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ISS with Respect to Boundary Disturbances
for 1-D Parabolic PDEs
Iasson Karafyllis and Miroslav Krstic, Fellow, IEEE

Abstract—Due to unbounded input operators in partial differ-
ential equations (PDEs) with boundary inputs, there has been a
long-held intuition that input-to-state stability (ISS) properties
and finite gains cannot be established with respect to disturbances
at the boundary. This intuition has been reinforced by many
unsuccessful attempts, as well as by the success in establishing ISS
only with respect to the derivative of the disturbance. Contrary to
this intuition, we establish such a result for parabolic PDEs. Our
methodology does not rely on the transformation of the boundary
disturbance to a distributed input and the stability analysis is
performed in time-varying subsets of the state space. The obtained
results are used for the comparison of the gain coefficients of
transport PDEs with respect to inlet disturbances and for the
establishment of the ISS property with respect to control actuator
errors for parabolic systems under boundary feedback control.

Index Terms—Boundary disturbances, ISS, parabolic PDE
systems.

I. INTRODUCTION

THE extension of the Input-to-State Stability (ISS) property
to systems which are described by Partial Differential

Equations (PDEs) is a challenge. Many works have recently
studied possible extensions of the ISS property to PDE systems
(see, for example, [1], [2], [4]–[6], [9], [11], [12], [14]). In
particular, for PDE systems, there are two “places” where a
disturbance can appear: the domain (a distributed disturbance
appearing in the partial differential equations) and the boundary
(a disturbance that appears in the boundary conditions). Most of
the existing results in the literature are dealing with distributed
disturbances in the domain (an exception is the work [1]).

Boundary disturbances can be cast as distributed distur-
bances acting on the domain by means of standard transfor-
mation arguments. However, when a boundary disturbance is
expressed by means of a distributed disturbance, then the effect
of the boundary disturbance is described by means of an un-
bounded operator (see the relevant discussion in [11] for inputs
in infinite-dimensional systems that are expressed by means
of unbounded linear operators). The advantage of the method-
ology is that the “disturbed problem” becomes a standard
evolution equation (with inputs) in an appropriate complete
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linear space X , so that all existing tools for evolution equations
can be used (e.g., semigroup of linear operators). However, such
a methodology will always end up not showing the ISS property
with respect to the boundary disturbance but the ISS property
with respect to the boundary disturbance and some of its time
derivatives (see for example [1]).

The present work is devoted to the presentation of a different
methodology for studying ISS with respect to boundary dis-
turbances. The transformation of the boundary disturbance to
a domain disturbance is avoided and the effect of the distur-
bance is not expressed by means of an unbounded operator.
The effect of the boundary disturbance d(t) is expressed by
a change in the state space itself: the state space is different
for every time instant t ≥ 0 and depends on the value of the
disturbance. Therefore, the evolution of the state takes place
in a parameterized convex set Xd(t). The focus of the present
work is on 1-D parabolic PDEs, although the methodology can
be extended to other classes of PDEs as well. The proof relies
on the establishment of estimates for the magnitude of certain
generalized Fourier coefficients. The estimate of the appropri-
ate weighted L2 norm is obtained by the Parseval’s identity.

Another difference between the present work and existing
works on the ISS of PDE systems is that most of the exist-
ing works on the ISS of PDE systems are using Lyapunov
functionals (see for instance [10], [12], [14]), while the present
work does not use a Lyapunov functional. The difference is
important and is a consequence of the fact that in this work the
evolution of the state takes place in a parameterized convex set
Xd(t). The reader should not misunderstand the statement: we
are not claiming that it is impossible to find an ISS-Lyapunov
functional for a boundary disturbance. However, it is difficult
to find an ISS-Lyapunov functional for boundary disturbances
because the state space is different at each time instant.

The results of the present work have direct consequences
to various research directions. The comparison of the gains
of boundary disturbances for transport PDEs is performed and
the effects of the diffusion and the boundary condition at the
exit of the transport device are illustrated. The ISS property of
the closed-loop system with respect to control actuator errors
for backstepping boundary feedback design methodologies (see
[17]) is also studied in this work.

The structure of the present work is as follows: Section II is
devoted to the presentation of the problem and the statement of
the main result (Theorem 2.2). The proof of the main result is
provided in Section III, where additional results are stated and
utilized. The applications of the obtained results to transport
PDEs and to the study of parabolic systems under boundary
feedback control are shown in Section IV. The concluding
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remarks are provided in Section V. Finally, the Appendix
contains the proofs of all auxiliary results.

Notation:

∗ �+ := [0,+∞).
∗ Let U ⊆ �n be a set with non-empty interior and let Ω ⊆
� be a set. By C0(U ; Ω), we denote the class of continuous
mappings on U , which take values in Ω. By Ck(U ; Ω),
where k ≥ 1, we denote the class of continuous functions
on U , which have continuous derivatives of order k on U
and take values in Ω. When Ω ⊆ � is not explicitly given,
i.e., when we write Ck(U), we mean that Ω = �.

∗ Let r ∈ C0([0, 1]; (0,+∞)) be given. L2
r([0, 1]) denotes

the equivalence class of measurable functions f : [0, 1] →
� for which

‖f‖r =

⎛⎝ 1∫
0

r(z) |f(z)|2 dz

⎞⎠
1
2

< +∞.

L2
r([0, 1]) is a Hilbert space with inner product

〈f, g〉 =
1∫

0

r(z)f(z)g(z)dz.

∗ H2(0, 1) denotes the Sobolev space of continuously dif-
ferentiable functions on [0, 1] with measurable, square
integrable second derivative.

∗ Let x ∈ C0(�+ × [0, 1]) be given. We use the notation
x[t] to denote the profile at certain t ≥ 0, i.e., (x[t])(z) =
x(t, z) for all z ∈ [0, 1].

II. PROBLEM DESCRIPTION AND MAIN RESULT

Consider the Sturm-Liouville operator A : D → L2
r([0, 1])

defined by

(Af)(z) = − 1

r(z)

d

dz

(
p(z)

df

dz
(z)

)
+

q(z)

r(z)
f(z),

for all f ∈ D and z ∈ (0, 1) (2.1)

where p ∈ C1([0, 1]; (0,+∞)), r ∈ C0([0, 1]; (0,+∞)), q ∈
C0([0, 1]) and D is the set of all functions f ∈ H2(0, 1) for
which

b1f(0) + b2
df

dz
(0) = a1f(1) + a2

df

dz
(1) = 0 (2.2)

where a1, a2, b1, b2 are real constants with |a1|+ |a2| > 0,
|b1|+ |b2| > 0.

FACT (see Chapter 11 in [3] and pages 498–505 in [13]): All
eigenvalues of the Sturm-Liouville operatorA : D→L2

r([0, 1]),
defined by (2.1) and (2.2) are real. They form an in-
finite, increasing sequence λ1 < λ2 < · · · < λn < · · · with
limn→∞(λn) = +∞. To each eigenvalue λn ∈ � (n =
1, 2, . . .) corresponds exactly one eigenfunction φn ∈ D ∩
C2([0, 1]) that satisfies Aφn = λnφn. The eigenfunctions form
an orthonormal basis of L2

r([0, 1]).
In the present work, we make the following assumption

for the Sturm-Liouville operator A : D → L2
r([0, 1]) defined

by (2.1) and (2.2), where a1, a2, b1, b2 are real constants with
|a1|+ |a2| > 0, |b1|+ |b2| > 0.
(H): The Sturm-Liouville operator A : D → L2

r([0, 1]) de-
fined by (2.1) and (2.2), where a1, a2, b1, b2 are real constants
with |a1|+ |a2| > 0, |b1|+ |b2| > 0, satisfies

λ1 > 0 (2.3)

∞∑
n=1

λ−1
n max

0≤z≤1
(|φn(z)|) < +∞. (2.4)

Consider next the parameterized convex set

Xμ =

{
x ∈ C2 ([0, 1]) : b1x(0) + b2

dx

dz
(0) = μ,

a1x(1) + a2
dx

dz
(1) = 0

}
(2.5)

with parameter μ ∈ �. Given d ∈ C2(�+) and x0 ∈ Xd(0),
we study the solution x ∈ C0(�+ × [0, 1]) ∩C1((0,+∞)×
[0, 1]) for which x[t] ∈ Xd(t) for all t ≥ 0, x[0] = x0 and

∂x

∂t
(t, z) + (Ax[t]) (z)

=
∂x

∂t
(t, z)− 1

r(z)

∂

∂z

(
p(z)

∂x

∂z
(t, z)

)
+

q(z)

r(z)
x(t, z) = 0

for all (t, z) ∈ (0,+∞)× (0, 1). (2.6)

In other words, we consider the solution of the 1-D parabolic
PDE (2.6) that satisfies for all t ≥ 0 the boundary conditions

b1x(t, 0) + b2
∂x

∂z
(t, 0) = d(t)

a1x(t, 1) + a2
∂x

∂z
(t, 1) = 0. (2.7)

The input d ∈ C2(�+) is a boundary disturbance and appears
only at the boundary condition.

