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Fig. 6. Response with RG, torque constraints, and the constraintj�1��2j �
0:2 rad. The generated reference input is depicted (thin line) together with
the joint trajectories (thick lines).

is taken into account by the RG, and the related simulated trajectories
are depicted in Fig 6 withr1(t) = r2(t) �

�

4
; T = 0:001 s.

The slight chatter on the� and torque trajectories is caused by
the approximations involved in the optimization procedure described
in Section IV. The results described above were obtained on a 486
DX2/66 personal computer, using Matlab 4.2 and Simulink 1.3 with
embedded C code. The CPU time required by the RG to select a
single �(t) ranged between 7 and 18 ms.

VI. CONCLUSION

For a broad class of nonlinear continuous-time systems and in-
put/state hard constraints, this paper has addressed the RG problem,
viz. the one of filtering the desired reference trajectory in such
a way that a nonlinear primal compensated control system can
operate in a stable way with satisfactory tracking performance and
no constraint violation. The resulting computational burden turns
out to be moderate and the related operations executable with
current computing hardware. Alternatively, in some applications, the
trajectory generated by the RG can be computed off-line and stored
for subsequent task executions. Future developments of this research
will be addressed toward numerical criteria for the determination of
the constraint horizon and to an independent parameterization of the
components of the reference.
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Geometric/Asymptotic Properties of Adaptive
Nonlinear Systems with Partial Excitation

Zhong-Hua Li and Miroslav Krstić

Abstract—In this paper we continue the study of geometric/asymptotic
properties of adaptive nonlinear systems. The long-standing ques-
tion of whether the parameter estimates converge tostabilizing
values—stabilizing if used in anonadaptivecontroller—is addressed in
the general set-point regulation case. The key quantifier of excitation in
an adaptive system is the rankr of the regressor matrix at the resulting
equilibrium. Our earlier paper showed that when either r = 0 or r = p

(where p is the number of uncertain parameters), the set of initial
conditions leading to destabilizing estimates is ofmeasure zero. Intuition
suggests the same for the intermediate case0 < r < p studied in this
paper. We present a surprising result: the set of initial conditions leading
to destabilizing estimates can havepositive measure. We present results
for the backstepping design with tuning functions; the same results can
be established for other Lyapunov-based adaptive designs.

Index Terms—Adaptive nonlinear control, invariant manifold, partial
excitation.
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I. INTRODUCTION

In the absence of persistent excitation (PE), parameter convergence
in adaptive feedback loops is a difficult problem. It is logical to expect
that the case of “least” excitation (LE)—the regulation case with the
regressor converging to zero—would be the most difficult. This case
was recently approached in [8], where it was proved that: 1) the
parameter estimates converge to constant values and 2) the set of
initial conditions that lead to destabilizing nonadaptive controllers
is of Lebesgue measure zero. Thus, we know that both extreme
cases, PE and LE, guarantee that the parameter estimatesalmost
alwaysconverge to stabilizing values. The case ofpartial excitation,
initially expected to be a routine extension with the same conclusion,
has, for almost two years, resisted our attempts, assisted by several
colleagues (see the Acknowledgment). In this paper we reveal an
entirely unexpected answer:the solutions leading to destabilizing
estimates can have positive measure.

As in [8], our approach is based on exploring structures of invariant
manifolds of adaptive equilibria. The general set-point regulation
problem is considered with a regressor matrix of arbitrary rank at
the resulting equilibrium. We focus our attention on the adaptive
backstepping design with tuning functions [9], [10]. The same results
can be established for other Lyapunov-based adaptive nonlinear
designs [14], [5], [4], [9], [13]. At present, it is not clear if extensions
to estimation-based designs ([12], [10] and references therein) would
be straightforward.

II. SET-POINT REGULATION USING TUNING FUNCTION DESIGN

Consider nonlinear systems transformable into thestrict-feedback
form

_xi = xi+1 + 'i(x1; � � � ; xi)
T
�; i = 1; � � � ; n� 1

_xn = u+ 'n(x)
T
�

(1)

where� 2 IR
p is the vector of unknown constant parameters and the

elements ofF = ['1; � � � ; 'n] are smooth nonlinear functions taking
arguments inIRn. In this paper we consider the problem of adaptive
regulation of the outputy = x1 to a given set-pointys. Starting with
xe1 = ys, we solve then equilibrium equations of (1) to get

x
e
1 = ys

x
e
i = �'i�1 x

e
1; � � � ; x

e
i�1

T
�; i = 2; � � � ; n:

(2)

In [9], an adaptive controller was designed for (1) recursively using
the expressions

zi = xi � �i�1 (3)

