Backstepping stabilization of the linearized Saint-Venant–Exner model

Ababacar Diagne a, Mamadou Diagne b, Shuxia Tang c, Miroslav Krstic c

a Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden
b Department of Mechanical Engineering, University of Michigan G.G. Brown Laboratory 2350 Hayward Ann Arbor MI 48109, United States
c Department of Mechanical & Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, United States

A R T I C L E I N F O

Article history:
Received 3 April 2015
Received in revised form 2 September 2016
Accepted 22 September 2016

Keywords:
Backstepping
State feedback controller
Output feedback controller
Saint-Venant–Exner
Hyperbolic PDEs

A B S T R A C T

Using backstepping design, exponential stabilization of the linearized Saint-Venant–Exner (SVE) model of water dynamics in a sediment-filled canal with arbitrary values of canal bottom slope, friction, porosity, and water–sediment interaction, is achieved. The linearized SVE model consists of two rightward convecting transport Partial Differential Equations (PDEs) and one leftward convecting transport PDE. A single boundary input control strategy with actuation located only at the downstream gate is employed. A full state feedback controller is designed which guarantees exponential stability of the desired setpoint of the resulting closed-loop system. Using the reconstruction of the distributed state through a backstepping observer, an output feedback controller is established, resulting in the exponential stability of the closed-loop system at the desired setpoint. The proposed state and output feedback controllers can deal with both subcritical and supercritical flow regimes without any restrictive conditions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The SVE model has attracted considerable attention over the past decades. Significant results such as Daly and Porporato (2005) and Lanzoni, Siviglia, Frascati, and Seminar (2006) are devoted to the numerical analysis of the dynamics of water flow coupled with a movable bed. However, the boundary control of such systems described by nonlinear hyperbolic PDEs is left out in most of these contributions. In the present work, we are interested in the stabilization of the SVE hyperbolic PDEs that describe the flow and the bed evolutions in an open channel (Diagne, Bastin, & Coron, 2012; Diagne & Sène, 2013). During the past decades, various control strategies, which do not account for sediment dynamics, have been developed with the aim to stabilize and to regulate water flow dynamics in irrigation channels. Usually, the openings of the gates located at the ends of the channel are controlled to achieve the stabilization of the water level and flow rate at desired setpoints. Even though controlling of the discharge remains a possible alternative, the superiority of gates openings control has been proven in many cases. We refer the reader to Malaterre, Rogers, and Schuurmans (1998), for an extensive review of control design methodologies for irrigation channels. For instance, Balogun, Hubbard, and De Vries (1998) proposed an LQ control strategy, whereas Prieur and de Halleux (2004) developed a Lyapunov-based design. Semigroup approach (Xu & Sallet, 1999), H_{∞} control (Litrico & Fromion, 2006; Pognant-Gros, Fromion, & Baume, 2001) and multi-models design (Diagne, Santos Martins, & Rodrigues, 2010; Santos Martins, Rodrigues, & Diagne, 2008), to mention a few, have been exploited to regulate irrigation channel.

Based on the linearized SVE model, the control of water flow dynamics under a movable bed, is achieved by Diagne et al. (2012), employing explicit dissipative boundary conditions that ensure exponential stability in L^2-norm of one-dimensional hyperbolic systems of balance laws. Recently, boundary control of hyperbolic systems based on singular perturbation was utilized to successfully control the linearized SVE model (Tang, Prieur, & Girard, 2014). However, the two aforementioned methods require on-line measurements of the water levels at the upstream ($x = 0$) and the downstream ($x = L$) ends of the canal. Among the existing contributions, only Diagne and Sène (2013), which uses a priori estimation technique combined with Faedo–Galerkin method, enables feedback stabilization by merely sensing the downstream gate.

* Ababacar Diagne was supported by grants from Lisa and Carl-Gustav Esseen foundation. The material in this paper was not presented at any conference. This paper was recommended for publication in revised form by Associate Editor Tong Zhou under the direction of Editor Richard Middleton.

E-mail addresses: ababacar.diagne@it.uu.se (A. Diagne), mdiagne@umich.edu (M. Diagne), shin015@ucsd.edu (S.-X. Tang), krsitic@ucsd.edu (M. Krstic).

http://dx.doi.org/10.1016/j.automatica.2016.10.017
0005-1098/© 2016 Elsevier Ltd. All rights reserved.
In the recent years, PDE backstepping has proved to be of fundamental importance for boundary feedback stabilization of distributed parameter systems involving transport and diffusion phenomena (Coron, Vazquez, Krstic, & Bastin, 2013; Di Meglio, Vazquez, & Krstic, 2013; Krstic & Smyshlyaev, 2008). The key point of backstepping is the construction of a suitable Volterra integral transformation that maps an original PDE system into a so-called “target system” whose exponential stability is easier to establish. Based on the invertibility of the transformation, the original and the target system have equivalent stability. The kernel functions of such a transformation are required to satisfy some PDEs whose solutions are used as gains of the original system controller.