In order to be able to state the main result, we first need the
following lemma. Its proof is provided at the Appendix.

Lemma 2.1: Consider the Sturm-Liouville operatorA : D →
L2
r([0, 1]) defined by (2.1) and (2.2), where a1, a2, b1, b2

are real constants with |a1|+ |a2| > 0, b21 + b22 = 1, under
Assumption (H). Then, the boundary value problem

d

dz

(
p(z)

dx̃

dz
(z)

)
− q(z)x̃(z) = 0, for all z ∈ [0, 1] (2.8)

with

b1x̃(0) + b2
dx̃

dz
(0) = 1, a1x̃(1) + a2

dx̃

dz
(1) = 0 (2.9)

has a unique solution x̃ ∈ C2([0, 1]), which satisfies

p2(0)

∞∑
n=1

λ−2
n

∣∣∣∣b1 dφn

dz
(0)− b2φn(0)

∣∣∣∣2 =

1∫
0

r(z)x̃2(z)dz.

(2.10)

We are now ready to state the main result of the present work.
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Theorem 2.2: Consider the Sturm-Liouville operator A :
D → L2

r([0, 1]) defined by (2.1) and (2.2), where a1, a2, b1,
b2 are real constants with |a1|+ |a2| > 0, |b1|+ |b2| > 0, un-
der assumption (H). Then, for every d ∈ C2(�+) and x0 ∈
Xd(0), the evolution equation (2.6) with (2.7) and initial condi-
tion x0 ∈ Xd(0) has a unique solution x ∈ C0(�+ × [0, 1]) ∩
C1((0,+∞)× [0, 1]) for which x[t] ∈ Xd(t) for all t ≥ 0,
x(0, z) = x0(z) for all z ∈ [0, 1] and satisfies the following
estimate for all t ≥ 0:

‖x[t]‖r≤
√

exp(−λ1t)

2− exp(−λ1t)
‖x[0]‖r+

C√
b21 + b22

max
0≤s≤t

(|d(s)|)

(2.11)

where

C :=

√√√√√ 1∫
0

r(z)x̃2(z)dz

=
p(0)√
b21 + b22

⎛⎝√√√√ ∞∑
n=1

λ−2
n

∣∣∣∣b1 dφn

dz
(0)− b2φn(0)

∣∣∣∣2
⎞⎠
(2.12)

and x̃ ∈ C2([0, 1]) is the unique solution of the boundary
value problem (2.8) with b1x̃(0) + b2(dx̃/dz)(0) =

√
b21 + b22

and a1x̃(1) + a2(dx̃/dz)(1) = 0. In other words, the system
described by the evolution equation (2.6) with (2.7), state space
the normed linear space ∪μ∈�Xμ ⊆ L2

r([0, 1]) with norm ‖ ‖r,
satisfies the ISS property with respect to the boundary input
d ∈ C2(�+) with gain (C/

√
b21 + b22).

Remark 2.3: Since the equilibrium point that corresponds to
the constant disturbance d(t) ≡

√
b21 + b22 is the function x̃ ∈

C2([0, 1]), it follows that the gain γ > 0 that is involved to the
ISS estimate:

‖x[t]‖r≤M exp(−σ t) ‖x[0]‖r +γ max
0≤s≤t

(|d(s)|), for all t≥0

for certain constants M , σ, must satisfy the inequality

γ
√
b21 + b22 ≥ C

where C>0 is given by (2.12). On the other hand, Theorem 2.2
guarantees that

γ ≤ C√
b21 + b22

.

Consequently, we can guarantee that the estimation of the
gain made by Theorem 2.2 is sharp. Moreover, formula (2.12)
guarantees that the gain of the boundary disturbance can be
computed without exact knowledge of the eigenvalues and
the eigenfunctions of the Sturm-Liouville operator A : D →
L2
r([0, 1]) defined by (2.1) and (2.2). The only thing we need

to know about the eigenvalues and the eigenfunctions of the
Sturm-Liouville operator A : D → L2

r([0, 1]) defined by (2.1)
and (2.2) is that Assumption (H) holds.

Remark 2.4: The ISS property guaranteed by estimate (2.11)
is a direct extension of the ISS property for finite-dimensional
systems (see [16]). However, there are some differences with
the finite-dimensional case:

i) The state x[t] ∈ Xd(t) is not allowed to take values in the
whole state space ∪μ∈�Xμ ⊆ L2

r([0, 1]), but is restricted
to evolve in the convex set Xd(t).

ii) The disturbance d ∈ C2(�+) has to be sufficiently
regular.

Both requirements are necessary due to the regularity re-
quirements for the solution. Indeed, if we studied weak so-
lutions (instead of classical solutions) of the PDE problem
(2.6), (2.7), then less demanding regularity properties for the
disturbance would be needed.

III. PROOF OF MAIN RESULT

In order to prove the main result, we first need an existence/
uniqueness result. Although the following result guarantees the
existence/uniqueness of a classical solution for a PDE problem,
we have not been able to find such a result in the literature.
Therefore, we are forced to prove the following result. Its proof
is provided in the Appendix.

Theorem 3.1: Consider the Sturm-Liouville operator A :
D → L2

r([0, 1]) defined by (2.1) and (2.2), where a1, a2, b1, b2
are real constants with |a1|+ |a2| > 0, |b1|+ |b2| > 0, under
Assumption (H). Consider the linear space

X0 =

{
x ∈ C2 ([0, 1]) : b1x(0) + b2

dx

dz
(0)

= a1x(1) + a2
dx

dz
(1) = 0

}
.

Then, for every x0 ∈ X0 and f ∈ C1(�+ × [0, 1]), there ex-
ists a unique function x ∈ C0(�+ × [0, 1]) ∩ C1((0,+∞)×
[0, 1]) satisfying x[t] ∈ X0 for all t ≥ 0, x(0, z) = x0(z) for
all z ∈ [0, 1] and

∂x

∂t
(t, z)− 1

r(z)

∂

∂z

(
p(z)

∂x

∂z
(t, z)

)
+
q(z)

r(z)
x(t, z) = f(t, z),

for all (t, z) ∈ (0,+∞)× (0, 1). (3.1)

Using Theorem 3.1, we are in a position to guarantee existence/
uniqueness of a classical solution for the PDE problem
(2.6), (2.7).

Corollary 3.2: Consider the Sturm-Liouville operator A :
D → L2

r([0, 1]) defined by (2.1) and (2.2), where a1, a2, b1,
b2 are real constants with |a1|+ |a2| > 0, b21 + b22 = 1, un-
der Assumption (H). Then, for every d ∈ C2(�+) and x0 ∈
Xd(0), there exists a unique function x ∈ C0(�+ × [0, 1]) ∩
C1((0,+∞)× [0, 1]) for which x[t] ∈ Xd(t) for all t ≥ 0,
x(0, z) = x0(z) for all z ∈ [0, 1] and (2.6).