�i(�xi; �̂) = �zi�1 � cizi � w
T
i �̂ +

i�1

k=1

@�i�1

@xk
xk+1

+
@�i�1

@�̂
��i +

i�1

k=2

@�k�1

@�̂
�wizk (4)

�i(�xi; �̂) = �i�1 + wizi (5)

wi(�xi; �̂) = 'i �

i�1

k=1

@�i�1

@xk
'k (6)

where �xi = (x1; � � � ; xi); i = 1; � � � ; n; z0 = 0; �0 = ys; �0 = 0,
and� = �

T > 0. The control law is

u = �n(x; �̂) (7)

and the adaptive law is

_̂
� = ��n(x; �̂) = �W (z; ~�)z (8)

where ~� = � � �̂ is the parameter estimation error,W (z; ~�) =

[w1; � � � ; wn] = F (x)N(z; ~�)T , and

N(z; ~�) =

1 0 � � � 0

�@�

@x
1

. ..
...

...
. ..

. .. 0

�
@�

@x
� � � �

@�

@x
1

: (9)

This adaptive controller results in a closed-loop system of the form

_z = Az(z; ~�)z +W (z; ~�)
T ~� (10)

_~� = ��W (z; ~�)z (11)

where

Az(z; ~�)

=

�c1 1 0 � � � 0

�1 �c2 1 + �23 � � � �2n

0 �1� �23
. ..

.. .
...

...
...

. ..
.. . 1 + �n�1;n

0 ��2n � � � �1� �n�1;n �cn
(12)

and

�jk(z; ~�) = �
@�j�1

@�̂
�wk: (13)

Let us denoteFe = F (xe) andr = rankfFeg. Then we have the
following theorem.

Theorem 2.1 [9]: The closed-loop adaptive system (10) and (11)
has a globally stable equilibrium(z; ~�) = 0. Furthermore, its
state(z(t); ~�(t)) converges to the(p � r)-dimensional equilibrium
manifold M given by

M = (z; ~�) 2 IR
n+pjz = 0; F

T
e
~� = 0 : (14)

An important property ofM is its dimension,p� r. Two extreme
cases are as follows.

1) Whenr = p, i.e., dimfMg = 0; M becomes the equilibrium
point z = 0; ~� = 0. This equilibrium is globally asymptotically
stable and the parameter estimate�̂(t) converges to its true
value �. This is the case of PE.

2) WhenFe = 0, i.e.,dimfMg = p; M becomes the equilibrium
manifold z = 0. The asymptotic properties of̂�(t) for this
case were studied in [8]. In this case there is no guaranteed
excitation.

Our objective here is to study the case between the above two extreme
cases, i.e., the case ofpartial excitation:0 < r < p.

III. A SYMPTOTIC CONSTANCY

The first difficulty in studying asymptotic properties of adaptive
controllers is to prove that the parameter estimates converge to
constant values. As we noted above, the two extreme cases,r = 0

andr = p, have been resolved in [8] and [9], respectively. The case
of partial excitation,0 < r < p, is much harder than the two extreme
cases. As will become clear from the proof of the next theorem, a
major challenge is to show thatF T

e
~�(t) not only converges to zero,

but is also anL2 signal.
Theorem 3.1: Consider the adaptive system (10) and (11). There

exists a constant vector̂�1 2 IR
p such thatlimt!1�̂(t) = �̂1.
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Proof: Consider the Lyapunov functionVn = 1

2
zT z +

1

2

~�T��1~�. In view of (12), the derivative ofVn along (10) and (11)
is _Vn = �

n

k=1
ckz

2

k � �c0jzj
2, wherec0 = minfc1; � � � ; cng.

Then it follows thatz 2 L2. First, we show thatF T

e
~� 2 L2. To

do this, we use induction.
Consider thez1-equation

_z1 = �c1z1 + z2 + '1(x1)
T ~�

= �c1z1 + z2 + '1 x
e

1

T ~� + '1(x1)� '1 x
e

1

T ~�: (15)

Sincez1 = x1 � xe1 2 L2, we have that'1(x1)� '1(x
e

1) 2 L2. In
the following text, we use[L2] as a generic expression forL2 terms.
Since z2 2 L2, (15) becomes

_z1 = �c1z1 + '1 x
e

1

T ~� + [L2]: (16)

On the other hand, we have

'1 x
e

1

T _~� = �'1 x
e

1

T
�F (x)N

T
z

= �'1 x
e

1

T
�'1 x

e

1 z1 � '1 x
e

1

T
�

� FN
T
� '1 x

e

1 e
T

1 z

= �'1 x
e

1

T
�'1 x

e

1 z1 + [L2] (17)

due toz 2 L2. Combining (16) with (17) we get

_z1

'1 xe1
T _~�

=
�c1 1

�'1 xe1
T
�'1 xe1 0

z1
'1 xe1

T ~�
+ [L2]:

(18)

If '1(x
e

1) 6= 0, (18) is a stable linear time-invariant (LTI) system
driven by anL2 signal, so that

'1 x
e

1

T ~� 2 L2 (19)

(otherwise '1(x
e

1)
T ~� = 0 2 L2). This, in turn, means that

'1(x1)
T ~� 2 L2; _z1 2 L2; and _x1 2 L2.