In the present work, we achieve exponential stabilization of the linearized Saint-Venant–Exner (SVE) model that describes water dynamics in a sediment-filled canal with arbitrary values of bottom slope, friction, porosity, and water–sediment interaction (Diagne et al., 2012). The backstepping design (Di Meglio et al., 2013) is employed to construct the boundary feedback control action for the stabilization of two rightward and one leftward converging PDEs derived from the linearization of the SVE model. The proposed controller enables the stabilization of both subcritical and supercritical flow regimes, which has not been the case in previous results (Diagne et al., 2012; Diagne & Sène, 2013). By solely considering an actuation of the downstream gate, a full state feedback controller is designed to ensure the exponential stabilization of the closed-loop system at the desired setpoint. Designing an exponentially convergent Luenberger observer that enables the reconstruction of the distributed state, an output feedback controller is built using only available measurements at the upstream gate. The properties of the flow depend on the dimensionless Froude number (Fr). The proposed controllers operate under both subcritical ($Fr < 1$) and supercritical ($Fr > 1$) flow regimes. Particularly, the stabilization of a supercritical flow regime for which the water flow involves a high velocity and a low height setpoint values, is extremely hard to achieve. Moreover, exponential stability results are achieved without the need to impose restrictive conditions on the matrix arising from the source term of the system. Conversely, that matrix is required to satisfy a restrictive condition to be marginally diagonally stable (Diagne et al., 2012).

This paper is organized as follows. In the next section, the nonlinear SVE model is described. Section 3 introduces the backstepping transformation which converts the linearized SVE model into an exponentially stable target system, and the full state feedback controller is designed. An exponentially convergent backstepping observer is designed in Section 4. Based on the observer, which reconstructs the full state from the output measurement, an output feedback controller is constructed in Section 5, and exponential stability at the equilibrium setpoint of the resulting closed-loop system is also established. Numerical simulations are provided for the supercritical flow regime in Section 6. The paper ends with concluding remarks and future directions stated in Section 7.

2. The Saint-Venant–Exner model

We consider a pool of a prismatic sloping open channel with a rectangular cross-section, a unit width, and a moving bathymetry. The water depth $H(t,x)$, the water velocity $V(t,x)$ and the bathymetry $B(t,x)$ which is the depth of the sediment layer above the channel bottom, are defined as the state variables of the model (see Fig. 1). The dynamics of the system are described by the coupling of Saint-Venant and Exner equations (see e.g. Hudson & Sweby, 2003)

\begin{align}
\frac{\partial H}{\partial t} + V \frac{\partial H}{\partial x} + H \frac{\partial V}{\partial x} &= 0, \\
\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} + g \frac{\partial H}{\partial x} + \frac{\partial B}{\partial x} &= \frac{g S_b - C_f V^2}{H}, \\
\frac{\partial B}{\partial t} + a V^2 \frac{\partial V}{\partial x} &= 0,
\end{align}

where g is the gravity constant, S_b is the bottom slope of the channel, C_f is a friction coefficient and a is a parameter that encompasses the porosity and viscosity effects on the sediment dynamics. The coefficient a expresses as (cf. Hudson & Sweby, 2003) $a = \frac{A_k}{p_b r}$, with p_b being the porosity parameter and A_k the coefficient to control the interaction between the bed and the water flow.

2.1. The Linearized model of SVE and its representation in Riemann coordinates

In order to linearize the model (1) around a steady-state, we introduce the following vector

\begin{equation}
(h \ u \ b)^{\prime} = (H - H^*) \ V - V^* \ B - B^*)^{\prime}.
\end{equation}

Here, a steady-state is a constant state (H^*, V^*, B^*) which satisfies the relation $g S_b H^* = C_f V^{*2}$ and the linearized model of (1) is written as follows

\begin{equation}
\frac{\partial W}{\partial t} + A(W^{\prime}) \frac{\partial W}{\partial x} = B(W^{\prime}) W,
\end{equation}

where $W = (h \ u \ b)^{\prime}$,

\begin{equation}
A(W^{\prime}) = \begin{bmatrix}
V^* & H^* & 0 \\
g & V^* & g \\
0 & a V^{*2} & 0
\end{bmatrix},
\end{equation}

\begin{equation}
B(W^{\prime}) = \begin{bmatrix}
C_f & V^* & 0 \\
0 & -2C_f & 0 \\
0 & 0 & 0
\end{bmatrix}.
\end{equation}

Exact, but rather complicated expressions of the eigenvalues λ_i of $A(W^{\prime})$ can be obtained by using the Cardano-Vieta method, see Hudson and Sweby (2003). For the sake of simplicity, we introduce the notation $\tau_k = C_f (V^{*2} - \lambda_i) / (4 \lambda_k - 3 V^{*2} \lambda_i)$. After some computations, (2) can be written as:

\begin{equation}
\frac{\partial \xi_k}{\partial t} + \lambda_k \frac{\partial \xi_k}{\partial x} + \sum_{i=1}^{3} (2 \lambda_i - 3 V^{*2}) \tau_i \xi_i = 0, \quad k = 1, 2, 3,
\end{equation}

where the characteristic coordinates are

\begin{equation}
\xi_k = \frac{H^*}{C_f V^{*2} \lambda_k} \left[(V^{*} - \lambda_i) (V^{*} - \lambda_j) + g H^* \right] h + H^* \lambda_k u + g H^* b.
\end{equation}
Using (3), we rewrite (2) in characteristic form as
\[
\frac{\partial \xi}{\partial t} + \Lambda \frac{\partial \xi}{\partial x} - M \xi = 0, \tag{5}
\]
where \(\xi = (\xi_1, \xi_2, \xi_3)^T \), \(\Lambda = \text{diag}(\lambda_1, \lambda_2, \lambda_3) \), \(M = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix} \), \(\alpha_k = (3V_k - 2\lambda_k) r_k \). \tag{7}