Proof: We simply apply the transformation x(t, z) =
y(t, z) + d(t)(b1 + b2z + c1z

2 + c2z
3), where y ∈ C0(�+ ×

[0, 1]) ∩ C1((0,+∞)× [0, 1]) is the unique function that
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satisfies y[t] ∈ X0 for all t ≥ 0, y(0, z) = x0(z)− d(0)(b1 +
b2z + c1z

2 + c2z
3) for all z ∈ [0, 1] and

∂y

∂t
(t, z)− 1

r(z)

∂

∂z

(
p(z)

∂y

∂z
(t, z)

)
+

q(z)

r(z)
y(t, z)

=
d(t)

r(z)

(
d

dz

(
(b2 + 2c1z + 3c2z

2)p(z)
)

− q(z)(b1 + b2z + c1z
2 + c2z

3)

)
− ḋ(t)(b1 + b2z + c1z

2 + c2z
3)

for all (t, z) ∈ (0,+∞)× (0, 1) (3.2)

and c1, c2 ∈ � are constants that satisfy

(a1 + 2a2)c1 + (a1 + 3a2)c2 = −a1b1 − (a1 + a2)b2.

The above condition guarantees that a1y(0, 1) + a2(∂y/∂z)(0,
1) = 0, i.e., y[0] ∈ X0. The existence of constants c1, c2 ∈ �
that satisfy the equation (a1+2a2)c1+(a1+3a2)c2 = −a1b1 −
(a1 + a2)b2 is guaranteed by the condition |a1|+ |a2| > 0.
Existence/uniqueness of y ∈ C0(�+×[0, 1]) ∩ C1((0,+∞)×
[0, 1]) with y[t] ∈ X0 for all t ≥ 0, satisfying y(0, z) =
x0(z)− d(0)(b1 + b2z + c1z

2 + c2z
3) for z ∈ [0, 1] and (3.2)

is guaranteed by Theorem 3.1. The proof is complete.�
We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2: We first restrict our attention to the
case where b21 + b22 = 1. Corollary 3.2 guarantees that x[t] ∈
Xd(t) ⊂ L2

r([0, 1]) for all t ≥ 0. Since the eigenfunctions
{φn}∞n=1 of the Sturm-Liouville operator A : D → L2

r([0, 1])
defined by (2.1) and (2.2) form an orthonormal basis of
L2
r([0, 1]), it follows that Parseval’s identity holds, i.e.,

‖x[t]‖2r =
∞∑

n=1

c2n(t), for all t ≥ 0 (3.3)

where

cn(t) := 〈φn, x[t]〉=
1∫

0

r(z)x(t, z)φn(z)dz, for n = 1, 2, . . . .

(3.4)

By virtue of (2.6), it follows from repeated integration by parts,
that the following equalities hold for all t > 0:

ċn(t) =

1∫
0

r(z)
∂x

∂t
(t, z)φn(z)dz

=

1∫
0

∂

∂z

(
p(z)

∂x

∂z
(t, z)

)
φn(z)dz−

1∫
0

q(z)x(t, z)φn(z)dz

= p(1)
∂x

∂z
(t, 1)φn(1)− p(0)

∂x

∂z
(t, 0)φn(0)

−
1∫

0

p(z)
∂x

∂z
(t, z)

dφn

dz
(z)dz−

1∫
0

q(z)x(t, z)φn(z)dz

= p(1)

(
∂x

∂z
(t, 1)φn(1)− x(t, 1)

dφn

dz
(1)

)
+ p(0)

(
dφn

dz
(0)x(t, 0)− ∂x

∂z
(t, 0)φn(0)

)

+

1∫
0

x(t, z)

[
d

dz

(
p(z)

dφn

dz
(z)

)
−q(z)φn(z)

]
dz

= p(1)

(
∂x

∂z
(t, 1)φn(1)− x(t, 1)

dφn

dz
(1)

)
+ p(0)

(
dφn

dz
(0)x(t, 0)− ∂x

∂z
(t, 0)φn(0)

)

−
1∫

0

r(z)x(t, z)(Aφn)(z)dz.

Thus, we get for all t > 0

ċn(t) = p(1)

(
∂x

∂z
(t, 1)φn(1)− x(t, 1)

dφn

dz
(1)

)
+ p(0)

(
dφn

dz
(0)x(t, 0)− ∂x

∂z
(t, 0)φn(0)

)

−
1∫

0

r(z)x(t, z)(Aφn)(z)dz. (3.5)

Next, we show that

x(t, 1)
dφn

dz
(1)− φn(1)

∂x

∂z
(t, 1) = 0, for all t ≥ 0. (3.6)

Indeed, using (2.7) and the fact a1φn(1) + a2(dφn/dz)(1) =
0, we conclude that the homogeneous system of linear
equations

s1x(t, 1) + s2
∂x

∂z
(t, 1) = 0

s1φn(1) + s2
dφn

dz
(1) = 0

has the non-zero solution

s1 = a1, s2 = a2

and, consequently, the determinant of the matrix[
x(t, 1) (∂x/∂z)(t, 1)
φn(1) (dφn/dz)(1)

]
must be zero, i.e., (3.6) holds.

It follows from (3.5) in conjunction with (3.6), the fact that
(Aφn)(z) = λnφn(z) and definition (3.4) that the following
equation holds for all t > 0:

ċn(t)=p(0)

(
dφn

dz
(0)x(t, 0)− ∂x

∂z
(t, 0)φn(0)

)
− λncn(t).

(3.7)

Next, we show that for all t ≥ 0

x(t, 0)
dφn

dz
(0)− ∂x

∂z
(t, 0)φn(0)=d(t)

(
b1
dφn

dz
(0)−b2φn(0)

)
.

(3.8)
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Indeed, the equation b1x(t, 0) + b2(∂x/∂z)(t, 0) = d(t) [see
(2.7)] gives

b21x(t, 0)
dφn

dz
(0) + b2b1

dφn

dz
(0)

∂x

∂z
(t, 0) = d(t)b1

dφn

dz
(0)

b1b2φn(0)x(t, 0) + b22φn(0)
∂x

∂z
(t, 0) = d(t)b2φn(0)

from which we obtain

d(t)

(
b1
dφn

dz
(0)− b2φn(0)

)
=

(
b21 + b22

)(
x(t, 0)

dφn

dz
(0)− φn(0)

∂x

∂z
(t, 0)

)
+

(
b1
∂x

∂z
(t, 0)− b2x(t, 0)

)(
b2
dφn

dz
(0) + b1φn(0)

)
.

Equation (3.8) follows directly from the above equation and the
facts b1φn(0) + b2(dφn/dz)(0) = 0 and b21 + b22 = 1. Using
(3.7) and (3.8), we obtain for all t > 0

ċn(t) = p(0)

(
b1
dφn

dz
(0)− b2φn(0)

)
d(t)− λncn(t). (3.9)

Integrating the differential equations (3.9), we obtain for all
0 < T ≤ t and n = 1, 2, . . .

cn(t)=exp (−λn(t−T )) cn(T )−p(0)

(
b1
dφn

dz
(0)− b2φn(0)

)

×
t∫

T

exp (−λn(t− s)) d(s)ds. (3.10)

Continuity of the mapping �+ � T → cn(T ) and (3.10)
implies the following equations for all t ≥ 0 and n = 1, 2, . . .:

cn(t) = exp(−λnt)cn(0)− p(0)

(
b1
dφn

dz
(0)− b2φn(0)

)

×
t∫

0

exp (−λn(t− s)) d(s)ds. (3.11)

Equations (3.11) imply the following estimates for all t ≥ 0 and
n = 1, 2, . . .:

|cn(t)| ≤ exp(−λnt) |cn(0)|

+ p(0)

∣∣∣∣b1 dφn

dz
(0)− b2φn(0)

∣∣∣∣ 1− exp(−λnt)

λn
max
0≤s≤t

(|d(s)|) .

