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Fig. 6. Response with RG, torque constraints, and the consffaintf,| < [14]
0.2 rad. The generated reference input is depicted (thin line) together with
the joint trajectories (thick lines). [15]

is taken into account by the RG, and the related simulated trajectories
are depicted in Fig 6 withi () = 72(t) = 5, T = 0.001 s.
The slight chatter on the and torque trajectories is caused by[17]
the approximations involved in the optimization procedure described

in Section IV. The results described above were obtained on a 486
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Geometric/Asymptotic Properties of Adaptive

VI Nonlinear Systems with Partial Excitation
For a broad class of nonlinear continuous-time systems and in-

put/state hard constraints, this paper has addressed the RG problem,

viz. the one of filtering the desired reference trajectory in such

a way that a nonlinear primal compensated control system can bstract—in thi finue the study of tric o
operate in a sta}ble way with satisfactory tracking performance aH peSrtrizg OP aéiggf: ' r\?loenlti:r?ga::] useyst:nislf )_/”(1) egfgrg?sgnzfzgq pqz(l;;_
no constraint violation. The resulting computational burden turfign of whether the parameter estimates converge tostabilizing
out to be moderate and the related operations executable wittues—stabilizing if used in anonadaptivecontroller—is addressed in
current computing hardware. Alternatively, in some applications, tffee general set-point regulation case. The key quantifier of excitation in
trajectory generated by the RG can be computed off-line and Sto'zgaadaptlve system is the rankr of the regressor matrix at the resulting

f b t task ti Fut d | ts of thi eqyilibrium. Our earlier paper showed that when eitherr =0 or r = p
or subsequent task executions. Future developments of this rese re p is the number of uncertain parameters), the set of initial

will be addressed toward numerical criteria for the determination eénditions leading to destabilizing estimates is ofneasure zerplntuition
the constraint horizon and to an independent parameterization of tliggests the same for the intermediate cade < r < p studied in this
components of the reference. paper. We present a surprising result: the set of initial conditions leading

to destabilizing estimates can havepositive measureWe present results
for the backstepping design with tuning functions; the same results can
be established for other Lyapunov-based adaptive designs.
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I. INTRODUCTION wheref = 6 — 6 is the parameter estimation errdi/(z,6) =

In the absence of persistent excitation (PE), parameter convergehﬁe ~o+,wa] = F(x)N(z,6)", and
in adaptive feedback loops is a difficult problem. It is logical to expect

o ) : 1 0 0
that the case of “least” excitation (LE)—the regulation case with the .
. g . _ Oaq 1 .
regressor converging to zero—would be the most difficult. This case N(s. §) = °rn : 9
was recently approached in [8], where it was proved that: 1) the N(z0) = : . . 0 : ©
parameter estimates converge to constant values and 2) the set of P PV

initial conditions that lead to destabilizing nonadaptive controllers EEN day_1
is of Lebesgue measure zero. Thus, we know that both extrem
cases, PE and LE, guarantee that the parameter estirakmbest
alwaysconverge to stabilizing values. The casepaftial excitation
initially expected to be a routine extension with the same conclusion,
has, for almost two years, resisted our attempts, assisted by several
colleagues (see the Acknowledgment). In this paper we reveal an
entirely unexpected answethe solutions leading to destabilizing Where
estimates can have positive measure. -
As in [8], our approach is based on exploring structures of invariant A-(z,0)
manifolds of adaptive equilibria. The general set-point regulation —ci 1 0 0
problem is considered with a regressor matrix of arbitrary rank at -1 —C2 1402 T2n
the resulting equilibrium. We focus our attention on the adaptive _ | : :
backstepping design with tuning functions [9], [10]. The same results
can be established for other Lyapunov-based adaptive nonlinear :
designs [14], [5], [4], [9], [13]. At present, it is not clear if extensions 0 —02n
to estimation-based designs ([12], [10] and references therein) would
be straightforward.

rhis adaptive controller results in a closed-loop system of the form

(10)
(11)

&

= A (2 0)2+ W(z0)T8
f=—TW(z8)>

1+ On—1,n
-1- On—1,n —Cr

(12)

and

Il. SET-POINT REGULATION USING TUNING FUNCTION DESIGN Oaj_y

oj(z,0) = %

Twyg. (13)
Consider nonlinear systems transformable into gtrect-feedback

form Let us denoteF. = F(z°) andr = rank{F.}. Then we have the

following theorem.