2.2. Control problem statement

From the representation of the linearized SVE model in Riemann coordinates defined in (7), we derive a boundary control problem which is similar to the control problem solved \cite{DiMeglio2013}. First, we redefine the state variables as
\[v(t, x) = \xi_1(t, x), \quad u_1(t, x) = \xi_2(t, x), \quad u_2(t, x) = \xi_3(t, x) \]
and the characteristics velocities as
\[\lambda_1 = -\mu, \quad \gamma_1 = \lambda_2, \quad \gamma_2 = \lambda_3. \]
Next, we adopt the following notations for the coefficients of the matrix \(M \) defined in (7)
\[\eta_j = \alpha_{j+1}, \quad \text{for } j = \{1, 2\}, \quad \sigma = \begin{pmatrix} \alpha_2 & \alpha_3 \\ \alpha_2 & \alpha_3 \end{pmatrix}. \]
Hence, the system (5)–(7) is rewritten as follows
\[
\begin{align*}
\partial_t u_1 + \gamma_1 \partial_x u_1 &= \sigma_{11} u_1 + \sigma_{12} u_2 + \sigma_1 v, \\
\partial_t u_2 + \gamma_2 \partial_x u_2 &= \sigma_{21} u_1 + \sigma_{22} u_2 + \sigma_2 v, \\
\partial_t v - \mu \partial_x v &= \eta_1 u_1 + \eta_2 u_2 + \alpha_1 v.
\end{align*} \tag{8a}
\]
The change of variable \(w(t, x) = v(t, x) \exp \left(-\frac{\alpha_1 x}{\mu} \right) \) transforms the system (8) into the following form
\[
\begin{align*}
\partial_t u_1 + \gamma_1 \partial_x u_1 &= \sigma_{11} u_1 + \sigma_{12} u_2 + \alpha(x) w, \\
\partial_t u_2 + \gamma_2 \partial_x u_2 &= \sigma_{21} u_1 + \sigma_{22} u_2 + \alpha(x) w, \\
\partial_t w - \mu \partial_x w &= \theta_1(x) u_1 + \theta_2(x) u_2, \\
u_i(t, 0) = q_i w(t, 0) \quad &\text{for } i = 1, 2, \\
w(t, 1) = \rho_1 u_1(t, 1) + \rho_2 u_2(t, 1) + U(t), \\
w(0, x) = w_0(x), \quad u_i(0, x) = u_{i0}(x) \quad &\text{for } i = 1, 2 \tag{9}
\end{align*}
\]
with \(\alpha(x) = \alpha_1 \exp \left(\frac{\alpha_1 x}{\mu} \right) \), \(\theta_j(x) = \alpha_{j+1} \exp \left(\frac{\alpha_1 x}{\mu} \right) \). \tag{9f}

Remark 1. From the physical model (1), (2), the dimensionless Froude number is defined as \(Fr = \frac{v}{\sqrt{g h}} \). For a subcritical flow regime (\(Fr < 1 \)), the three eigenvalues of the matrix \(A \) satisfy \(\lambda_1 < 0 < \lambda_2 \ll \lambda_3 \), whereas, \(\lambda_2 < 0 < \lambda_1 < \lambda_3 \) for the supercritical one (\(Fr > 1 \)) \cite{Hudson2003}. Here, \(\lambda_1 \) and \(\lambda_3 \) are the characteristic velocities of the water flow and \(\lambda_2 \) is the characteristic velocity of the sediment motion. When the flow regime is supercritical, the following changes of variable \(v(t, x) = \xi_2(t, x), \quad u_1(t, x) = \xi_1(t, x), \quad u_2(t, x) = \xi_3(t, x) \) and coefficients \(\lambda_2 = -\mu, \quad \gamma_1 = \lambda_1, \quad \gamma_2 = \lambda_3 \) need to be considered.

3. Full state controller design

3.1. Backstepping transformation and target system

Consider the following backstepping transformation \cite{DiMeglio2013}
\[
\psi_i(t, x) = u_i(t, x) \quad \text{for } i = 1, 2 \tag{10}
\]
(10)
Knowing that \(k_3(t, \xi) \) has to be invertible. Since \(x \) have equivalent stability properties, the transformation \((11) \) can be rewritten as

\[
\begin{align*}
\dot{x}(t) &= \Gamma(t, x) + \int_0^t \kappa_1(x, \xi) \psi_1(t, \xi) \, d\xi + \int_0^t k_2(x, \xi) \psi_2(t, \xi) \, d\xi \\
&= w(t, x) + \int_0^t k_3(x, \xi) w(t, \xi) \, d\xi.
\end{align*}
\]

Let us define

\[
\Gamma(t, x) = \chi(t, x) + \int_0^t k_1(x, \xi) \psi_1(t, \xi) \, d\xi + \int_0^t k_2(x, \xi) \psi_2(t, \xi) \, d\xi.
\]

(15)

Knowing that \(k_3 \) is continuous (see Theorem 5.3 in Di Meglio et al., 2013), there exists a unique continuous inverse kernel \(l_3 \) defined on \(T \), such that

\[
w(t, x) = \Gamma(t, x) + \int_0^t l_3(x, \xi) \Gamma(t, \xi) \, d\xi.
\]

(16)