(3.12)

We next use the inequality (a+ b)2 ≤ (1 + ε−1)a2 + (1 +
ε)b2 (which holds for every a, b ∈ � and ε > 0) in con-
junction with (3.12). Using (3.12) for t > 0 with ε = ((1 −
exp(−λnt))

2/1− (1− exp(−λnt))
2) > 0, we get all t > 0

and n = 1, 2, . . .

|cn(t)|2 ≤ exp(−λnt)

2− exp(−λnt)
|cn(0)|2

+ p2(0)

∣∣∣∣b1 dφn

dz
(0)− b2φn(0)

∣∣∣∣2 1

λ2
n

max
0≤s≤t

(
|d(s)|2

)
. (3.13)

We notice that (3.12) shows that (3.13) holds for t = 0 as well.
Since λn ≥ λ1 > 0 for all n = 1, 2, . . ., we obtain from (3.12)
the following estimates for all t ≥ 0 and n = 1, 2, . . .:

|cn(t)|2 ≤ exp(−λ1t)

2− exp(−λ1t)
|cn(0)|2

+ p2(0)

∣∣∣∣b1 dφn

dz
(0)− b2φn(0)

∣∣∣∣2 1

λ2
n

max
0≤s≤t

(
|d(s)|2

)
. (3.14)

Therefore, by virtue of estimates (3.3), (3.14), definition (2.12)
and identity (2.10), the following estimate holds for all t ≥ 0:

‖x[t]‖r ≤
√

exp(−λ1t)

2− exp(−λ1t)
‖x[0]‖r + C max

0≤s≤t
(|d(s)|)

(3.15)
where C > 0 is given by (2.12).

Next, consider the general case, where the constants b1, b2
appearing in the boundary condition b1x(t, 0) + b2(∂x/∂z)(t,
0) = d(t) does not satisfy the condition b21 + b22 = 1. Notice
that the boundary condition b1x(t, 0) + b2(∂x/∂z)(t, 0)=d(t)

can be transformed to the condition b̃1x(t, 0) + b̃2(∂x/∂z)(t,

0) = d̃(t), where b̃i = (bi/
√
b21 + b22) (i = 1, 2) and d̃(t) =

(d(t)/
√

b21 + b22). Therefore, (3.14) holds with d replaced by
d̃. Estimate (2.11) is a direct consequence of estimate (3.14)
with d replaced by d̃ and definition d̃(t) = (d(t)/

√
b21 + b22).

The proof is complete. �
Remark 3.3: It is clear that the proof of Theorem 2.2 consists

of two different parts. The first part that establishes existence/
uniqueness relies on the transformation of the boundary dis-
turbance to a domain input. However, this transformation is
used only for the establishment of existence/uniqueness of the
solution. Estimates of the magnitude of certain generalized
Fourier coefficients are derived in the second part: the estimates
are derived for the original equations; not the transformed ones.
The obtained estimates are combined by means of Parseval’s
identity in order to give an estimate for the L2 norm.

IV. APPLICATIONS

A. Gains for Transport PDEs With Respect to
Inlet Disturbances

We consider the 1-D transport PDE

∂y

∂t
(t, z) = D

∂2y

∂z2
(t, z)− v

∂y

∂z
(t, z)− ky(t, z) (4.1)

where D > 0, v ≥ 0, k ∈ � are constants. We consider the
following cases.

Case 1) Dirichlet boundary conditions

y(t, 0) = d(t)

y(t, 1) = 0. (4.2)

Case 2) Robin (or Neumann) boundary conditions

y(t, 0) = d(t)

∂y

∂z
(t, 1) =

( v

2D
− a

)
y(t, 1) (4.3)

where a ≥ 0.
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The physical meaning of the 1-D transport PDE is the trans-
portation of a certain quantity (denoted by y) through a tube (the
transport device). The inlet of the tube is at z = 0 while the exit
is at z = 1. The term D(∂2y/∂z2)(t, z) quantifies the effect of
the diffusion and D > 0 is called the diffusion coefficient, the
term −v(∂y/∂z)(t, z) quantifies the effect of convection and
v ≥ 0 is the fluid velocity in the tube, while the term −ky(t, z)
quantifies the possible reaction effects and k ∈ � is the reaction
constant. Notice that we are considering a parameterized family
of boundary conditions at the exit of the tube with parameter
a ≥ 0 (Case 1 corresponds to a = +∞). The disturbance is at
the inlet of the tube and is transported throughout the tube by
means of diffusion and convection.

The 1-D transport PDE (4.1) corresponds to the PDE
(2.6) with

r(z) = exp
(
− v

D
z
)
, q(z) = kr(z), p(z) = Dr(z). (4.4)

At this point, we could proceed to the analysis of the 1-D
transport PDE (4.1) with boundary condition given either by
(4.2) (which corresponds to the case a = +∞) or by (4.3).
However, in order to make the manipulations easier, we ap-
ply the transformation y(t, z) = exp((vz/2D))x(t, z), which
transforms the PDE (4.1) to the following PDE:

∂x

∂t
(t, z) = D

∂2x

∂z2
(t, z)−

(
v2

4D
+ k

)
x(t, z) (4.5)

with the following boundary conditions

Case 1) Dirichlet boundary conditions

x(t, 0) = d(t)

x(t, 1) = 0. (4.6)

Case 2) Robin (or Neumann) boundary conditions

x(t, 0) = d(t)

∂x

∂z
(t, 1) = −ax(t, 1). (4.7)

The 1-D transport PDE (4.5) corresponds to the PDE
(2.6) with

p(z) ≡ D, r(z) ≡ 1, q(z) ≡ k +
v2

4D
. (4.8)

In every case, the eigenvalues are

λn = k +
v2

4D
+Dω2

n, n = 1, 2, . . . (4.9)

and the eigenfunctions are

φn(z) =

√
2

1− sin(2ωn)
2ωn

sin(ωnz), n = 1, 2, . . . (4.10)

where ωn = (n− μn(a))π and μn(a) ∈ [0, 1/2] (n = 1, 2,
. . .) are given by

• μn(+∞) = 0, for Case 1 that corresponds to a = +∞,
• μn(a) ∈ (0, 1/2) for Case 2 with a > 0 is the unique

solution of the equation tan(μnπ) + a−1μnπ = a−1nπ,

• μn(0) = 1/2, for Case 2 with a = 0.

See also the examples of Chapter 11 in [3] for the compu-
tation of eigenvalues and eigenfunctions for Sturm-Liouville
operators.

The assumption λ1 > 0 is equivalent to the following
condition:

k > − v2

4D
−Dπ2 (1− μ1(a))

2 . (4.11)

Since 2ωn ≥ π for every case, it follows from (4.10) that
max0≤z≤1(|φn(z)|) ≤

√
2π/(π − 1). Moreover, since ωn ≥

(n− (1/2))π for every case, it follows that λn ≥ k + (v2/
4D) +Dπ2(n− (1/2))2. Therefore, for N > (1/2) + (1/
2Dπ)

√
max(0,−v2 − 4kD), we get

∞∑
n=1

λ−1
n max

0≤z≤1
(|φn(z)|) ≤

√
2π

π − 1
Nλ−1

1

+

√
2π

π − 1

∞∑
n=N+1

4D

4kD + v2 + 4D2π2
(
n− 1

2

)2 < +∞.

Therefore, condition (2.4) holds for every case. In what follows,
we will assume that:

k > − v2

4D
. (4.12)

When (4.12) holds, the solution x̃ ∈ C2([0, 1]) of the bound-
ary value problem D(d2x̃/dz2)(z)− ((v2/4D) + k)x̃(z) = 0
with x̃(0) = 1 and (dx̃/dz)(1) = −ax̃(1) is given by

x̃(z) = c1 exp(ζz) + c2 exp(−ζz), for z ∈ [0, 1] (4.13)

where ζ :=(1/2D)
√
v2+ 4kD, c1 :=(ζ−a/(ζ+a) exp(2ζ)+

ζ − a), c2 := (ζ + a) exp(2ζ)/((ζ + a) exp(2ζ) + ζ − a). It
follows from Lemma 2.1 that:

G(ζ, a) :=

=

√
c21
exp(2ζ)− 1

2ζ
+ c22

1− exp(−2ζ)

2ζ
+ 2c1c2.