We then assume that at stepi� 1, we have proved thatxk�xek 2

L2; 'k(�xk) � 'k(�x
e

k) 2 L2; 'k(�x
e

k)
T ~� 2 L2; 'k(�xk)

T ~� 2 L2;

_zk 2 L2; _xk 2 L2; k = 1; � � � ; i� 1. Now consider thezi-equation

_zi = �cizi � zi�1 + zi+1 +

n

k=i+1

�ikzk �

i�1

k=2

�kizk + w
T

i
~�

= �cizi + 'i(�xi)
T ~� �

i�1

k=1

@�i�1

@xk
'k(�xk)

T ~�

2L (step i�1)

+[L2]

= �cizi + 'i �x
e

i

T ~� + 'i(�xi)� 'i �x
e

i

T ~� + [L2] (20)

in which we have usedz 2 L2 and wi = 'i(�xi) �
i�1

k=1

@�

@x
'k(�xk). Since

xi = _xi�1

2L

�'i�1(�xi�1)
T
�

= �'i�1 �x
e

i�1

T
�

x

� 'i�1(�xi�1)� 'i�1 �x
e

i�1

T

2L (step i�1)

�

+ [L2]

= x
e

i + [L2] (21)

combining the assumptionxk�xek 2 L2; k = 1; � � � ; i�1, it follows
that

'i(�xi)� 'i �x
e

i = 'i �x
e

i + [L2] � 'i �x
e

i 2 L2: (22)

Therefore, we have

_zi = �cizi + 'i �x
e

i

T ~� + [L2]: (23)

On the other hand

'i �x
e

i

T _~� = �'i �x
e

i

T
�F (x)N

T
z

= �'i �x
e

i

T
�'i �x

e

i zi � 'i �x
e

i

T
�

� FN
T
� 'i �x

e

i e
T

i z

= �'i �x
e

i

T
�'i �x

e

i zi + [L2]: (24)

Combining (23) with (24), we get

_zi

'i �xei
T _~�

=
�ci 1

�'i �xei
T
�'i �xei 0

zi
'i �xei

T ~�
+ [L2]: (25)

If 'i(�xei ) 6= 0, (25) is a stable LTI system driven by anL2 signal
so that

'i �x
e

i

T ~� 2 L2 (26)

(otherwise 'i(�x
e

i )
T ~� = 0 2 L2). This, in turn, means that

'i(�xi)
T ~� 2 L2; _zi 2 L2. Also, note that

_xi = _zi

2L

�

i�1

k=1

@�i�1

@zk
_zk

2L

�
@�i�1

@�̂

_̂
�

2L

2 L2: (27)

We conclude from the above induction thatxi � xei 2 L2;

'i(�xi) � 'i(�x
e

i ) 2 L2; 'i(�x
e

i )
T ~� 2 L2; 'i(�xi)

T ~� 2 L2; _zi 2 L2;

and _xi 2 L2 for i = 1; � � � ; n. Thus

'1 xe1
T

'2 �xe2
T

...
'n(�x

e

n)

~� = F
T

e
~� 2 L2: (28)

Now we finish the proof of the theorem. Letr = rankfFT

e g and
define

�P = p� r matrix of basis vectors of RangefFeg
�Q = r � p matrix of basis vectors of Nullf(�Fe)Tg:

From Theorem 2.1, we have thatF T

e
~�(t)! 0, so �P T ~�(t)! 0, i.e.,

�P T �̂(t) ! const. On the other hand, noting (8) we have

�Q
T _̂
� = �Q

T
�FN

T
z

= �Q
T
(�FeN

T
z + �(F � Fe)N

T
z): (29)

Sincex�xe 2 L2, we note thatF (x)�F (xe) 2 L2. Recalling that

z 2 L2 and �QT
�Fe = 0, we conclude from (29) that�QT _̂

� 2 L1.
We now writeQT �̂(t) as

�Q
T
�̂(t) = �Q

T
�̂(0) +

t

0

�Q
T _̂
�(�)d�: (30)

The fact that �QT _̂
� 2 L1 assures us that�QT �̂(t) ! const. That is,

we have that[ �P ; �Q]
T �̂(t) ! const. Since� = �

T > 0, one easily
proves that[ �P ; �Q]

T is invertible. Thus�̂(t)! const.