Hence, from (9) and (12) we get

\[
\alpha(x)w = \alpha(x) \chi + \int_0^t c_1(x, \xi) \psi_1(t, \xi) \, d\xi + \int_0^t c_2(x, \xi) \psi_2(t, \xi) \, d\xi + \int_0^t \kappa_1(x, \xi) \chi(t, \xi) \, d\xi.
\]

(17)

It follows that

\[
w(t, x) = \chi(t, x) + \int_0^t l_1(x, \xi) \psi_1(t, \xi) \, d\xi + \int_0^t l_2(x, \xi) \psi_2(t, \xi) \, d\xi + \int_0^t l_3(x, \xi) \chi(t, \xi) \, d\xi.
\]

(18)

where

\[
l_i(x, \xi) = k_i(t, \xi) + \int_0^t k_i(x, \xi) l_3(x, \xi) \, ds, \quad i = \{1, 2\}.
\]

(19)

The control law \(U(t) \) is obtained by substituting the transformation \((11) \) into \((9) \). Readily, \(\chi(t, 0) = 1 \) implies that

\[
U(t) = -\rho_1 \psi_1(t, 1) - \rho_2 \psi_2(t, 1) \quad \int_0^1 \left[k_1(1, \xi) u_1(x, \xi) + k_2(1, \xi) u_2(x, \xi) + k_3(1, \xi) w(1, \xi) \right] d\xi,
\]

(20)

where the gain functions \(k_1, k_2 \) and \(k_3 \) satisfy (13).

3.3. Stability of the closed-loop system

In order to establish the stability of the closed-loop system to the desired equilibrium, we first prove the exponential stability of the target system based on Lyapunov argument.

Lemma 1. For any given initial condition \((\psi_1^0, \psi_2^0, x^0)^T \in \mathbb{R}^2((0, 1))^3 \) and under the assumption that \(c_{ij}, k_i \in \mathcal{W}^2(T) \), the equilibrium \((\psi_1, \psi_2, x)^T = (0, 0, 0)^T \) of the target system (12a)-(12d) is \(\mathcal{L}^2 \)-exponentially stable.

Proof. Consider the following Lyapunov function

\[
V_1(t) = \int_0^1 \left[a_1 e^{-\delta_1 x} \left(\psi_1^2(t, x) + \psi_2^2(t, x) \right) \gamma_1 + \frac{1 + x}{\mu} x^2(t, x) \right] dx,
\]

(21)

where \(a_1 \) and \(\delta_1 \) are positive parameters to be determined. Differentiating (21) with respect to time along the solutions of the target system (12) and integrating by parts we get

\[
\dot{V}_1(t) = \left[-a_1 e^{-\delta_1 x} \left(\psi_1^2(t, x) + \psi_2^2(t, x) \right) \left(1 + \gamma_1(x) x^2(t, x) \right) \right]_0^1
\]

\[
- \int_0^1 \chi^2(t, x) \, dx + \int_0^1 a_1 e^{-\delta_1 x} \chi \psi_1^T(t, x) (\delta_1 I_2 + 2 \Gamma_{im} \sigma) \psi_1(t, x) \, dx
\]

\[
+ 2 \int_0^1 a_1 e^{-\delta_1 x} \psi_1^T(t, x) \Gamma_{im} \sigma(x) \chi(t, x) \, dx
\]

\[
+ 2 \int_0^1 a_1 e^{-\delta_1 x} \psi_1^T(t, x) \Gamma_{im} \sigma(x) \chi(t, x) \, dx
\]

\[
\times (C(x, \xi) \psi_1(t, x) + K(x, \xi) \chi(t, x)) \, d\xi dx,
\]

(22)

where the vectors \(\psi(t, x), \alpha(x), \chi(x, \xi) \) and the matrices \(\Gamma_{im}, C(x, \xi) \) are given by \(\psi(t, x) = \left[\psi_1(t, x), \psi_2(t, x) \right]^T, \alpha(x) = \left[\alpha_1(x), \alpha_2(x) \right]^T, \chi(x, \xi) = \left[\kappa_1(x, \xi), \kappa_2(x, \xi) \right]^T \),

\[\Gamma_{im} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad C(x, \xi) = \begin{pmatrix} c_{11}(x, \xi) & c_{12}(x, \xi) \\ c_{21}(x, \xi) & c_{22}(x, \xi) \end{pmatrix}, \]

Assume that for \(M > 0 \) and \(\epsilon > 0 \), we have \(\|\sigma\|, \|\alpha(x)\|, \|C(x, \xi)\|, \|K(x, \xi)\| \leq M, \) and \(\gamma_1(x) > \epsilon \), \(\psi_i = 1, 2, \forall x \in [0, 1], \xi \in [0, x] \), where the matrix/vector norms \(\|\cdot\| \) are compatible with the corresponding matrix/vector norms.
Hence, using Young’s inequalities, we derive the following bounds for the integral terms in (22)

\[
2 \int_0^1 a_1 e^{-\delta_1 x} \psi^T(t, x) \Gamma_{m, \sigma} \psi(t, x) \, dx \\
\leq 2 \frac{M}{\varepsilon} \int_0^1 a_1 e^{-\delta_1 x} \psi^T(t, x) \psi(t, x) \, dx,
\]