(4.14)

When (4.12) holds, the solution x̃ ∈ C2([0, 1]) of the boundary
value problem D(d2x̃/dz2)(z)−((v2/4D)+k)x̃(z)=0 with
x̃(0) = 1 and x̃(1) = 0 is given by (4.13), where ζ := (1/
2D)

√
v2 + 4kD, c1 := (−1/ exp(2ζ)− 1), c2 := exp(2ζ)/

(exp(2ζ)− 1). It follows from Lemma 2.1 that:

G(ζ,+∞) :=

√
2

π

√√√√ ∞∑
n=1

n2

(π−2ζ2 + n2)2

=
1

exp(2ζ)− 1

√
exp(4ζ)− 1− 4ζ exp(2ζ)

2ζ
.

(4.15)

We are now ready to apply Theorem 2.2 and take into account
the transformation y(t, x) = exp((vz/2D))x(t, z).

Corollary 4.1: Consider the PDE (4.1) with boundary given
either by (4.2) (which corresponds to a = +∞) or by (4.3) with
a ≥ 0. Suppose that (4.12) holds. Then, for every d ∈ C2(�+)
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and y0 ∈ C2([0, 1]) with y0(0) = d(0) and y0(1) = 0 (in case
that (4.2) holds) or (dy0/dz)(1) = ((v/2D)− a)y0(1) (in case
that (4.3) holds), the solution of the evolution equation (4.1)
with either (4.2) or (4.3) and initial condition y0 is unique,
defined for all t ≥ 0 and satisfies the following estimate for
all t ≥ 0:√√√√√ 1∫

0

exp
(
−vz

D

)
y2(t, z)dz

≤

√√√√√ exp
(
−D

(
ζ2 + π2 (1− μ1(a))

2
)
t
)

2− exp
(
−D

(
ζ2 + π2 (1− μ1(a))

2
)
t
)

×

√√√√√ 1∫
0

exp
(
−vz

D

)
y20(z)dz +G(ζ, a) max

0≤s≤t
(|d(s)|)

(4.16)

where ζ := (1/2D)
√
v2 + 4kD.

Next, consider for comparison purposes, the advection
equation

∂y

∂t
(t, z) + v

∂y

∂z
(t, z) = −ky(t, z), for all t > 0, z ∈ (0, 1)

(4.17)

with v > 0, k > −(v2/4D) and boundary condition

y(t, 0) = d(t), for all t > 0 (4.18)

where d ∈ C1(�+) is a given function. The PDE (4.17) is
accompanied by the initial condition

y(0, z) = y0(z) for all z ∈ [0, 1] (4.19)

where y0 ∈ C1([0, 1]) is the initial condition that satisfies
y0(0) = d(0) and ḋ(0) = −v(dy0/dz)(0)− kd(0). The solu-
tion of (4.17)–(4.19) is given by the formula

y(t, z) = (y[t]) (z) =

{
exp(−kt)y0(z − vt) for vt < z

exp(−kv−1z)d(t− v−1z) for vt ≥ z

for all t ≥ 0, z ∈ [0, 1]. (4.20)

Using (4.20) and the fact that ζ := (1/2D)
√
v2 + 4kD, we

obtain the following estimate for all t ≥ 0:√√√√√ 1∫
0

exp
(
−vz

D

)
y2(t, z)dz

≤ exp
(
−D(ζ2 + π2l−2)t

)√√√√√ 1∫
0

exp
(
−vz

D

)
y20(z)dz

+

√
1−exp (−(lπ−1ζ2+πl−1))

lπ−1ζ2+πl−1
max

max(0,t−v−1)≤s≤t
(|d(s)|)

(4.21)

where l := (2D/vπ2). Indeed, using (4.20) we obtain when
vt < 1

1∫
0

exp(−vD−1z)y2(t, z)dz

=

vt∫
0

exp(−vD−1z)y2(t, z)dz+

1∫
vt

exp(−vD−1z)y2(t, z)dz

= exp(−2kt)

1∫
vt

exp(−vD−1z)y20(z − vt)dz

+

vt∫
0

exp
(
−(vD−1 + 2kv−1)z

)
d2(t− v−1z)dz

≤ exp
(
−(2k + v2D−1)t

) 1−vt∫
0

exp(−vD−1s)y20(s)ds

+

1∫
0

exp
(
−(vD−1+2kv−1)z

)
dz max

max(0,t−v−1)≤s≤t

(
|d(s)|2

)

≤ exp
(
−(2k + v2D−1)t

) 1∫
0

exp(−vD−1s)y20(s)ds

+
1−exp

(
−(vD−1+2kv−1)

)
vD−1+2kv−1

max
max(0,t−v−1)≤s≤t

(
|d(s)|2

)
.

The same estimate is obtained when vt ≥ 1 as well.
It follows from the above estimate and definitions ζ :=
(1/2D)

√
v2 + 4kD, l := (2D/vπ2) that estimate (4.21) holds.

Fig. 1 shows the gains G(ζ, a) of the PDE (4.1) with respect
to ζ for three different values of a (a = 0, 1 +∞) and the
gain

√
(1− exp(−(lπ−1ζ2 + πl−1)))/(lπ−1ζ2 + πl−1) of the

advection equation (4.17) [as predicted by (4.21)]. The gains
have been computed under the condition k = 0 (no reaction),
which implies that l = π−2ζ−1. It is clearly shown that the
gains of the PDE (4.1) are decreasing with a and the case
that guarantees the smallest gains is the case of Dirichlet
boundary conditions (a = +∞). On the other hand, the gain
of the advection equation (4.17) is smaller than the gains of the
PDE (4.1), except for the case that ζ = (v/2D) is small. We
conclude that for the no reaction case (k = 0), the PDE (4.1)
with diffusion has lower gain than the advection equation (4.17)
only when v � D and a is large.

Remark 4.2:

a) The reason for the comparison between the transport
PDE (4.1) with the advection equation (4.17) is that in
many engineering textbooks the advection equation (4.17)
is considered as the “limit” of (4.1) for D → 0+. The
present work shows the limitations of such a comparison
when the goal is the study of the effect of disturbances at
the inlet. Fig. 1 shows that the disturbance gains may be
very different for all possible boundary conditions at the
outlet.
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Fig. 1. Graphs of G(ζ, a) with respect to ζ for three different values of a
(a = 0, 1,+∞) and the graph of the gain of the advection equation (4.17). For
all cases k = 0.

b) At this point, the reader may be surprised that the gain
of the advection equation (4.17) depends on the diffusion
coefficient D > 0 (through ζ := (1/2D)

√
v2 + 4kD and

l := (2D/vπ2)). It is clear that the solution (4.20) of the
advection equation (4.17) does not depend on D > 0.
However, the weight function exp(−(vz/D)), used in the

weighted L2 norm
√∫ 1

0 exp(−(vz/D))y2(t, z)dz that
appears in both the left hand sides of (4.16) and (4.21),
depends on the diffusion coefficient D > 0 and, conse-
quently, the gain of the advection equation (4.17) depends
on the diffusion coefficient D > 0. In any case, we may
exploit estimate (4.16) and obtain the (possibly conserva-
tive) upper boundG(ζ, a) exp(l−1π−2) of the disturbance
gain for the standardL2 norm of the solution of (4.1). This
may be compared with the disturbance gain for the stan-
dard L2 norm of the solution of (4.17), which is computed
by direct use of (4.20):

√
(1− exp(−2kv−1))/2kv−1 for

k > 0 and 1 for k = 0.