Theorem 2.1 [9]: The closed-loop adaptive system (10) and (11)
has a globally stable equilibriun@:,é) = 0. Furthermore, its
whered € IR? is the vector of unknown constant parameters and ti§éate (z(t), 6(t)) converges to thé¢p — )-dimensional equilibrium
elements off’ = [¢1, - - -, ¢, are smooth nonlinear functions takingmanifold A/ given by
arguments ifR”. In this paper we consider the problem of adaptive
regulation of the outpug = =1 to a given set-poiny,. Starting with
z{ = ys, we solve then equilibrium equations of (1) to get

= aip1 i, w) e,

Tn = U+ @n (.1:)T9

M={(z60) e R"*"?|z = 0,F § = 0}. (14)
An important property of\/ is its dimensionp — r. Two extreme
cases are as follows.

1) Whenr = p, i.e.,dim{M} = 0, M becomes the equilibrium
pointz = 0, f = 0. This equilibrium is globally asymptotically
stable and the parameter estimate) converges to its true
value 4. This is the case of PE.

2) WhenF. =0, i.e.,dim{M} = p, M becomes the equilibrium

Ty = ys
)

T .
o= i (i i)' i=20m,

In [9], an adaptive controller was designed for (1) recursively using
the expressions

Zi =X — (v — 3 . . . o .
T i ®) manifold = = 0. The asymptotic properties df(¢) for this
. = a i . . . .
i (F0,0) = =2y — iz — w!é + Z w1 - case were studied in [8]. In this case there is no guaranteed
=1 excitation.
i1 Our objective here is to study the case between the above two extreme
007_1 aﬂk,I . . . . )
el SR Z w2 (4) cases, i.e., the case pértial excitation:0 < < p.
k=2
Ti(#i,0) = Tic1 + wiz ®) . AsymPTOTIC CONSTANCY
1—1
5 0) = o — a1 6 The first difficulty in studying asymptotic properties of adaptive
wi(Zi,0) = @i Z 3 (6) . i
= vk controllers is to prove that the parameter estimates converge to
_ ' constant values. As we noted above, the two extreme cases()
whereZ; = (w1,--- i), i = 1,---,n, 20 =0, a0 = ys, 70 = 0, andr = p, have been resolved in [8] and [9], respectively. The case

andT = I'T > 0. The control law is
u = an(x, @)

and the adaptive law is

@)

é = P"rn(;c,(;) =TW(z,6)= (8)

of partial excitationf) < » < p, is much harder than the two extreme
cases. As will become clear from the proof of the next theorem, a
major challenge is to show thd&t’ 4(¢) not only converges to zero,
but is also anl, signal.

Theorem 3.1: Consider the adaptive system (10) and (11). There
exists a constant vectdr., € IR” such thatlim_ .6(t) = f.
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Proof: Consider the Lyapunov functiod, = %7 z +

$0"T7'6. In view of (12), the derivative oF’, along (10) and (11)

isV, = =30 exzi < —colz|’, whereeo = min{ci, -+, cn
Then it follows thatz € L. First, we show thatF!8 € £s. To
do this, we use induction.
Consider thez;-equation
1= —c1z1 4 22+ 301(»1°1)T9~
= —crzi+ 2+ 91 (25) 0+ (o1

(z1) — @1 (.ri))T(;

Sincez; = 1 — 2] € L4, we have thatp; (1) — ¢1(27) € L2, In

(15)

the following text, we us€l-] as a generic expression fér terms.

Sincezz € L3, (15) becomes

4= —cro 4 o1 () 6+ [La]. (16)
On the other hand, we have
o1 (1) = =1 (o5) TF(r)N" 2
= —¢1(#1) Tor (a5) 21 = 01 (o5) ' T
X (FNT — 1 (:Li)ef)z
= 1 (25) Tr (1) 21 +[£5] 17
due toz € L. Combining (16) with (17) we get
il = Loty oflaiye] +1e
(18)

If ©1(x7) # 0, (18) is a stable linear time-invariant (LTI) system

driven by anf, signal, so that

ei(21)" 0 € Lo (29)

(otherW|se,91(r1)T9 = 0 € L3). This, in turn, means that

Yl( ) QGLO £ Eﬁz, andz, € L.