IV. CLASSIFICATION OF EQUILIBRIA AND INVARIANT MANIFOLDS

Since each solution of the adaptive system converges to an equi-
librium point onM , it is first of interest to determine which of the
equilibria onM are stable and which are unstable. Let us for further
notational convenience rewrite the system (10) and (11) as

_z = Az(z; ~#)z +W(z; ~#)
T ~# (31)

_~# = ��W(z; ~#)z (32)

and denote� = 
�0, where 
 = �max(�). Then we have the
following lemma.
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Lemma 4.1: System (31) and (32) is transformed into

_z = Az(z; ~�1; ~�2)z +W1(z; ~�1; ~�2)
T ~�1 +W2(z; ~�1; ~�2)

T ~�2 (33)
_~�1 = �
W1(z; ~�1; ~�2)z (34)
_~�2 = �
W2(z; ~�1; ~�2)z (35)

using the transformation

~� =
~�1
~�2

= T ~#

T =
(P TP )�1=2P T

(QTQ)�1=2QT �
�1=2
0

T
�1

= �
1=2
0 [P (PTP )�1=2 Q(QTQ)�1=2 ]

P = matrix of basis vectors of Range�1=20 Fe

Q = matrix of basis vectors of Null(�1=20 Fe)
T : (36)

Furthermore,rankfW1(0; 0; ~�2)g = r andW2(0; 0; ~�2) = 0 for all
~�2 2 IRp�r.

This decomposition clearly separates the part of the
parameter error vector which is guaranteed to converge to
a zero vector from the part which converges to a possibly
nonzero constant vector. To see this, recall thatF T

e
~#(t) ! 0

which implies that F T
e �

1=2
0 P (PTP )�1=2~�1(t) ! 0. Since

rankfFT
e �

1=2
0 P (PTP )�1=2g = degf~�1g, then ~�1(t)! 0.

Proof of Lemma 4.1:Applying the transformation (36), system
(31) and (32) becomes

_z = Az(z; ~#)z +W(z; ~#)
T ~#

= Az(z; T
�1~�)z +NF

T
T
�1
T ~#

= Az(z; ~�1; ~�2)z

+NF
T
�
1=2
0 [P (PTP )�1=2 Q(QTQ)�1=2 ]~�

= Az(z; ~�1; ~�2)z +W1(z; ~�1; ~�2)
T ~�1 +W2(z; ~�1; ~�2)

T ~�2 (37)

_~� =
_~�1
_~�2

= �

(PTP )�1=2PT

(QTQ)�1=2QT �
1=2
0 FN

T
z

=
�
W1(z; ~�1; ~�2)z

�
W2(z; ~�1; ~�2)z
(38)

where

W1(z; ~�1; ~�2) = (P
T
P )
�1=2

P
T
�
1=2
0 FN

T (39)

W2(z; ~�1; ~�2) = (Q
T
Q)
�1=2

Q
T
�
1=2
0 FN

T
: (40)

Using Lemma A.1 in the Appendix, we can see that~�1 = 0 and
z = 0 imply x = xe. Thus (39) and (40) yield

W1(0; 0; ~�2) = (P
T
P )
�1=2

P
T
�
1=2
0 FeN

T

z;~� =0
(41)

W2(0; 0; ~�2) = (Q
T
Q)
�1=2

Q
T
�
1=2
0 FeN

T

z;~� =0
: (42)

Since rankf(PTP )�1=2PT�
1=2
0 Feg = r � n and rankfNg = n

for all ~�2, then rankfW1(0;0; ~�2)g � r. On the other hand, since
QT�

1=2
0 Fe = 0, thenW2(0; 0; ~�2) � 0.

Since all the solutions converge to the~�2-subspace, that is, the
manifold

M = f(z; ~�1; ~�2) 2 IR
n+p j z = 0; ~�1 = 0g (43)

we study stability of equilibria onM as a function of~�. Let us denote
(44), as shown at the bottom of the page, where

A0 =

�c1 1

�1
. ..

...
. ..

... 1

�1 �cn

(45)

�(~�2) =

0 0 0 � � � 0

0 0 ��23 � � � ��2n

0 ���23
.. .

.. .
...

...
...

.. .
.. . ��n�1;n

0 ���2n � � � ���n�1;n 0

(46)

��jk(~�2) = �
@�j�1

@#̂
�0wk

z=0
~� =0

k = 1; � � � ; n: (47)

Theorem 4.1: Consider the closed-loop adaptive system (33)–(35).
The equilibrium(z; ~�1; ~�2) = (0; 0; ~�e2) is

1) globally stable if all the eigenvalues ofAe(~�
e
2) have negative

real parts;
2) unstable if at least one eigenvalue ofAe(~�

e
2) has positive real

part.