B. ISS with Respect to Control Actuator Errors for Boundary
State Feedback

The recent work [17] proposed the exponential stabilization
of parabolic PDEs of the form

∂y

∂t
(t, z)=D

∂2y

∂z2
(t, z)+py(t, z), for all (t, z)∈(0,+∞)×(0, 1)

(4.22)

where D > 0, p ∈ � are constants, subject to the boundary
conditions

y(t, 0) = u(t)

y(t, 1) = 0, for all t ≥ 0 (4.23)

where u(t) ∈ � is the control input, by means of a boundary
feedback stabilizer of the form

u(t) = −
1∫

0

k(0, s)y(t, s)ds, for all t ≥ 0 (4.24)

where k ∈ C2([0, 1]2) is an appropriate function. The function
k ∈ C2([0, 1]2) is obtained as the Volterra kernel of a Volterra
integral transformation of the form

x(t, z)=y(t, z)+

1∫
z

k(z, s)y(t, s)ds, for all (t, z)∈�+×[0, 1]

(4.25)

which transforms the PDE problem (4.22)–(4.24) to the
problem

∂x

∂t
(t, z)=D

∂2x

∂z2
(t, z)−cx(t, z), for all (t, z)∈(0,+∞)×(0, 1)

(4.26)

where c ≥ 0, subject to the boundary conditions

x(t, 0) = x(t, 1) = 0, for all t ≥ 0. (4.27)

The free parameter c ≥ 0 can be used to set the convergence
rate. The solution of the original problem can be found by the
inverse Volterra integral transformation

y(t, z)=x(t, z)+

1∫
z

l(z, s)x(t, s)ds, for all (t, z)∈�+×[0, 1]

(4.28)

where l ∈ C2([0, 1]2) is an appropriate kernel. The existence of
the kernels k ∈ C2([0, 1]2) and l ∈ C2([0, 1]2) is guaranteed by
the main results in [17].

It should be remarked that in [17] the control input is applied
at z = 1 instead of z = 0, but the transformation of the spatial
variable z → 1− z allows the statement of the results in the
above form (with the control action applied at z = 0). More-
over, it should be remarked that in [17], more general cases
than the case (4.22), (4.23) are studied. Due to the similarity
of all cases to the case (4.22), (4.23), we restrict our attention to
the case (4.22), (4.23).

When control actuator errors are present, i.e., when the
applied control action is of the form

u(t) = d(t)−
1∫

0

k(0, s)y(t, s)ds, for all t ≥ 0 (4.29)

where d ∈ C2(�+), then the transformed solution x(t, z) satis-
fies (4.26) subject to the boundary conditions

x(t, 0) = d(t)

x(t, 1) = 0
, for all t ≥ 0. (4.30)

The PDE (4.26) corresponds to the PDE (2.6) with

p(z) ≡ D, r(z) ≡ 1, q(z) ≡ c. (4.31)

The eigenvalues are

λn = c+Dn2π2, n = 1, 2, . . . (4.32)

and the eigenfunctions are

φn(z) =
√
2 sin(nπz), n = 1, 2, . . . (4.33)
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and assumption (H) holds. Therefore, we can apply Theorem 2.2
(exactly as in the previous section) and obtain the following
estimate for the solution x(t, z) of (4.26), (4.30):

‖x[t]‖ ≤
√

exp (−(c+Dπ2)t)

2− exp (−(c+Dπ2)t)
‖x0‖+G max

0≤s≤t
(|d(s)|)

for all t ≥ 0 and ε > 0 (4.34)

where ‖x‖ =
√∫ 1

0 x2(z)dz is the standard L2 norm

G :=

√
2

π

√√√√ ∞∑
n=1

n2

(π−2ζ2 + n2)2

=
1

exp(2ζ)− 1

√
exp(4ζ)− 1− 4ζ exp(2ζ)

2ζ

for ζ :=

√
c

D
> 0 (4.35)

G :=

√
2

π

√√√√ ∞∑
n=1

1

n2
=

1√
3
, for c = 0 (4.36)

for every d ∈ C2(�+) and for every initial condition x0 ∈
C2([0, 1]) with x0(0) = d(0) and x0(1) = 0. Using the inverse
transformation (4.28), we obtain for all t ≥ 0, z ∈ [0, 1] and
ϕ > 0

y2(t, z)≤(1 + ϕ)x2(t, z)+(1+ϕ−1)

⎛⎝ 1∫
z

l(z, s)x(t, s)ds

⎞⎠2

.

(4.37)

Using the Cauchy-Schwarz inequality, we obtain for all t ≥
0, z ∈ [0, 1]⎛⎝ 1∫

z

l(z, s)x(t, s)ds

⎞⎠2

≤

⎛⎝ 1∫
z

l2(z, s)ds

⎞⎠⎛⎝ 1∫
z

x2(t, s)ds

⎞⎠
≤

⎛⎝ 1∫
z

l2(z, s)ds

⎞⎠ ‖x[t]‖2 . (4.38)

Combining (4.37), (4.38) and taking ϕ =√∫ 1

0 (
∫ 1

z l2(z, s)ds)dz, we obtain for all t ≥ 0

‖y[t]‖2≤

⎛⎜⎝1 +

√√√√√ 1∫
0

⎛⎝ 1∫
z

l2(z, s)ds

⎞⎠ dz

⎞⎟⎠
2

‖x[t]‖2 . (4.39)

Similarly, using (4.25) we obtain for all t ≥ 0

‖x[t]‖2 ≤

⎛⎜⎝1 +

√√√√√ 1∫
0

⎛⎝ 1∫
z

k2(z, s)ds

⎞⎠ dz

⎞⎟⎠
2

‖y[t]‖2 .

(4.40)

Consequently, for every d ∈ C2(�+) and y0 ∈ C2([0, 1]) with
y0(0) = d(0)−

∫ 1

0 k(0, s)y0(s)ds and y0(1) = 0, the solution
of the closed-loop system (4.22), (4.23) with (4.29) and initial
condition y0 is unique, defined for all t ≥ 0 and satisfies the
following estimate for all t ≥ 0 and ε > 0:

‖y[t]‖

1 +

√
1∫
0

(
1∫
z

l2(z, s)ds

)
dz

≤ G max
0≤s≤t

(|d(s)|) +

√
exp (−(c+Dπ2)t)

2− exp (−(c+Dπ2)t)

×

⎛⎜⎝1+

√√√√√ 1∫
0

⎛⎝ 1∫
z

k2(z, s)ds

⎞⎠ dz

⎞⎟⎠ ‖y0‖ (4.41)

where G > 0 is defined by (4.35) and (4.36).
Estimate (4.41) shows that the closed-loop system (4.22),

(4.23) with (4.29) satisfies the ISS property with respect to
control actuator errors. Moreover, the estimation of the gain
with respect to control actuator errors provided by estimate

(4.41) is (1 +
√∫ 1

0 (
∫ 1

z l2(z, s)ds)dz)G.

V. CONCLUDING REMARKS

A methodology for the establishment of the Input-to-State
Stability (ISS) property for 1-D parabolic Partial Differential
Equations (PDEs) with boundary disturbances was proposed.
The methodology does not rely on the transformation of the
boundary disturbance to a domain input and the stability analy-
sis is performed in time-varying subsets of the state space.
The obtained results were used for the comparison of the gain
coefficients of transport PDEs with respect to inlet disturbances
and for the establishment of the ISS property with respect to
control actuator errors for parabolic systems under boundary
feedback control.

Future work may involve the establishment of the ISS prop-
erty with the L∞ norm (instead of the L2 norm that was used in
the present work). Novel mathematical results will be needed
for this purpose, because the analogue of Parseval’s identity for
the L∞ norm is not available.

APPENDIX

Proof of Lemma 2.1: Since the Sturm-Liouville operator
A : D → L2

r([0, 1]) defined by (2.1) and (2.2) satisfies λ1 > 0,
it follows that for every f ∈ C0([0, 1]), the solution y of the
boundary value problem Ay = f, y ∈ D exists, is unique and
satisfies y ∈ C2([0, 1]).

Let c1, c2 ∈ � be constants that satisfy a1(b1 + b2 + c1 +
c2) + a2(b2 + 2c1 + 3c2) = 0. Let x̃ ∈ C2([0, 1]) be the func-
tion x̃(z) = y(z) + g(z) for z ∈ [0, 1], where g(z) = b1 +
b2z + c1z

2 + c2z
3, y ∈ C2([0, 1]) is the unique solution of the

boundary value problem Ay = −Ag, y ∈ D. It follows from
the equations b21 + b22 = 1, a1(b1 + b2 + c1 + c2) + a2(b2 +
2c1 + 3c2) = 0 that x̃ ∈ C2([0, 1]) is a solution of the boundary
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value problem (2.8), (2.9). Uniqueness follows from the fact
that y ∈ D is the unique solution of the boundary value problem
Ay = −Ag.