We then assume that at step 1, we have proved that; — aj, €
Lo, ok(Tk) — ek(F) € Lo @r(F)"6 € Lo or(Tr)"0 € Lo,
ir € Lo, € Lo, k=1,---,i—1. Now con5|der the;-equation

i—1
Zi = —cizi — Zic1 + Zig1 + Z OikZk — ngwk + w Lo
k=it+1 k=2
i—1 s -
= —c;z; + (,:‘,;(.’f,j)l 6 — Z azj_l Pk(«fk)fe +[£2]
=1 T N—_———

ELo(step i—1)

= —cizi 4 i (7)) 0+ (pi(@) = 0i(30)) 04[] (20)
in which we have usedz € L, and w; = ¢i(%) —
i—1 3&7 1 R
k=1 —grp Pk(Ix). Since
T =& —'pi—L(fz—l)Tﬁ
N~
cLoy
= —pi1 (ff_1)T(7’— (pim1(Zic1) — iz (T5- 1))T9
;E Eﬁz(step i—1)
+ [122]
=z; + [£2] (21)
combining the assumptiory, —; € L2,k =1,---,i—1, it follows
that
@i(Ti) — i (7)) = i (TF +[La]) — @i (27) € L2. (22)
Therefore, we have
Z.l' = C; 25 -+ Pi ( ) 09 -+ [[:2] (23)
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On the other hand
“foz( ) H—_‘Pz( ) FF( )VT
= —o (7)) T, (7) 2 7—59,-,(5‘,?)1F
(FNT — i ( ) z

= =i (#5) T () = + [L2]. (24)
Combining (23) with (24), we get
L,«fs)ﬂ
- —c, 1 Z;
=@ o)l e @

If ©;(z$) # 0, (25) is a stable LTI system driven by af signal

so that

0i(75)" 6 € L (26)

(otherW|se ei(#)T9 = 0 € Ly). This, in turn, means that

oi(z)76 € L Z; € L. Also, note that
. dai—y . (3(}',;_1 A
T, = zl— Zk —~ # € L. 27
gja% STt fen. @)
€C2 €Ly €Ly
We conclude from the above induction that — 2 € Lo,

€ Lo, @i (fT“e T9~ € Lo, g:v,;(f“,')TH~ € Lo, % € Lo,

,n. Thus
1(2f) [_

®1 i’l
#2(73)

i (%) — @i(F)
andz;, € Lo fori = 1,-

(28)

©n(T0)
Now we finish the proof of the theorem. Let= rank{F} and
define
P = p x r matrix of basis vectors of Rangg. }
Q = r x p matrix of basis vectors of NYIT'F.)"}.

From Theorem 2.1, we have thBf 6(t) — 0, so P"4(t) — 0, i.e.,
PT4(t) — const. On the other hand, noting (8) we have

076 = QTTFNT -

=QT(TF.NT24(F-F.)NT2). (29)

Sincex — 2 € L2, we note thatF'(z) — F(z°) € £L». Recalling that
2 € L2 andQ'T'F, = 0, we conclude from (29) thaD”6 € £;.
We now write Q7 4(¢) as
Qi) = Q (m+/@9wm~ (30)
The fact thatQﬁTéi?iE L, assures us thad” A(t) — const. That is,
we have tha_(P_,Q]TH(t) — const. Sincel’ = '’ > 0, one easily
proves thaf{P, Q]” is invertible. Thusf(¢) — const. O

IV. CLASSIFICATION OF EQUILIBRIA AND INVARIANT MANIFOLDS

Since each solution of the adaptive system converges to an equi-
librium point on M, it is first of interest to determine which of the
equilibria onM are stable and which are unstable. Let us for further
notational convenience rewrite the system (10) and (11) as

= Az, 0)2 + W(z,0)" D (31)
)= —TW(z,9)z (32)

and denotel’ = ~I'y, wherey = Amax(['). Then we have the

following lemma.
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Lemma 4.1: System (31) and (32) is transformed into we study stability of equilibria od{ as a function of. Let us denote
R L L s (44), as shown at the bottom of the page, where
z :A:(Z,91,(‘/2)2’+"1’71(2.,91.,(‘/2) 91 -1—"1'72(2.,91.,92) 92 (33) —e 1
9~1 = —'YI’V1 (2,91,52);’ (34) -1
fy = = Wa(z, 01, 02)= (35) Ao = S (45)
using the transformation - -1 —cn
. r0 0 0 0
§— Fl} . 0 0 Gu e Gon
f> - . . :
T (PTP)—l/2PT e (02) = (-) —023 . : . : : (46)
= (Q!’Q)fl/QQT 0 . . N . On—1,n
-1 1/2 1y —1/2 Ty —1/2 0 —d2n —0n—1,n 0
T =T PP P Q) e
P = matrix of basis vectors of Rangg,’*F. } Tjr(f2) = = ajé Tow| _— k=1--n (47)
_ . . 1/2 T 01=0
Q = matrix of basis vectors of NU(T's""F)" }. (36) Theorem 4.1: Consider the closed-loop adaptive system (33)—(35).