(23)

and

\[
2 \int_0^1 a_1 e^{-\delta_1 x} \int_0^x \psi^T(t, x) \Gamma_{m, \sigma} C(x, \xi) \psi(t, \xi) \, d\xi \, dx \\
\leq a_1 \int_0^1 e^{-\delta_1 x} \left(\frac{M}{\varepsilon} x + \frac{M}{\delta_1} \right)^2 \psi^T(t, x) \psi(t, x) \, dx,
\]

where

(24)

and

\[
2 \int_0^1 a_1 e^{-\delta_1 x} \int_0^x \psi^T(t, x) \Gamma_{m, \sigma} K(x, \xi) \psi(t, \xi) \, d\xi \, dx \\
\leq a_1 \int_0^1 e^{-\delta_1 x} \psi^T(t, x) \psi(t, x) \, dx,
\]

(25)

Using the boundary conditions (23)–(26) and (12d) in (22), we derive the following estimate:

\[
\dot{V}_1(t) \leq \left(a_1 \sum_{i=1}^2 q_i^2 - 1 \right) \chi^2(t, 0) \\
- \int_0^1 \left(1 - a_1 \left(1 + \frac{1}{\delta_1} \right) e^{-\delta_1 x} \right) \chi^2(t, x) \, dx \\
- a_1 \int_0^1 e^{-\delta_1 x} \psi^T(t, x) P(x) \psi(t, x) \, dx,
\]

(27)

where

\[
P(x) = \left(\delta_1 - 2 \frac{M}{\varepsilon} - \frac{M}{\varepsilon} x - 2 \left(\frac{M}{\varepsilon} \right)^2 - \frac{M}{\delta_1} \right) I_2 - 2 \Gamma_{m, \sigma}.
\]

First, we choose the tuning parameter \(\delta_1 > 0 \) sufficiently large so that the matrix \(P(x) \), \(x \in [0, 1] \) is positive definite. Then, by choosing

\[
0 < a_1 < \min \left\{ 1 \left(\sum_{i=1}^2 q_i^2 \right), \frac{\delta_1}{\delta_1 + 1} \right\},
\]

(28)

we derive exponential stability of the target system. Then, from the continuity and invertibility of the backstepping transformation (10)–(11), we derive equivalence between the original system (9) (with the control law (20)) and the target system (12). Thus, the following theorem holds.

Theorem 1. Consider the system (9) and the control law (20). Then under the assumptions that the initial data are in \(\mathcal{L}^2([0, 1]) \), the origin is exponentially stable in the \(\mathcal{L}^2 \) sense.

4. **Backstepping observer design**

The feedback controller (20) requires a full state measurement across the spatial domain. In this section, we are interested in the design of a boundary state observer for estimation of the distributed states of the system (9) over the whole spatial domain using the measured output \(w(t, 0) = y(t) \). We introduce the observer (Di Meglio et al., 2013)

\[
\begin{align*}
\dot{\tilde{u}}_1 + \gamma_1 \tilde{u}_1 &= \sigma_1 \tilde{u}_1 + \sigma_2 \tilde{u}_2 + \alpha(x) \dot{w} \\
- p_1(x)[y(t) - \dot{w}(t, 0)], \\
\dot{\tilde{u}}_2 + \gamma_2 \tilde{u}_2 &= \sigma_2 \tilde{u}_1 + \sigma_2 \tilde{u}_2 + \alpha(x) \dot{w} \\
- p_2(x)[y(t) - \dot{w}(t, 0)], \\
\dot{\tilde{w}}_1 &= - \mu \tilde{w}_1 + \tilde{w}_1(t) \tilde{u}_1 + \tilde{w}_2(t) \tilde{u}_2 \\
- p_1(x)[y(t) - \dot{w}(t, 0)], \\
\hat{u}_1(t, 0) &= q_1 y(t) \text{ for } i = 1, 2 \\
\hat{w}(t, 1) &= \rho_1 \hat{u}_1(t, 1) + \rho_2 \hat{u}_2(t, 1) + U(t),
\end{align*}
\]

where \((\tilde{u}_1, \tilde{u}_2, \tilde{w}, \hat{w})^T\) is the estimated state vector. The functions \(\tilde{w}, \hat{w}, \tilde{u}, \hat{u}\) have to be determined on \((\tilde{w}, \hat{u}_1, \hat{u}_2)\) in finite time. Defining

\[
\left(\tilde{w} - \hat{w}_1 - \hat{u}_2 \right)^T = \begin{pmatrix} w - \hat{w} \ u_1 - \hat{u}_1 \ u_2 - \hat{u}_2 \end{pmatrix}^T
\]

leads to the following error system

\[
\begin{align*}
\dot{\tilde{w}} &= \rho \tilde{w}_1(t, 1) + \rho_2 \tilde{u}_2(t, 1), \\
\hat{u}_1(t, 0) &= 0 \text{ for } i = 1, 2.
\end{align*}
\]

Next, we employ a backstepping transformation to prove the exponential stability of the error system (31).