Since x̃ ∈ C2([0, 1]), it follows that x̃ ∈ L2
r([0, 1]). Since the

eigenfunctions {φn}∞n=1 of the Sturm-Liouville operator A :
D → L2

r([0, 1]) defined by (2.1) and (2.2) form an orthonormal
basis of L2

r([0, 1]), it follows that Parseval’s identity holds, i.e.,

‖x̃‖2r =

∞∑
n=1

c2n =

1∫
0

r(z)x̃2(z)dz (A.1)

where

cn := 〈φn, x̃〉 =
1∫

0

r(z)x̃(z)φn(z)dz, for n = 1, 2, . . . .

(A.2)
By virtue of (2.8) and (2.9) and the facts that (Aφn)(z) =

λnφn(z), it follows from repeated integration by parts, that the
following equalities hold for n = 1, 2, . . .:

λncn =

1∫
0

r(z)x̃(z)λnφn(z)dz =

1∫
0

r(z)x̃(z)(Aφn)(z)dz

= −
1∫

0

x̃(z)
d

dz

(
p(z)

dφn

dz
(z)

)
dz+

1∫
0

q(z)x̃(z)φn(z)dz

= p(0)

(
x̃(0)

dφn

dz
(0)− dx̃

dz
(0)φn(0)

)
+ p(1)

(
dx̃

dz
(1)φn(1)− x̃(1)

dφn

dz
(1)

)

−
1∫

0

r(z)φn(z)(Ax̃)(z)dz. (A.3)

We next show that

x̃(1)
dφn

dz
(1)− φn(1)

dx̃

dz
(1) = 0, for n = 1, 2, . . . . (A.4)

Indeed, using (2.9) and the fact that a1φn(1) + a2(dφn/
dz)(1) = 0, we conclude that the homogeneous system of
linear equations

s1x̃(1) + s2
dx̃

dz
(1) = 0 = s1φn(1) + s2

dφn

dz
(1)

has the non-zero solution

s1 = a1, s2 = a2

and, consequently, the determinant of the matrix[
x̃(1) (dx̃/dz)(1)
φn(1) (dφn/dz)(1)

]
is zero, i.e., (A.4) holds.

Next, we show that

x̃(0)
dφn

dz
(0)− dx̃

dz
(0)φn(0) = b1

dφn

dz
(0)− b2φn(0),

for n = 1, 2, . . . . (A.5)

Using equation b1x̃(0) + b2(dx̃/dz)(0) = 1 [recall (2.9)], we
obtain for n = 1, 2, . . .

b21x̃(0)
dφn

dz
(0) + b1b2

dx̃

dz
(0)

dφn

dz
(0) = , b1

dφn

dz
(0)

b1b2x̃(0)φn(0) + b22
dx̃

dz
(0)φn(0) = b2φn(0)

from which we get

b1
dφn

dz
(0)−b2φn(0)=

(
b21+b22

)(
x̃(0)

dφn

dz
(0)− dx̃

dz
(0)φn(0)

)
+

(
b1
dx̃

dz
(0)− b2x̃(0)

)(
b2
dφn

dz
(0) + b1φn(0)

)
.

Equations (A.5) are direct consequences of the above equation
and the facts that b1φn(0)+b2(dφn/dz)(0)=0 and b21+ b22 =1.

Combining (A.3)–(A.5) we get for n = 1, 2, . . .

λncn = p(0)

(
b1
dφn

dz
(0)− b2φn(0)

)
. (A.6)

Identity (2.10) is a direct consequence of (A.1) and (A.6). The
proof is complete. �

Proof of Theorem 3.1: Using the results in [7],
Corollary 2.2 on page 106 in [14], Corollary 2.5 on page 107 in
[14] (or the results in [18]) and the fact that f ∈ C1(�+ ×
[0, 1]), it follows that for every x0 ∈ X0 there exists a unique
continuous mapping�+ � t → x[t] ∈ L2

r([0, 1]), which is con-
tinuously differentiable on (0,+∞) with x[t] ∈ {x ∈ H2(0,
1) : b1x(0) + b2(dx/dz)(0) = a1x(1) + a2(dx/dz)(1) = 0}
for all t > 0 and satisfies (dx[t]/dt) +Ax[t] = f [t] for all t >
0, x[0] = x0. It remains to show that x[t] ∈ X0 for all t > 0. In
order to do this, we next develop a formula for the solution.

Since x0 ∈ X0, the series
∑∞

n=1 cnφn(z) with cn =∫ 1

0 r(z)φn(z)x0(z)dz (n =1, 2, . . .) is uniformly and absolute-
ly convergent on [0, 1] and satisfies x0(z) =

∑∞
n=1 cnφn(z)

for all z ∈ [0, 1]. This is a direct consequence of Theorem 9.3
on page 281 in [8], Theorem 7.5.4 on page 500 in [13], the
fact that 0 < λ1 < λ2 < · · · < λn < · · · and the fact that every
x0 ∈ X0 satisfies x0(z) =

∫ 1

0 g(z, s)r(s)(Ax0)(s)ds, where
g ∈ C0([0, 1]2) is the Green’s function of the Sturm-Liouville
operator A defined by (2.1) and (2.2). Define

θn(t) :=

1∫
0

r(z)φn(z)f(t, z)dz, for all t ≥ 0, n = 1, 2, . . . .

(A.7)

Since f ∈ C1(�+ × [0, 1]), it follows from Theorem 3.11.3.4
in [3], that the following equation holds:

f(t, z) =

∞∑
n=1

θn(t)φn(z), for all (t, z) ∈ (0,+∞)× (0, 1).

(A.8)
Moreover, notice that the Cauchy-Schwarz inequality, in

conjunction with the fact that ‖φn‖r = 1 (for n = 1, 2, . . .)
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and the fact that f ∈ C1(�+ × [0, 1]), implies the following
relations for all t ≥ 0:

|θn(t)| ≤

√√√√√ 1∫
0

r(z) |f(t, z)|2 dz (A.9)

θ̇n(t) =

1∫
0

r(z)φn(z)
∂f

∂t
(t, z)dz (A.10)

∣∣∣θ̇n(t)∣∣∣ ≤
√√√√√ 1∫

0

r(z)

∣∣∣∣∂f∂t (t, z)
∣∣∣∣2 dz. (A.11)

Since (2.4) holds, and since 0 < λ1 < λ2 < · · · < λn <
· · · , inequalities (A.9)–(A.11) and the fact that the series∑∞

n=1 cnφn(z) with cn=
∫ 1

0 r(z)φn(z)x0(z)dz (n = 1, 2, . . .)
is uniformly and absolutely convergent on [0, 1], imply that for
every T > 0, the series

∞∑
n=1

exp(−λnt)cnφn(z) +

∞∑
n=1

φn(z)λ
−1
n

× (θn(t)− θn(0) exp(−λnt))

−
∞∑

n=1

φn(z)λ
−1
n

t∫
0

exp (−λn(t− s)) θ̇n(s)ds

is uniformly and absolutely convergent on [0, T ]×[0, 1]. There-
fore, we define x ∈ C0(�+ × [0, 1]) by means of the formula

x(t, z) :=
∞∑

n=1

φn(z)
(
exp(−λnt)cn+λ−1

n θn(t)
)
−

∞∑
n=1

λ−1
n φn(z)

×

⎛⎝θn(0) exp(−λnt)+

t∫
0

exp(−λn(t−s)) θ̇n(s)ds

⎞⎠,

for all (t, z) ∈ �+ × [0, 1]. (A.12)

In order to show that the derivative (∂x/∂t)(t, z) exists for
every (t, z) ∈ (0,+∞)× [0, 1] and is a continuous mapping,
we show that for every 0 < t0 < T , the series obtained (for-
mally) by term-by-term differentiation of the right hand side of
(A.12) with respect to t is uniformly and absolutely convergent
on [t0, T ]× [0, 1]. Indeed, we get from differentiation of (A.12)
with respect to t

−
∞∑

n=1

λn exp(−λnt)cnφn(z) +
∞∑

n=1

φn(z)θn(0) exp(−λnt)

+

∞∑
n=1

φn(z)

t∫
0

exp (−λn(t− s)) θ̇n(s)ds.

