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Abstract—Two robust adaptive control methods are outlined
for a class of nonlinear systems. The first method is based on the
tuning function design of Krsti¢ et al. (1992), and the second
method is based on the modular design of Krstic and Kokotovic¢
(1995). Both methods guarantee robustness with respect to
bounded uncertainties and exogenous disturbances, and L, /L,
estimates are given on the effects of these uncertainties/distur-
bances on the tracking error. © 1998 Elsevier Science Ltd. All
rights reserved.

1. Introduction

A state-space model of a plant is likely to contain uncertain
nonlinearities. Depending on how such uncertainties are charac-
terized, different nonlinear design techniques may apply. Robust
control techniques, including sliding mode control, account for
arbitrarily fast time variations of the uncertainty (such as those
arising from exogenous disturbances), but usually high gain is
required to guarantee a small tracking error. In contrast, adap-
tive control techniques only account for constant parametric
uncertainties, but they guarantee convergence of the tracking
error to zero without high gain The combination of tools from
both robust and adaptive control is likely to produce designs
better than those produced by either method alone. To illustrate
this point, suppose the model of our plant contains an uncertain
nonlinearity f(x, t), where x is the state vector. We first split this
nonlinearity into a known nominal part f,(x) plus an uncertain
part Af(x, t) as follows:

Jx0) = folx) + Af(x,1). 1)

Robust control techniques would use high gain to reduce the
effect of Af(x,t) on the error signals. A less conservative ap-
proach would be to further split Af(x ¢) into a parametric part
p(x)8 plus a time-varying part d(x,t) as follows:

S, 1) = folx) + p(x)8 + d(x, 1), i)

where & is an unknown constant parameter vector. If adaptive
control techniques can be used to account for 6, then the robust
control techniques need only counteract the uncertainty 5(x,t)
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which is likely to be much smaller than the original uncertainty
Af(x,t). Thus, the performance of a robust controller might be
greatly improved if it includes some adaptation. Likewise, adap-
tive controllers should benefit from robustification.

Such considerations motivate the development of robust ver-
sions of nonlinear adaptive control designs, and results in this
direction are beginning to appear (Polycarpou and Ioannou,
1993; Yao and Tomizuka, 1995; Pan and Bagar, 1995; Freeman
and Kokotovic, 1995). In this paper, we outline two design
methods which combine tools from nonlinear robust control
(Marino and Tomei, 1993; Qu, 1993; Freeman and Kokotovi¢,
1993) and nonlinear adaptive control (Krsti¢ et al., 1995, and the
references therein). The first method is based on the tuning
function design of Krstic er al. (1992), and the second method is
based on the modular design of Krsti¢ and Kokotovi¢ (1995).

2. Class of systems
We consider single-input-single-output nonlinear systems
which can be transformed into the following strict feedback form:

Xy =X + pr{x )0 + g, (xy)w.

Xy = X3 4 pa(xy, x2)0 + ga(x, X3 )W,
3
Xy = U+ Py, o, X004 qulxg, ..oy X)W,
y =X

where x =[x, --- x,]" € R"is the state, u € R is the control input,
y € Ris the variable to be tracked, 0 € R” is a unknown constant
parameter vector, w € R is an unmeasured disturbance input,
and the functions p; and ¢; are smooth. The main structural
condition is that the functions p; and g; depend only on the first
i state variables.

The disturbance input w need not be purely exogenous; we
allow it to be any (sufficiently regular) uniformly bounded nonlin-
ear function w = w(x, u, ), and we do not require knowledge of its
bound. This allows us to consider systems outside the class of
parametric strict feedback systems identified by Kanellakopoulos
et al. (1991). For example, consider the third-order system

Xy = x, +ax? + Bx3 cos(xsu) + nt),
¥ = xs )
X3 =u,

¥ =Xgn

where o and § are unknown constant parameters and n(t) is an
unmeasured bounded exogenous disturbance. If we were to
make the natural choice of 6 = [« f]7 and w = n(t), than this
system would not be in the form (3) because the function p,
would depend on x; and u. However, if we chose § = « and
w = [ cos(xsu) ()] with pi(x;)=x} and g,(x,) =[x} 1],
then we do obtain a system in the form (3). This choice is
possible because even though the variables x; and u enter the
equation for x; and thus appear too early, they do so through
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the bounded cosine nonlinearity. Note that we also have the
option of treating the unknown constant « as part of the distur-
bance vector w, but this would lead to a more conservative
design with a less desirable trade-off between control effort and
tracking error.