Proof: Using Lemma A.2 from the conference version of this
paper [11] (omitted here for space limitations), we transform system
(33)–(35) into the form

_z
_~�1

= Ae
~�
e
2

z
~�1

+G(z; ~�1; ��2)

_��2 = H(z; ~�1; ��2) (48)

where��2 = ~�2 � ~�e2, andG(z; ~�1; ��2) andH(z; ~�1; ��2) satisfy

G(0; 0; ��2) = 0;
@G(0; 0; 0)

@z
= 0

@G(0; 0; 0)

@~�1
= 0;

@G(0; 0; ��2)

@��2
= 0

H(0;0; ��2) = 0;
@H(0;0; ��2)

@z
= 0

@H(0;0; ��2)

@~�1
= 0;

@H(0;0; ��2)

@��2
= 0: (49)

We first prove the stability part, assuming that all the eigenvalues
of Ae(~�

e
2) have negative real parts. Since the equilibrium manifold

[zT ; ~�T1 ]
T = h(��2) = 0 is invariant and@h(0)

@��
= 0, then[zT ; ~�T1 ]

T =

0 is a center manifold. The reduced system of (48)
_��2 = H(0;0; ��2) = 0 (50)

is stable. By the center manifold theorem (reduction principle) [2,
Th. 2, p. 21], the equilibrium(z; ~�1; ��2) = (0; 0; 0) of the full system
(48) is stable. The stability property is global because Theorem 2.1
guarantees global boundedness.

The instability part, when at least one of the eigenvalues of
Ae(~�

e
2) has positive real part, is immediate from the linearization

theorem by noting that the linearization of (48) around the equilibrium
(z; ~�1; ��2) = (0; 0; 0) is

� _z

�
_~�1
� _��2

=
Ae

~�e2 0

0 0

�z

�~�1
���2

: (51)

Ae(~�2) =
A0 + 
�(~�2) +

@W (0;0;~� ) ~�

@z
WT

1 (0; 0; ~�2) +
@W (0;0;~� ) ~�

@~�

�
W1(0; 0; ~�2) 0
(44)
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Theorem 4.1 does not cover the case where, in addition to
eigenvalues with negative real parts, there are also eigenvalues of
Ae(~�

e
2) with zero real parts.

With Theorem 4.1, we can determine whether a given equilibrium
point onM is stable or unstable. Next we determine which parts
of M are attractive and which are repulsive. Let us categorize the
equilibria onM into the following four sets:

S
s
=

n

i=1

f(z; ~�1; ~�2) 2M j Re �i(Ae(~�2)) < 0g (52)

S
u
=

n

i=1

f(z; ~�1; ~�2) 2M j Re �i(Ae(~�2)) > 0g (53)

S
c
=

n

i=1

f(z; ~�1; ~�2) 2M j Re �i(Ae(~�2)) = 0g (54)

S
su

=Mn(S
s
[ S

u
[ S

c
): (55)

The setSs is, by Theorem 4.1, a set of stable equilibria. The set
S
u
[ S

su is the set of unstable equilibria from the second part of
Theorem 4.1. The setSc is a set of equilibria at which at least one
of the eigenvalues ofAe(~�2) has zero real part. In [8] it was proved
that Sc has Lebesgue measure zero inM .

Now our analysis proceeds along the lines in [8, Sec. 5]. Let
us consider an equilibrium pointXe = (z; ~�1; ~�2) = (0; 0; ~�e2) 2

MnS
c. By the center manifold theorem, [3, Th. 3.2.1], there exist

local invariant manifoldsW s
loc(X

e) (stable),Wu
loc(X

e) (unstable),
andW c

loc(X
e) (center). Denote� = [zT ; ~�T1 ]

T . By [1, Th. 2.7.2],1

the flow of (48) istopologically equivalent2 to the flow of the system

_�
s
= ��

s
; �

s
2W

s
loc(X

e
) (56)

_�
u
= �

u
; �

u
2W

u
loc(X

e
) (57)

_��2 = 0; ��2 2W
c
loc(X

e
): (58)

While dimfW c
loc(X

e)g = p � r, the dimensions ofW s
loc(X

e) and
Wu

loc(X
e) are as follows.

1) If Xe
2 S

s, then dimfW s
loc(X

e)g = n + r and
dimfWu

loc(X
e)g = 0.

2) If Xe
2 S

u, then dimfW s
loc(X

e)g = 0 and
dimfWu

loc(X
e)g = n + r.

3) If Xe
2 S

su, then0 < dimfW s
loc(X

e)g; dimfWu
loc(X

e)g <

n + r.