4.1. **Backstepping transformation and target error system**

We consider the backstepping transformation (Di Meglio et al., 2013)

\[
\begin{align*}
\tilde{u}_1(t, x) &= \tilde{r}_1(t, x) + \int_0^x m_1(x, \xi) \phi(t, \xi) \, d\xi, \quad i = 1, 2, \\
\tilde{w}(t, x) &= \tilde{r}(t, x) + \int_0^x m_2(x, \xi) \phi(t, \xi) \, d\xi,
\end{align*}
\]

(32a)

(32b)

to map (31) into the following target system

\[
\begin{align*}
\dot{\tilde{r}}_1 &= \sigma_1 \tilde{r}_1 + \sigma_2 \tilde{r}_2 \\
+ &\int_0^x g_1(x, \xi) \tilde{r}_1(t, \xi) \, d\xi + \int_0^x g_2(x, \xi) \tilde{r}_2(t, \xi) \, d\xi, \\
\dot{\tilde{r}}_2 &= \sigma_2 \tilde{r}_1 + \sigma_2 \tilde{r}_2 \\
+ &\int_0^x g_3(x, \xi) \tilde{r}_1(t, \xi) \, d\xi + \int_0^x g_4(x, \xi) \tilde{r}_2(t, \xi) \, d\xi, \\
\dot{\tilde{r}} &= - \mu \tilde{r} + \tilde{r}_1(t) \tilde{r}_1 + \tilde{r}_2(t) \tilde{r}_2 \\
+ &\int_0^x h_1(x, \xi) \tilde{r}_1(t, \xi) \, d\xi + \int_0^x h_2(x, \xi) \tilde{r}_2(t, \xi) \, d\xi,
\end{align*}
\]

(33a)

(33b)

(33c)

with the boundary conditions

\[
\tilde{r}_1(t, 0) = 0, \quad \tilde{r}_1(t, 1) = \rho_1 \tilde{r}_1(t, 1) + \rho_2 \tilde{r}_2(t, 1),
\]

(34a)

\[
i = 1, 2.
\]

Here, the functions \(g_j\) and \(h_i\) have to be determined on the triangular domain \(\mathbb{T}\). Differentiating the transformations (32) with respect to \(t\) and \(x\), and substituting the results into (31) with the help of (33), the following PDEs are derived

\[
\begin{align*}
\gamma_1 \tilde{w} - \mu \tilde{w}_1 &= \sigma_1 m_1 + \sigma_2 m_2 + \alpha(x) m_3,
\end{align*}
\]

(35a)
\[y_2 \partial_t m_2 - \mu \partial_t m_2 = \sigma_2 m_1 + \sigma_2 m_2 + \alpha(x)m_3, \]
\[\mu \partial_t m_3 + \mu \partial_t m_2 = -\theta_1(x)m_1 - \theta_2(x)m_2, \]
\[m_1(x, t) = \frac{1}{\gamma_1 + \mu} \alpha(x), \quad m_2(x, t) = \frac{1}{\gamma_2 + \mu} \alpha(x), \]
\[m_3(1, \xi) = \rho m_1(1, \xi) + \rho m_2(1, \xi). \]

The observer gains introduced in (31), are defined by
\[\rho_i(x) = \mu m_i(x, 0) \quad \text{for } i = 1, 2, 3, \]
and the integral coupling coefficients of the target system (33) are given by
\[\dot{h}_i(x, \xi) = -\theta_i(x)m_3(x, \xi) - \int_\xi^x m_3(s, \xi) h_(s, \xi) ds, \]
\[\dot{g}_{ij}(x, \xi) = -\theta_i(x)m_j(x, \xi) - \int_\xi^x m_i(s, \xi) g_{ij}(s, \xi) ds, \quad \text{for } [i, j] = 1, 2. \]

4.2. Inverse transformation

The continuity of the kernel \(m_1 \) defined in (32b) guarantees the existence of a unique continuous inverse kernel \(r_3 \), which satisfies the following relations
\[\hat{\phi}(t, x) = \hat{w}(t, x) + \int_0^t r_3(t, \xi) \hat{w}(t, \xi) \, d\xi, \]
\[r_3(x, \xi) = -m_3(x, \xi) - \int_\xi^x m_3(s, \xi) r_3(s, \xi) \, ds \]
defined on \(T \). Substituting (39) into (32a), we obtain
\[\bar{r}_i(t, x) = \hat{u}_i(t, x) + \int_0^t r_i(t, \xi) \hat{w}(t, \xi) \, d\xi, \quad i = 1, 2, 3. \]

4.3. Exponential convergence of the observer

We first prove exponential stability of the observer target system (33) by the following lemma

Lemma 2. Under the assumptions \(\psi_1^0, \psi_2^0, \chi_1^0 \in L^2([0, 1]) \) and \(\gamma_i, \ h_i \in \mathcal{V}(T) \), the system (33) with boundary conditions (34) and given initial condition (\(\psi_1^0, \psi_2^0, \chi^0 \)) is exponentially stable in the \(L^2 \) sense.

Proof. Consider the following Lyapunov function
\[V_2(t) = \int_0^t \left[a_2 e^{-\delta_2 x} \left(\frac{\hat{\psi}_1^2(t, x)}{\gamma_1} + \frac{\hat{\psi}_2^2(t, x)}{\gamma_2} \right) + \frac{e^{\delta_2 x}}{\mu} \hat{\varphi}_1^2(t, x) \right] \, dx, \]
where \(a_2 \) and \(\delta_2 \) are strictly positive parameters to be determined. Differentiating (41) with respect to time along the solution of the target system (33) and integrating by parts, we get
\[\dot{V}_2(t) = \left[-a_2 e^{-\delta_2 x} (\bar{\psi}_1^2(t, x) + \bar{\psi}_2^2(t, x)) + e^{\delta_2 x} \varphi_1^2(t, x) \right] \left[1 - \delta_2 \int_0^t e^{\delta_2 x} \varphi_1^2(t, x) \, dx \right] + 2 \int_0^t a_2 e^{-\delta_2 x} \Pi^I(t, x) \Gamma m \sigma \Pi(t, x) \, dx \]
to ensure the positiveness of the matrix \(P(x), \ x \in [0, 1] \). Hence, \(\dot{V}_2 < 0 \), which guarantees exponential stability of the target error system. From the continuity and invertibility of the backstepping transformation (32), exponential convergence of the designed observer is obtained and the following theorem holds.