Furthermorerank{W,(0,0,62)} = r and W5(0.0,62) = 0 for all The equilibrium(z, 61, 6) = (0,0,63) is »
g, € IRP™". 1) globally stable if all the eigenvalues df.(65) have negative

This decomposition clearly separates the part of the real parts_; ' . N
parameter error vector which is guaranteed to converge to2) unstable if at least one eigenvaluedf(¢5) has positive real

a zero vector from the part which converges to a possibly  part.

nonzero constant vector. '!'o see this, rgcall o () — 0 Proof: Using Lemma A.2 from the conference version of this
which implies that Fﬁ'l‘é/‘)P(PT]j)*l/Zﬂl({) — 0. Since paper [11] (omitted here for space limitations), we transform system
rank{F! To/*P(PT P)~"/*} = deg{,}, thenf, (t) — 0. (33)—(35) into the form
Proof of Lemma 4.1:Applying the transformation (36), system E [z .
(31) and (32) becomes g, | =4 (#2) g, | TGz 01,02)
é:,A,(:,ﬁ)z—l—W(:,lg)Tlg by = H(,z,§1,6_2) (48)
=A.(z, T '8)z:+ NF'T TV wheref, = 6, — 65, andG(z,6,.6,) and H(z,6,,8,) satisfy
= A;(:,fyhf/zﬁ))z — i G(0,0,8,) = 0, w -0
+ NF L,/ 7 [P(P'P) /- ' —1/219 c
NE Lo [P Py Q[(Q Qe - 9G(0,0,0) 9G(0.0,8,)
= Az(z, 01, 92)2 + V["'l(l,el, 92) 01+ .[’1'/2(27 191, 92) 0 (37) —— =0, — =0
<[4 (P"P)=' 2Pt o 0%
g (O — - - 1/2 mard _ 3.
—vW’](z,érﬁz)z} dH(0,0,62) dH(0,0,62)
= SN 38 D ek It A 2 = D ek At A 2 =
{—WM(z,el,ez); (38) 26, ; 29, 0. (49)

We first prove the stability part, assuming that all the eigenvalues

where >
o B i - of A.(63) have_ negative real parts. Since the equilibrium manifold
Wi(z,6,,6,) = (P'P)~/2P'T)?*FN! (39) [:7.6]]" = h(f2) = Ois invariant and’5;2 = 0, then[=",6{]" =
I/I’rQ(ZaélqéZ) — (QTQ)’I/ZQTF})”FNT. (40) 0 is a center manifold'. The reduced system of (48)
fs = H(0,0,85) =0 (50)

Using Lemma A.1 in the Appendix, we can see that= 0 and

2 =0 imply # = .. Thus (39) and (40) yield is stable. By the center manifold theorem (reduction principle) [2,

Th. 2, p. 21], the equilibriuntz, 8, 82) = (0,0, 0) of the full system

W1(0,0,8,) = (PTP)fl/ZPTr(l)/ZFCNvT|35§1:0 (41) (48) is stable. The stability property is global because Theorem 2.1
i . TN 1/2 T2 AT guarantees global boundedness.
W2(0,0,62) = (@ Q) Q Lo "FeN |z,§1:o' (42) The instability part, when at least one of the eigenvalues of

) O p—1/2 pI L/ ) Ac(ég) has positive real part, is immediate from the linearization
Sincerank{(P" P)""/"P Ty F.} = r < n andrank{N} = n  theorem by noting that the linearization of (48) around the equilibrium
for all 62, thenrank{W7(0,0,62)} = r. On the other hand, since (. 4,,6,) = (0,0,0) is

Q'Ty*F. = 0, thenW2(0,0,65) = 0. O 52 i 5-
Since all the solutions converge to the-subspace, that is, the < A.(93) O ol