We can also allow the uncertainty w to include uniformly
bounded functions of outputs of unmodeled dynamics. For
example, the nonlinearity cos(x;u) in equation (4) could be
replaced by cos(¢T &), where ¢ is governed by dynamics of the
form

E=EE xu) {5)

and it is known that ¢ is bounded whenever x and u are
bounded.

3. Control objective and main reuslts

Our control objective is to force the output y(f) to track
a given bounded reference signal y,(t) having bounded deriva-
tives. We will consider dynamic state feedback controllers of the
form

= 1%, 0,0, 1,2 r, -0 ™), (6)
0 = TC60,1Y0 Jrs o 1), )
h=H 00005 - 3, (8)

where p and H are smooth functions, T is a locally Lipschitz
continuous function, and fe R? is of the same dimension as the
unknown constant parameter . The design of the controller will
be based on knowledge of a compact convex set © = R?

in which the true parameter 8 is known to lie.

We require the closed-loop system to have the following
properties: for every initial condition x{0) of the plant, every
admissiblet pair of initial conditions 8(0), n(0) of the controller,
every bounded disturbance welL,, every bounded reference
signal y,(t) having bounded derivatives, and every constant
parameter 0 ©,

P1. Global boundedness: the states x(1), 8(¢), and 5(t) exist and are
bonded for all t > 0.

P2. Asymptotic tracking: if w = 0, then y(t) — y,(t) and e
as t— oo.

P3. Finite L -gain: the tracking error y(t) — y,(¢) satisfies

Iy = yellx < Alwlle + 4o, 9)

where A is constant and Z, depends only on initial condi-
tions, and.

P4. Finite L,-gain: if we L;, then (y - y,)e L, and

Iy = yl2 < xlwll2 + %o» (10)

where y is constant and y, depends only on initial condi-
tions.

Note that in the asymptotic tracking property P2, we do not
require the state 8 to converge to the true value of the parameter
# in the absence of disturbances; we only require that it converge
to the set @. Also, the finite-gain properties P3 and P4 are with
respect to the tracking error only; we do not require a finite gain
between the disturbances and the other signals in the system.
Finally, xo will be zero for some initial condition, but 4, will
have a minimum value of A* > 0 for all initial conditions. This
minimum value will be proportional to the constant M given by

M:= max |0 — 0. (1
Ne®
Note that M is bounded from above by the diameter of the set
© in which the parameter 8 is known to lie.

Theorem 1. There exist functions u, T, and H such that controller
(6)—(8) meets the design objective P1-P4 for system (3). Further-
more, the constants A, A*, and y can be reduced arbitrarily by
using high gain in the controller.

tIn the modular design, the controller initial conditions must
lie in certain sets.

In the next sections, we outline two different proofs of this
theorem which correspond to two different controller designs,
the tuning function design and the modular design.

4. Tuning function design

The tuning function adaptive control design of Krsti¢ et al.
(1992) is a Lyapunov design in which a Lyapunov function for
the complete closed-loop system is constructed in a recursive
fashion. Controller (6)—(7), which in this design does not include
the #-dynamics in equation (8), is chosen to make the derivative
of this Lyapunov function negative along closed-loop trajecto-
ries. When our robust version of this design is complete, we
obtain a Lyapunov function of the form

vix,0.n =2 + 1 10— 012, (12)

i
where 7 > 0 is the adaptation gain and z€ R" is a transformed
state variable whose first component is the tracking error, that
is, z,(t):= Wt) — y{t). The derivative of this Lyapunov function
along closed-loop trajectories satisfies

V< —cjz)? - 200 — 0T L) + 21‘—1 fwl?, (13)

where ¢ > 0 and d > 0 are design parameters and the function
L(f) appears in the update law T in equation (7) as a type of
a-modification (Ioannou and Sun, 1995). The construction of the
variable z, the control law g, and the updata law T follows the
recursive procedure given in Krsti¢ et al. (1992) with two modifi-
cations. First, nonlinear damping terms are added to the control
law at each recursion step to dominate the effects of the distur-
bance w. Second, the first tuning function includes an extra term
of the form yL(f) so that the update law (7) becomes

{ = yL(0) + modified tuning functions. (14)

The derivatives of L will appear in the definitions of z, 41, and the
modified tuning functions. We will not give the construction
here; it is a straightforward extension of the procedure outlined
in Krsti¢ et al. (1992).