Theorem 2. Under the assumptions that the initial data are in \(L^2([0, 1]) \), the observer system (29a)–(29c) (with the coefficient functions \(p_i(x), \ i = 1, \ldots, 3 \) determined by (35)–(36)) and with the boundary conditions (29d)–(29e) exponentially converge to the system (9) in the \(L^2 \) sense.

5. Output feedback control

Combining the controller (20), which requires a full state measurement, and the observer (29), which reconstructs the distributed state based on an output measurement \(w(t, 0) \), we design an observer-based output feedback controller.
Theorem 3. Consider the \((u_1, u_2, w)^T\)-system (9) together with the \((\hat{u}_1, \hat{u}_2, \hat{w})^T\)-observer (29). For a given initial condition \((u_{10}^0, u_{20}^0, w^0, \hat{u}_{10}^0, \hat{u}_{20}^0, \hat{w}^0)^T \in (L^2([0, 1]))^6\) and the control law

\[
U(t) = -\rho_1 \hat{u}_1(t, 1) - \rho_2 \hat{u}_2(t, 1) + \int_0^1 k_1(1, \xi) \hat{u}_1(x, \xi) dx + k_2(1, \xi) \hat{u}_2(x, \xi) dx + k_3(1, \xi) \hat{w}(1, \xi)
\]

(45)

where \(k_1, k_2, k_3\) satisfy (13), the \((u_1, u_2, w, \hat{u}_1, \hat{u}_2, \hat{w})^T\)-system is exponentially stable in the sense of the \(L^2\)-norm.

Proof. From the definition of the error variable vector (30), the combined closed-loop \((u_1, u_2, w, \hat{u}_1, \hat{u}_2, \hat{w})^T\)-system is equivalent to the \((\hat{u}_1, \hat{u}_2, \hat{w}, \hat{u}_1, \hat{u}_2, \hat{w})^T\)-system. In comparison to the backstepping transformation (10) and (11), the invertible transformation

\[
\hat{y}_i(t, x) = \hat{u}_i(t, x) \quad \text{for} \quad i = 1, 2
\]

(46)

\[
\hat{x}(t, x) = \hat{w}(t, x) - \int_0^x k_1(x, \xi) \hat{u}_1(t, \xi) d\xi - \int_0^x k_2(x, \xi) \hat{u}_2(t, \xi) d\xi - \int_0^x k_3(x, \xi) \hat{w}(t, \xi) d\xi
\]

(47)

and (32) maps the system (29) into a \((\hat{y}_1, \hat{y}_2, \hat{x}, \hat{\pi}_1, \hat{\pi}_2, \hat{\phi})^T\)-system, of which the exponential stability can be proved with the help of the following Lyapunov function

\[
V(t) = \int_0^1 a_1 e^{-\beta_1 x} \left(\frac{\hat{y}_1^2(t, x)}{\gamma_1} + \frac{\hat{y}_2^2(t, x)}{\gamma_2} \right) dx + \int_0^1 \frac{1 + x}{\mu} \hat{x}^2(t, x) dx + b \int_0^1 e^{\beta_2 x} \hat{\pi}_1^2(t, x) dx + b \int_0^1 a_2 e^{-\beta_2 x} \left(\frac{\hat{\pi}_1^2(t, x)}{\gamma_1} + \frac{\hat{\pi}_2^2(t, x)}{\gamma_2} \right) dx.
\]

(48)

Exponential stability of the \((u_1, u_2, w, \hat{u}_1, \hat{u}_2, \hat{w})^T\)-system is thus proved.

6. Numerical simulations

This section is devoted to numerical simulations of the system (8) using respectively the controllers \(U(t)\) defined in (20) and (47). Our goal is to demonstrate the performance of the suggested controllers (20) and (47) in stabilizing system (8) around the zero equilibrium. We employ an accurate finite volume scheme (a modified Roe scheme) to advance in time and space the hyperbolic evolutionary system (8). Elsewhere, for the implementation of the control law (47), the computation of the kernel PDE’s system (13) on \(\mathbb{T}\) is achieved using a finite element setup. The initial bottom topography is defined as

\[
B(0, x) = 0.4 \left(1 + 0.25 \exp \left(-\frac{(x - 0.5)^2}{0.003} \right) \right).
\]

with a Gaussian distribution centered at the middle of the domain. The initial water level and its velocity field are computed as \(H(0, x) = 2.5 - B(0, x)\) and \(H(0, x)\left(V(0, x) = 10 \sin(\pi x)\right)\), respectively.

Using the initial conditions of system (1), namely, \(H(0, x)\), \(V(0, x)\) and \(B(0, x)\), the initial data of the characteristic variables \(v, u_1\) and \(u_2\) are computed from (4).