. 86, | = 861 |. (51)
manifold sa 0 0 5a
02 2

M = {(2,61,6,) ER"™ | 2=0,6;, =0} (43) O

Ao + 75(6) + aWz(o,g;éz)Téz YV{I(O,O,éz) + 9W3(0,0,65)d, }

R o0 (44)
—‘y’VVl(0,0,ez) 0

A (8y) =
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Theorem 4.1 does not cover the case where, in addition to V. STABILITY OF NONADAPTIVE CONTROLLERS

eigenvalues with negative real parts, there are also eigenvalues qfow we address the main question of this paper: does the adap-

Ac(#3) with zero real parts. . . . tive controller “converge” to a stabilizing nonadaptive (constant)
With Theorem 4.1, we can determine whether a given equilibriugyntrolier?

point on M is stable or unstable. Next we determine which parts
of M are attractive and which are repulsive. Let us categorize the
equilibria on M into the following four sets:

* Inthe case: = p, the parameter estimates converge to the actual
parameter values, so the answer to this question is affirmative.
« In the caser = 0, the answer provided in [8] was affirmative

) n . N except for a set of initial condition§z(0),6(0)) of measure
S = [{(2.61,65) € M | Re Ai(A.(62)) < 0} (52) zero inIR"*7.
ifl It is natural to expect that in the cafe< r < p considered here
S" = ﬂ{(z’é‘ ,62) € M | Re Ai(A.(62)) > 0} (53) the measure of initial condltlon_s that lead to destablll_zmg controller_s
i remains zero. The fact that this is not so is the main result of this
n o N paper. In this section we show that the set of initial conditions that
S = U{(z,@l, 62) € M | Re A\;(A.(62)) = 0} (54) lead to destabilizing controllers may hapesitive measure
i=1 Let us consider (10) with = 0 (which meand” = 0) andé; = 0.
S8 = M\(S87US"US). (55) Recalling from the definition (13) that;.(z,#) hasT as a factor, in

view of (12), we conclude thafl.(z,8)|=0 = Ao. Therefore, (33)
The setS°® is, by Theorem 4.1, a set of stable equilibria. The sgfith ~ = 0 and§, = 0, becomes

S* U S is the set of unstable equilibria from the second part of L . -

Theorem 4.1. The sef“ is a set of equilibria at which at least one i=(A:(z,01.02)2 + Wi 6, + Wsz’z) |7,,,;1:0

of the eigenvalues O.ﬂg(éz) has zero real part. In [8] it was proved = Aoz 4+ Wa(=,0, 52)T§2|

that S¢ has Lebesgue measure zerodjih. i v
Now our analysis proceeds along the lines in [8, Sec. 5]. La@he linearization of (61) around the equilibrium= 0 is

us consider an equilibrium poinX® = (z,6:,02) = (0,0,65) € o

M\S°. By the center manifold theorem, [3, Th. 3.2.1], there exist 82 = Au(62) 62 (62)

local invariant manifoldsi¥;;.(X <) (stable), Wie.(X <) (unstable), where

and W _(X°¢) (center). Denote = [22,6%]%. By [1, Th. 2.7.2}

(61)

=0"

OW2(0,0,62)16,

the flow of (48) istopologically equivalertto the flow of the system Ai(f2) = Ao + 9= ) (63)
$C==¢.  CEeEWR(XY) (56)  Similar to (52)—(55), we introduce
Cu = Cuv Cu € ”vlléc (X() (57) . n L R
6 =0, B> € Wit (X°). (58) A" = ({(2.61,65) € M | Re \i(Ai(62)) <0} (64)

i=1
A= ({(2.61,02) € M | Re \;(Ai(f2)) >0} (65)

i=1

While dim{W.(X)} = p — r, the dimensions of¥;}.(X") and
Wit .(X?) are as follows.

1) If X¢ € &° then dim{W;.(X°)} = n + r and n o ~
dim{Wg. (X))} = 0. Af = U{(z,t‘)hb’z) € M | Re Ai(Ai(62)) =0} (66)
2)If X° € 8" then dim{W.(X®)} = 0 and =
dim{WE. (X))} = n+ 7. A = M\(AUA"UA"). (67)
3) If X° € 8%, then0 < dim{W.(X°)}, dim{W;5.(X°)} < < ) )
) n+r I {Wioe(X%)} dim{TWioe(X%)) The values ofl, in A® correspond to nonadaptive controllers which

are (locally asymptotically) stabilizing. The valuesfiefin A>* UA"
rgﬁe destabilizing. Our goal is to see whether all, or almost all,
solutions converge td.*. Since Theorem 4.2 establishes that almost
s oo all solutions converge taS”, our task is to determine whether
U’ =] oe(Wc(S 59 . -~ . .