The function L is chosen to have the following properties:

L1. L@) =0 forall fe®,
L2, — 20 - 8)"L() <0 for all 1¢6

and
~ N ¢ N 2¢
L3, —20—-0"LB) < —-10 -0 + = M?> VAeR".
7 ¥

where M is defined in equation (11). One can show that a C*
function L with these properties always exists provided @ is
compact and convex with 8 e ©. The smoothness of L is crucial
because its derivatives (of up to order n — 2) will appear in the
functions g and T which define controller (6) and (7). Such
smoothness also means that the update law T in equation (7) can
be chosen to be smooth rather than merely locally Lipschitz in
this design. From equation (13) and L3 we obtain

Ve — eV 4 a4 15
AT (1)

form which the boundedness property P1 follows. The other
desired closed-loop properties P2--P4 can be derived from equa-
tions (13), (15), and L1-L3. The robustness estimates /4, 4o, , and
%o in P3 and P4 are given by

1

A=—. (16)
2 /cd
=—i()(0|+fM+!7(0 (17
L= 18)
2 @ (
Yo =—= 0O0) + — = |20} (19)

\/ oy Vv c
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5. Modular design

The modular design is less complex than the tuning function
design. While in the tuning function design the controller and
the identifier are interlaced and their construction is guided by
a single Lyapunov function, in the modular design the controller
and the identifier are independent. The independence is achieved
using a strong controller whose nonlinear damping terms assure
the boundedness of the plant state whenever the identifier
guarantees certain boundedness properties and the disturbance
w is bounded.

The parameter estimate 9 is kept inside © using parameter
projection. This is in contrast to the tuning function design
where it was not possible to employ projection because it is not
differentiable (projection is only locally Lipschitz, see Krstic
et al., 1995; Lemma E.1).

5.1. IS8S-controller. The controller of Krstic and Kokotovic
(1995), augmented by nonlinear damping terms counteracting
the disturbance w, results in the closed-loop system

7= A(z,0.02 + P2,0,07 0 + Rz, 0,070 + 0z, 0.0Tw, (20)

where z€R" is a transformed state variable whose first compon-
ent is the tracking error, and A., P, Q, and R are matrix-valued
functions of z, 0, and t:

-0 — 8 1 0 - 0
A
-1 -=C3 = 82 17
i
A, = 0 1 0 PT= € RV?
1
4
{ 0 0 ~1—¢cn—3, T
[ 1
a T
o 7
QT= c anxq RT = € IRnxp
(21
A i

and the nonlinear damping functions s; are given by
si = Kilpil® + dilgil® + gilFil>. (22)

For system (20) we can show that

df1 , R 4 P O T
dt<2 2 )s ~ cl +4(K 0 + 107+ 1wl ) 29

where
c=min{cy, ...,Cp}, Kp=min{k, ...,&,}

(32 (2 ()

It follows that z will be bounded provided (~), é and w are
bounded. However, it is not necessary that these inputs be
bounded. It is enough if they are square integrable, and even if
they are only “mean-square” bounded (see Corollary 3.3.3 in
loannou and Sun, 1995).

5.2. Scheme with passive identifier. We employ the observer
i=Az,0,0% + Rz0,07 0. (24)

The observer error
e=z—-2 (25)

is governed by an equation driven by f and w:

&= A(z,0,0¢ + P(z,0,07 8 + Q(z,0,0T w. (26)

The update law for 9,
f = Proj{TP(z,0,t)e}, T=T">0 @n
(<]

employs parameter projection to keep @ inside ©. For the
properties of the projection operator, the reader is referred to
Appendix E of Krsti¢ et al. (1995). For simplicity, the subsequent
analysis assumes I" = yl.