Only solutions along stable invariant manifolds can converge to points
in MnS

c. These solutions are described by the sets

U
s
=

t�0

�t W
s
loc(S

s
) (59)

U
u
=

t�0

�t W
s
loc(S

su
) (60)

where�t(�) is the flow generated by (48). The remaining solutions,
those converging toSc, belong to the set denoted byU c. We point
out thatUs

[ Uu
[ U c = IRn+p. It was proved in [8] thatUu and

U c have measure zero inIRn+p.
Theorem 4.2 [8]: Consider the adaptive system (10) and (11).

Solutions starting fromalmost all initial conditions (z(0); ~�(0)) 2
IRn+p converge to the set of stable equilibriaSs. The set of initial
conditions that generate solutions converging to eitherS

su or Sc has
Lebesgue measure zero inIRn+p. No solutions converge toSu.

1For a detailed proof, see [7, Th. 4.1].
2Two flows,�t(x) and t(x), are said to be topologically(C0) equivalent

if there exists a homeomorphismh, taking orbits of't onto those of t,
preserving their orientation.

V. STABILITY OF NONADAPTIVE CONTROLLERS

Now we address the main question of this paper: does the adap-
tive controller “converge” to a stabilizing nonadaptive (constant)
controller?

• In the caser = p, the parameter estimates converge to the actual
parameter values, so the answer to this question is affirmative.

• In the caser = 0, the answer provided in [8] was affirmative
except for a set of initial conditions(z(0); ~�(0)) of measure
zero in IRn+p.

It is natural to expect that in the case0 < r < p considered here
the measure of initial conditions that lead to destabilizing controllers
remains zero. The fact that this is not so is the main result of this
paper. In this section we show that the set of initial conditions that
lead to destabilizing controllers may havepositive measure.

Let us consider (10) with
 = 0 (which means� = 0) and~�1 = 0.
Recalling from the definition (13) that�jk(z; ~�) has� as a factor, in
view of (12), we conclude thatAz(z; ~�)j�=0 � A0. Therefore, (33)
with 
 = 0 and ~�1 = 0, becomes

_z = Az(z; ~�1; ~�2)z +W
T
1
~�1 +W

T
2
~�2 
;~� =0

= A0z +W2(z; 0; ~�2)
T ~�2 
=0

: (61)

The linearization of (61) around the equilibriumz = 0 is

� _z = Al(~�2) �z (62)

where

Al(~�2) = A0 +
@W2(0; 0; ~�2)

T ~�2

@z

=0

: (63)

Similar to (52)–(55), we introduce

�
s
=

n

i=1

f(z; ~�1; ~�2) 2M j Re �i(Al(~�2)) < 0g (64)

�
u
=

n

i=1

f(z; ~�1; ~�2) 2M j Re �i(Al(~�2)) > 0g (65)

�
c
=

n

i=1

f(z; ~�1; ~�2) 2M j Re �i(Al(~�2)) = 0g (66)

�
su

=Mn(�
s
[ �

u
[ �

c
): (67)

The values of~�2 in �s correspond to nonadaptive controllers which
are (locally asymptotically) stabilizing. The values of~�2 in �su

[�u

are destabilizing. Our goal is to see whether all, or almost all,
solutions converge to�s. Since Theorem 4.2 establishes that almost
all solutions converge toSs, our task is to determine whether
S
s
� �s. This translates into the question whether Hurwitzness of

Ae(~�2) implies Hurwitzness ofAl(~�2).
Before we proceed, we recall that

r = 0: Ae(~�) = Al(~�) (68)

r = p: Ae =
Al + 
� W (0; 0)T

�
W (0; 0) 0
; Al = A0: (69)

SinceW (0; 0) has full row rank and� is skew-symmetric, using
LaSalle’s theorem [6], it is easy to show thatAe in (69) is Hurwitz.
Thus, for bothr = 0 and r = p, the stability properties ofAe(~�)

and Al(~�) coincide.
This is not the case for0 < r < p. Rewrite (44) as

Ae(~�2)

=
Al(~�2) + 
(�(~�2) + �(~�2)) WT

1 (0; 0; ~�2) +
@W (0;0;~� ) ~�

@~�

�
W1(0; 0; ~�2) 0

(70)
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where


�(~�2; 
)

=
@W2(0; 0; ~�2)

T ~�2

@z
�

@W2(0; 0; ~�2)
T ~�2

@z

=0

: (71)

The relationship between the stability properties ofAe(~�2) and
Al(~�2) is complicated, and no simple conclusions can be drawn. In
fact, it is conceivable that for some~�; Ae(~�2) would be Hurwitz
while Al(~�2) is not Hurwitz. Let us define the set of equilibria
corresponding to that situation

R
s
= S

s
�
u

�
su (72)

and denote byUs the set of solutions converging toRs. If Rs were
to have nonzero measure in the(p�r)-dimensional manifoldM; Us

would have nonzero measure inIRn+p because the stable invariant
manifolds of equilibria inRs are(n+r)-dimensional. In this case the
adaptive controller would be converging to destabilizing nonadaptive
controllers from a set of initial conditions of positive measure! The
next example illustrates this possibility. We point out in advance that
there is nothing unusual about the system in the example—it is a
second-orderlinear plant.

