable equilibrium for
the average system ẏ(t) = f0(yt), for t > 0, where f0(ϕ) =

limT→∞(1/T )
∫ T
0 f(s, ϕ)ds, then, for some ε0 > 0 and 0 <

ε ≤ ε0, there is a unique periodic solution t �→ x∗(t, ε) of (162)
with the properties of being continuous in t and ε, satisfying
|x∗(t, ε)− y0| ≤ O(ε), for t ∈ R, and such that there is ρ > 0
so that if x(·;ϕ) is a solution of (162) with x(s) = ϕ and
|ϕ− y0| < ρ, then |x(t) − x∗(t, ε)| ≤ Ce−γ(t−s), for C > 0
and γ > 0.
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advance in alternative fueled engines using extremum seeking control,”
Control Eng. Practice, vol. 29, pp. 201–211, 2014.
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[24] M. Krstić, “Lyapunov tools for predictor feedbacks for delay sys-

tems: Inverse optimality and robustness to delay mismatch,” Automatica,
vol. 44, pp. 2930–2935, 2008.

[25] J. K. Hale and S. M. V. Lunel, “Averaging in infinite dimensions,”
J. Integral Eq. Appl., vol. 2, pp. 463–494, 1990.

[26] B. Lehman, “The influence of delays when averaging slow and fast
oscillating systems: Overview,” IMA J. Mathemat. Control Inform.,
vol. 19, pp. 201–215, 2002.

[27] S. Mondié and W. Michiels, “Finite spectrum assignment of unstable
time-delay systems with a safe implementation,” IEEE Trans. Automat.
Control, vol. 48, no. 12, pp. 2207–2212, 2003.

[28] L. Mirkin, “On the approximation of distributed-delay control laws,” Syst.
Control Lett., vol. 51, pp. 331–342, 2004.
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