Following the proof of Lemma 5.10 in Krsti¢ et al. (1995), the
Lyapunov-like function

1 -~ 1
V=—101+=l¢g? 28
2yl I* + 5 fel (28)
can be shown to have the derivative satisfying
. K 1
V< —del? === 1012 + —w 29
clel 7 181* + 4dIWI 29

Since w is bounded, equation (29) can be used to show that fis
mean-square bounded. Along with boundedness of 8 (which is
guaranteed by projection) and w, with Ioannou and Sun (1995;
Corollary 3.3.3) applied to equation (23) we prove that z is
bounded.

The L, and L, performance computations are carried out
using equation (29) and the following two inequalities:

d (WA + 16 + |01F
dt 2

d (vz]? + Je*

dt 2

1
< — uclf? = clel? 2
)_ K21 = clel” + = Wl (30)

+

v+ 2 ~ v+1
< - 24 jel?) + —— 1017 + ——— i,
) c(vlzl* + lel*) + yw 101 + ' twl

(1)
where y = 2gx,,/ny? and v = gk,,/ny?. Inequalities (30) and (31)
can be obtained by modifying proofs of Theorems 5.11 and 5.19,

respectively, in Krsti¢ et al. (1995). The robustness estimates 4,
‘%0, ¥, and o in P3 and P4 are given by

1 ( n.’,Z >1/2
A= t+—) (32)
2/ed\ gkm
1 ( 2"}’2)1/2
Ao = 1+ M +1z(0). (33)
NS
1 )1')’2 1/2
q= (1 + ) , (34)
2cd 2gK
1 nyz 1/2 . 1
Yo =—= (1 + ————> 1B(0)] + — |2(0)) . (35)
NZAET> Nz

5.3. Scheme with swapping identifier. We employ the following
filters and the estimation error:

QF = 4,(2,0,0)Q" + P(z,0,1), (36)
Qo = 4.(z, 0,090 + P(z,0,070 ~ Rz, 0,078, (37
e=z+Q,— Q70 (38)

The estimation error satisfies
e=Q"0+3 (39)
where £ is the filtered disturbance:
£ = A,(2,0,08 + 0(z,0,0™w. (40)

The update law for @ is either the gradient:

0 =Proj{T'Qe}, T'=TT>0 (@1)
or the least squares °
0 = Proj {I'Qe},
© 42)
I'= —TQQ'T, T(©0) =T >0.
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In our analysis here, we will consider only the gradient update
law. All the results can be extended to the case of least-squares
update law.

To establish boundedness of all signals, we note that w is
bounded, 6 is bounded by projection, so in order to use inequal-
ity (23), we only need to show that 8 is bounded. This is straight-
forward due to nonlinear damping terms embedded in the matrix
A, present in equations (36) and (40). These terms guarantee
boundedness of Q and & so we show that 0 is bounded. Hence, 2
is bounded, which, in turn, implies that €, is bounded.

An L performance bound is obtained using equation (23).
An L, performance bound is obtained by extending the proof of
Theorem 6.11 in Krsti¢ er al. (1995) to the case with a distur-
bance w. The robustness estimates 4, g, ¥, and o in P3-P4 are

given by
1 yr o\
j = 1+——1 , 43
‘73 cd( 86’%) @
1 .?2 1/2
Ao = 1 M ), 44
o 5 CK( +8629k) + {2(0)] (44)
| ¥ (1 1 )”i]
1= Ly ——(-+=—] |, (45)
2. /cd [ 2 /2¢ \g 2%k
y (1 1\ . 2 . 1
= - 00)] + —= 16(0)] + —= [2(0)|. (46
Xo Py <g + Zczx) 16(0)] \/—yl (0)] \/; [z(0)}. (46)

6. Conclusion

We have shown how two recently developed nonlinear adap-
tive control designs can be made robust with respect to structured
state-space uncertainty and exogenous disturbances. These modi-
fied designs are likely to provide improvements over either
strictly robust or strictly adaptive designs. Still open are impor-
tant questions about control effort, performance, and robustness
with respect to unmodeled dynamics and measurement error.
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