Inequality (A.11) implies that∣∣∣∣∣∣
t∫

0

exp (−λn(t− s)) θ̇n(s)ds

∣∣∣∣∣∣ ≤ λ−1
n max

0≤s≤T

(∣∣∣θ̇n(s)∣∣∣)

≤ λ−1
n

√√√√√ max
0≤s≤T

⎛⎝ 1∫
0

r(z)

∣∣∣∣∂f∂t (t, z)
∣∣∣∣2 dz

⎞⎠

which combined with the inequalities

λn exp(−λnt) = t−1λnt exp(−λnt) ≤ t−1
0 exp(−1) (A.13)

λ2
n exp(−λnt) = t−2(λnt)

2 exp(−λnt) ≤ 4t−2
0 exp(−2)

(A.14)

that hold for all t ∈ [t0, T ], the fact that {cn}∞n=1, {θn(0)}∞n=1

are bounded sequences (recall (A.9) and notice that since
cn =

∫ 1

0 r(z)φn(z)x0(z)dz, the Cauchy-Schwarz inequality

implies |cn| ≤
√∫ 1

0 r(z)x2
0(z)dz) and (2.4), guarantees that

the series is uniformly and absolutely convergent on [t0, T ]×
[0, 1]. Therefore, (∂x/∂t)(t, z) exists for (t, z) ∈ (0,+∞)×
[0, 1] and is a continuous mapping satisfying for all (t, z) ∈
(0,+∞)× [0, 1]

∂x

∂t
(t, z)=

∞∑
n=1

φn(z) (θn(0) exp(−λnt)− λn exp(−λnt)cn)

×
∞∑

n=1

φn(z)

t∫
0

exp (−λn(t− s)) θ̇n(s)ds. (A.15)

Since the Green’s function of the operator A defined by
(2.1) and (2.2), g ∈ C0([0, 1]2) is a C2 function on each one
of the triangles 0 ≤ s ≤ z ≤ 1 and 0 ≤ z ≤ s ≤ 1, having a
step discontinuity in (∂g/∂z)(z, s) on the line segment 0 ≤
s = z ≤ 1 (see Theorem 2.2 on pages 227–228 in [8]) and since
φn(z) = λn

∫ 1

0 g(z, s)r(s)φn(s)ds for all z ∈ [0, 1], it follows
that there exists a constant M > 0 such that:

max
0≤z≤1

(∣∣∣∣dφn

dz
(z)

∣∣∣∣)≤Mλn max
0≤z≤1

(|φn(z)|), for all n=1, 2, . . . .

(A.16)

Moreover, equality (A.8) implies that the following equality
holds for all (t, z) ∈ (0,+∞)× [0, 1]:

∞∑
n=1

φn(z)λ
−1
n θn(t) =

1∫
0

r(s)g(z, s)f(t, s)ds. (A.17)

Notice that the function z → (y[t])(z) =
∫ 1
0 r(s)g(z, s)f(t,

s)ds is simply the unique solution of the boundary value prob-
lem (Ay[t])(z)=f(t, z) with b1(y[t])(1)+b2(d(y[t])/dz)(0)=
a1(y[t])(1) + a2(d(y[t])/dz)(0)= 0 for each fixed t ≥ 0. Con-
sequently, the function z → yt(z) =

∫ 1

0 r(s)g(z, s)f(t, s)ds is
in X0 ={x ∈ C2([0, 1]) : b1x(0) + b2(dx/dz)(0) = a1x(1) +
a2(dx/dz)(1) = 0} for all t ≥ 0. Moreover, we obtain from
(A.12) and (A.17)

x(t, z)−
1∫

0

g(z, s)r(s)f(t, s)ds

=

∞∑
n=1

φn(z)
(
exp(−λnt)cn − λ−1

n θn(0) exp(−λnt)
)

−
∞∑

n=1

φn(z)λ
−1
n

t∫
0

exp (−λn(t− s)) θ̇n(s)ds

for all (t, z) ∈ �+ × [0, 1]. (A.18)
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The differential equation

d2φn

dz2
(z) =

q(z)

p(z)
φn(z)− λn

r(z)

p(z)
φn(z)−

1

p(z)

dp

dz
(z)

dφn

dz
(z)

which holds for all z ∈ [0, 1], in conjunction with the fact that
0 < λ1 < λ2 < · · · < λn < · · · and (A.16), implies that that
there exists a constant G > 0 such that

max
0≤z≤1

(∣∣∣∣d2φn

dz2
(z)

∣∣∣∣)≤Gλn max
0≤z≤1

(|φn(z)|), for all n=1, 2, . . . .

(A.19)

In order, to show that the derivative (∂2x/∂z2)(t, z) exists for
every (t, z) ∈ (0,+∞)× [0, 1] and is a continuous mapping,
we show that for every 0 < t0 < T , the series obtained (for-
mally) by term-by-term double differentiation of the right hand
side of (A.18) with respect to z is uniformly and absolutely
convergent on [t0, T ]× [0, 1]. Indeed, we get from double
differentiation of (A.18) with respect to z

∞∑
n=1

exp(−λnt)cn
d2φn

dz2
(z)−

∞∑
n=1

d2φn

dz2
(z)λ−1

n θn(0) exp(−λnt)

−
∞∑

n=1

d2φn

dz2
(z)λ−1

n

t∫
0

exp (−λn(t− s)) θ̇n(s)ds.

Inequality (A.11) implies that∣∣∣∣∣∣
t∫

0

exp (−λn(t− s)) θ̇n(s)ds

∣∣∣∣∣∣ ≤ λ−1
n max

0≤s≤T

(∣∣∣θ̇n(s)∣∣∣)

≤ λ−1
n

⎛⎝ max
0≤s≤T

⎛⎝ 1∫
0

r(z)

∣∣∣∣∂f∂t (t, z)
∣∣∣∣2 dz

⎞⎠⎞⎠
1
2

which combined with inequalities (A.13), (A.14) (which hold
for all t ∈ [t0, T ]), the fact that {cn}∞n=1, {θn(0)}∞n=1 are
bounded sequences and (2.4), (A.19), guarantees that the
series is uniformly and absolutely convergent on [t0, T ]×
[0, 1]. Therefore, (∂2x/∂z2)(t, z) exists for (t, z) ∈ (0,+∞)×
[0, 1] and is a continuous mapping satisfying for all (t, z) ∈
(0,+∞)× [0, 1]

∂2x

∂z2
(t, z)− ∂2

∂z2

⎛⎝ 1∫
0

r(s)g(z, s)f(t, s)ds

⎞⎠
=

∞∑
n=1

exp(−λnt)cn
d2φn

dz2
(z)−

∞∑
n=1

d2φn

dz2
(z)λ−1

n θn(0)exp(−λnt)

−
∞∑

n=1

d2φn

dz2
(z)λ−1

n

t∫
0

exp (−λn(t− s)) θ̇n(s)ds.

(A.20)

It follows that the mapping x defined by (A.12) is of class
C0(�+×[0, 1]) ∩ C1((0,+∞)×[0, 1]) satisfying x(t, ·) ∈ X0

for all t ≥ 0 and x(0, z) = x0(z) for all z ∈ [0, 1].
Equation (3.1) is a direct consequence of (A.15), (A.18), the
fact that Aφn = λnφn and the fact that the function z →
(y[t])(z)=

∫ 1

0 r(s)g(z, s)f(t, s)ds is simply the unique solution
of the boundary value problem (Ay[t])(z)=f(t, z) with
b1(y[t])(1) + b2(d(y[t])/dz)(0)=a1 (y[t])(1) + a2(d(y[t])/
dz)(0)=0 for each fixed t ≥ 0.

The proof is complete. �
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