6.1. State feedback under subcritical flow regime \((Fr < 1)\)

For a subcritical flow regime, we consider the set point \((H^*, V^*, B^*)\) defined in Table 1 (see Appendix), which leads to the characteristic speeds \(\lambda_1 = -1.42, \lambda_2 = 0.76\) and \(\lambda_3 = 7.42\), and the Froude number \(Fr = 0.6\). The coefficients \(a_i, b_i\) and the matrix \(\alpha\) are computed with the help of the characteristics speeds \(\lambda_i\). In order to implement the state feedback controller (20), the values of the kernels \(k_1, k_2\) and \(k_3\) at \(x = 1\) are derived from the numerical computation of (13) as it is shown in Fig. 4. Despite the large initial amplitudes, the control input \(U(t)\) (see Fig. 5) and the output measurement \(y(t)\) (see Fig. 6) converge to the zero equilibrium after \(t \geq 4\). Fig. 7 shows the convergence of the norm of the characteristics to zero. Therefore system (9) converges to the zero equilibrium and thereby, the linearized model (2) converges to \((H^*, V^*, B^*)\).

6.2. Output feedback under supercritical flow \((Fr > 1)\)

For supercritical flow regime, the parameters of the physical model are listed in Table 2 (see Appendix). The set point \((H^*, V^*, B^*)\) leads to the characteristic velocities \(\lambda_1 = 1.87, \lambda_2 = -0.74\) and \(\lambda_3 = 8.13\) and the Froude number \(Fr = 1.6\). The dynamics of the closed-loop system (8), together with the output feedback control law (47), is simulated. In order to implement the feedback control law (47), the kernel PDEs (13) and (35) are solved...
Fig. 6. Evolution of the measured output $y(t)$.

Fig. 7. Evolution of the norm of the characteristic solution.

Fig. 8. Computed observer gains $p_i(x)$.

Fig. 9. Evolution of the control law and the measured output.

The kernel gain $p_i(x)$ defined in (36) are depicted in Fig. 8. The computation of the control law (47) also requires the solution of the system (33)-(34), which is solved numerically on time and space using a finite element setup. Fig. 9 shows the evolution in time of the control input $U(t)$ at downstream, and the output measurement $y(t)$ at upstream. Clearly, the amplitudes of $U(t)$ and $y(t)$ decrease in time and vanishes for $t \geq 4$ s as shown in Fig. 9(a) and (b), respectively.

The dynamics of the L^2-norm are directly related to the magnitude of the propagation speeds λ_i (see Fig. 10). Under this supercritical flow regime, it is remarkable that the backstepping output feedback control law (Fig. 10(a)) achieves exponential stability compared to the approach in Diagne et al. (2012) (Fig. 10(b)), which leads to an unstable dynamics. Fig. 11 describes the space and time dynamics of the plant, and is consistent with the numerical results presented above. As time increases, it can be noticed that the perturbation in the overall system decreases and vanishes later.

7. Concluding remarks

This paper considers the stabilization of a linearized Saint-Venant–Exner model. A backstepping state feedback controller is first designed for the stabilization of the water level and the bathymetry at a desired equilibrium set. Using an exponentially convergent Luenberger observer, we design a backstepping output feedback controller with the measurements at upstream, which also achieves the exponential stability of the linearized SVE model, for both subcritical and supercritical flow regime. Although the backstepping approach offers a more complicated design than the method developed in Diagne et al. (2012), it enables exponential stabilization of the SVE system without any restriction on the system and the nature of the flow. Also, with the backstepping
controller, only a single boundary control is needed compared to Diagne et al. (2012). One should mention that only the free water surface level is measured at two boundaries in the feedback control law introduced in Diagne et al. (2012). Our future works are to consider disturbance rejection issues for this application (Tang, Guo, & Krstic, 2014; Tang & Krstic, 2014), as well as the adaptive estimation and control problems with unknown boundary parameters (Anfinsen, Diagne, Aamo, & Krstic, 2016; He,
Ge, & Zhang, 2011; Zhang, Xu, & Zhang, 2014) and constrained output due to the outflow gate operation (He & Ge, 2015).

Appendix

\[T = 8, \Delta x = 0.01, p = 0.002, C_f = 0.002, \rho_2 = 1.5, q_1 = 1, q_2 = 1.2. \]

References

Miroslav Krstic holds the Alsopch endowed chair and is the founding director of the Cymer Center for Control Systems and Dynamics at UC San Diego. He also serves as Associate Vice Chancellor for Research at UCSD. As a graduate student, Krstic won the UC Santa Barbara dissertation award and student best paper awards at CDC and ACC. Krstic is Fellow of IEEE, IFAC, ASME, SIAM, and IET (UK), Associate Fellow of AIAA, and foreign member of the Academy of Engineering of Serbia. He has received the PECASE, NSF Career, and ONR Young Investigator awards, the Axelby and Schuck paper prizes, the Chestnut textbook prize, the ASME Nyquist Lecture Prize, and the first UCSD Research Award given to an engineer. Krstic has also been awarded the Springer Visiting Professorship at UC Berkeley, the Distinguished Visiting Fellowship of the Royal Academy of Engineering, the Invitation Fellowship of the Japan Society for the Promotion of Science, and the Honorary Professorships from the Northeastern University (Shenyang), Chongqing University, and Donghua University, China. He serves as Senior Editor in IEEE Transactions on Automatic Control and Automatica, as editor of two Springer book series, and has served as Vice President for Technical Activities of the IEEE Control Systems Society and as chair of the IEEE CSS Fellow Committee. Krstic has coauthored eleven books on adaptive, nonlinear, and stochastic control, extremum seeking, control of PDE systems including turbulent flows, and control of delay systems.