Example 5.1: Let us consider the system

_x1 = x2 + x1�2

_x2 = u+ �1: (73)

After the tuning functions design from Section II is applied, the
resulting error system is

_z =
�c1 1

�1 �c2
z +

0

1
~�1 +

z1
(c1 + �̂2)z1

~�2

_~�1 = �
[0 1 ]z

_~�2 = �
[z1 (c1 + �̂2)z1 ]z (74)

wherez1 = x1; z2 = x2 + (c1 + �̂2)z1. Therefore

Al(~�2) =
�c1 + ~�2 1

�1 + (c1 + �̂2)~�2 �c2
(75)

Ae(~�2) =

�c1 + ~�2 1 0

�1 + (c1 + �̂2)~�2 �c2 1

0 �
 0

: (76)

For carefully “engineered” valuesc1 = c2 = 2; 
 = 6; and�2 = 3;

the characteristic polynomials ofAl(~�2) andAe(~�2) are

pl(s) = s
2
+ (4� ~�2)s+ (~�2)

2
� 7~�2 + 5 (77)

pe(s) = s
3
+ (4� ~�2)s

2
+ ((~�2)

2
� 7~�2 + 11)s+ 12� 6~�2:

(78)

We calculate�� andS�; � = fs; u; sug as follows:

�
s
= f(z; ~�1; ~�2) 2M j ~�2 2 (�1; 0:8074)g

�
su

= f(z; ~�1; ~�2) 2M j ~�2 2 (0:8074;6:1926)g

�
u
= f(z; ~�1; ~�2) 2M j ~�2 2 (6:1926;+1)g (79)

and

S
s
= f(z; ~�1; ~�2) 2M j ~�2 2 (�1; 2)g

S
su

= f(z; ~�1; ~�2) 2M j ~�2 2 (2; 6:8791)g

S
u
= f(z; ~�1; ~�2) 2M j ~�2 2 (6:8791;+1)g: (80)

In light of (79) and (80), we have

R
s
= S

s
�
u

�
su

= f(z; ~�1; ~�2) 2M j ~�2 2 (0:8074;2)g: (81)

The setRs is an interval~�2 2 (0:8074;2) with positive measure
in M . Each point on this interval has a three-dimensional stable
invariant manifold. Therefore, the setUs of initial conditions leading
to destabilizing estimates has positive measure inIR4.

Another set of interest is

R
su

= S
su

�
u

= f(z; ~�1; ~�2) 2M j ~�2 2 (6:1926;6:8791)g: (82)

Along their stable invariant manifolds, the equilibria inRsu attract
some solutions denoted byUsu. SinceRsu

� �u, these solutions
result in parameter estimates such thatall of the eigenvalues of the
linearized nonadaptive system are unstable. This is different from [8],
where no solutions could converge to such “completely destabilizing”
parameter estimates. However,Usu has measure zero inIR4.

APPENDIX

Lemma A.1: Let F T
e
~� = 0. Thenz = 0 if and only if x = xe.

Proof: We start by noting thatz1 = 0 iff x1 = xe1. Assume that
zk = 0 iff xk = xek; k = 1; � � � ; i � 1. Recalling that

�k = �zk�1 � ckzk � 'k(�xk)
T
�̂ +

k�1

j=1

@�k�1

@xj

� (xj+1 + 'j(�xj)
T
�̂) +

@�k�1

@�̂
��k �

k�1

j=2

�j;kzk

(A1)

we have

zi = xi � �i�1 = xi � x
e
i � 'i�1 �x

e
i�1

T
� � �i�1

= xi � x
e
i � 'i�1 �x

e
i�1

T ~�

0

+ 'i�1(�xi�1)� 'i�1 �x
e
i�1

0

T
�̂

�

i�2

k=1

@�i�2

@xk
'k(�xk)� 'k �x

e
k

0

T
�̂

�

i�2

k=1

@�i�2

@xk
xk+1 � x

e
k+1

0

+ zi�2

0

+ci�1 zi�1

0

�
@�i�2

@�̂
� �i�1

0

+

i�2

k=2

�k;i�1 zi�1

0

= xi � x
e
i : (A2)

By induction, we conclude thatz = 0 iff x = xe.
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Robustness Analysis of Polynomials with Polynomial
Parameter Dependency Using Bernstein Expansion

M. Zettler and J. Garloff

Abstract—This paper considers the robust stability verification of
polynomials with coefficients depending polynomially on parameters
varying in given intervals. Two algorithms are presented. Both rely on
the expansion of a multivariate polynomial into Bernstein polynomials.
The first one is an improvement of the so-called Bernstein algorithm
and checks the Hurwitz determinant for positivity over the parameter
set. The second one is based on the analysis of the value set of the
family of polynomials and profits from the convex hull property of the
Bernstein polynomials. Numerical results to real-world control problems
are presented showing the efficiency of both algorithms.

Index Terms—Bernstein polynomials, polynomial parameter depen-
dency, robust Hurwitz stability.

I. INTRODUCTION

A standard approach to robustness analysis of linear dynamic
systems is to examine the characteristic polynomial in the presence
of parametric uncertainties. So far, most attention has been paid
to the case of affine and multiaffine parameter dependency of the
coefficients of the characteristic polynomial; see, e.g., [2], [6], [20],
and the references therein. However, these cases do not cover most

Manuscript received February 26, 1997. This work was supported by the
Ministry of Science and Research Baden-W¨urttemberg.

The authors are with the Fachhochschule Konstanz, Fachbereich Informatik,
D-78405 Konstanz, Germany (e-mail: garloff@fh-konstanz.de).

Publisher Item Identifier S 0018-9286(98)01388-9.

real-life problems. Therefore, we are concerned here with the far
more general case ofpolynomialdependency.

The Robust Stability Problem:Let the parameter setQ be an l-
dimensional box, i.e.,Q = [q

1
; q1] � � � � � [q

l
; ql], and let a family

of polynomials be given by

p(s;q) = a0(q)s
m

+ � � �+ am�1(q)s+ am(q) (1)

where the coefficients are depending polynomially on parametersqi;

i = 1; � � � ; l; q = (q1; � � � ; ql), i.e., for k = 0; � � � ;m

ak(q) =

d

i ;���;i =0

a
(k)

i ���i q
i
1 � � � q

i

l : (2)

Question: Is the family of polynomials (robustly) stable forQ,
i.e., are the polynomialsp(q) stable for allq 2 Q?

Here stability is meant in the sense of Hurwitz or asymptotical
stability, i.e., we want to show thatp(s;q) 6= 0 for all s 2 C with
Re s � 0; q 2 Q. To avoid dropping in degree, we assume for
simplicity throughout this paper thata0(q) > 0 for all q 2 Q.

Unfortunately, most of the methods known from literature, e.g.,
[4], [5], [14]–[18], [23], [32], and [34]–[36], can only treat problems
with polynomial dependency with only a few parameters and/or
polynomials of lower degree. The genetic algorithm [25] appears to
be an exception. However, this algorithm seems to be not fully tested
for large control problems and gives no guarantee for finding the
global solution. In Example 4 in Section V, we present an example
in which this algorithm fails to give the correct solution.

A possible approach is to consider the Hurwitz determinant associ-
ated with the family of polynomials, e.g., [14], [16], [18], [23], [34],
and [35]. In principle, by space and time limitations this approach is
restricted to problems with a moderate number of parameters and to
lower degree polynomials. The first algorithm which we present in
Section III adopts this approach and is based on the expansion of the
Hurwitz determinant into Bernstein polynomials. This leads to a fast
algorithm. Focusing on larger control problems we develop then in
Section IV a second algorithm which avoids the blowing up of the
problem caused by using the Hurwitz determinant. The underlying
idea of the algorithm is to watch for zero crossing over the imaginary
axis by inspecting the so-called value set. Here we profit again from
the convex hull property of the Bernstein expansion.

The results of this paper are presented in greater detail in the report
[37] which is available upon request. We note that the approach the
first algorithm is based on can be applied to other stability regions
as well as to matrix stability using the determinantal criteria listed
in [30], cf. [6, Ch. 17], often at the expense of an increase of
dimensionality, however. For the related problem of Schur stability
and the problem of computing the stability margin see [28].

II. BERNSTEIN EXPANSION

For compactness, we define amulti-indexI as an orderedl-tupel
of nonnegative integers(i1; � � � ; il). We will use multi-indexes, e.g.,
to shorten power products; forx = (x1; � � � ; xl) 2 Rl we set
xI = x

i
1 x

i
2 � � � � � x

i

l . For simplicity, we sometimes suppress
the brackets in the notation of multi-indexes. We writeI � N if
N = (n1; � � � ; nl) and if 0 � ik � nk; k = 1; � � � ; l. Further, let
S = fI : I � Ng. Then we can write anl-variate polynomialp
in the form

p(x) =

I2S

aIx
I
; x 2 R

l (3)
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