U ”’( toc )) (59) S* C A’. This translates into the question whether Hurwitzness of

Only solutions along stable invariant manifolds can converge to poi
in M\S&°. These solutions are described by the sets

B = o A.(62) implies Hurwitzness of4(62).
U = o (Wie(5™)) (60) Before we proceed, we recall that
<0 N N
) o ) r=0: A.(0) = AF) (68)
whereg,(+) is the flow generated by (48). The remaining solutions, 4 - - T
A+ W(0,0)

those converging t&*, belong to the set denoted §°. We point r=p A.=

out thatU* U U* U U® = IR™*?. It was proved in [8] that’* and

U“ have measure zero " 2. Since W (0,0) has full row rank andt is skew-symmetric, using
Theorem 4.2 [8]: Consider the adaptive system (10) and (11).aSalle’s theorem [6], it is easy to show that in (69) is Hurwitz.

Solutions starting fromalmost all initial conditions (2(0),#(0)) € Thus, for bothr = 0 and» = p, the stability properties oﬂﬁ(é)

IR"** converge to the set of stable equilibd. The set of initial and A;(6) coincide.

conditions that generate solutions converging to ei§iéror S¢ has This is not the case fab < r < p. Rewrite (44) as

Lebesgue measure zerolid” 7. No solutions converge t&8*.

L w0.0) i A=A (69)

Ac(62)
1For a detailed proof, see [7, Th. 4.1]. Ay(Bs) +4(S(02) + A(d)) WT(0,0,62) + 9”’2(08,%,’52)%2
2Two flows, ¢+ (+) andy (2), are said to be topologicallfC®) equivalent = W (0.0. 6 0 !
if there exists a homeomorphisfy taking orbits ofy: onto those ofy, —yW1(0.0,62)
preserving their orientation. (70)
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where The setR’ is an intervalf, € (0.8074,2) with positive measure
~A(§ ) in M. Each point on this interval has a three-dimensional stable
’ 27 PR R invariant manifold. Therefore, the &t of initial conditions leading
_ OW2(0,0.62)" 6> OW»(0,0,62)" 6> (71) to destabilizing estimates has positive measuriih
0z 0z =0 Another set of interest is

The relationship between the stability properties m,f(§2) and R*™ =8 A"
A;(82) is complicated, and no simple conclusions can be drawn. In V- P _,
fact, it is conceivable that for somg A.(f2) would be Hurwitz = {(=.01,02) € M | 92 € (6.1926,6.8791)}. (82)

while 4;(:) is not Hurwitz. Let us define the set of equilibriaajong their stable invariant manifolds, the equilibria R attract

corresponding to that situation some solutions denoted y°**. SinceR** C AY, these solutions
R —§° m (Au UAsu) (72) r_esult_ in parameter _estimates such thttof the gig_env_alues of the
linearized nonadaptive system are unstable. This is different from [8],
and denote by/® the set of solutions converging ®°. If R* were where no solutions could converge to such “completely destabilizing”
to have nonzero measure in the— »)-dimensional manifold\/, 2/ parameter estimates. Howevaf;" has measure zero iR". O
would have nonzero measure IR"™? because the stable invariant
manifolds of equilibria ifR* are(n+r)-dimensional. In this case the APPENDIX

adaptive controller would be converging to destabilizing nonadaptive
controllers from a set of initial conditions of positive measure! The
next example illustrates this possibility. We point out in advance that
there is nothing unusual about the system in the example—it is %
second-ordelinear plant. k-1

Lemma A.1:Let /'8 = 0. Thenz = 0 if and only if v = ..
Proof: We start by noting that; = 0 iff =, = 27. Assume that
=0iff 2 = 2, k=1,---,i — 1. Recalling that

davg, —
Example 5.1: Let us consider the system ak = —zk-1 — ckzr — or(@) 0+ Z —
]
T1 = x9 + x102 S
F2 = u 4+ 64. (73) X (w41 +0;(T)70) + Qhotip ZJ]“A
After the tuning functions design from Section Il is applied, the (A1)
resulting error system is
. —c 1 0]x P N we have
~’={_p11 "'}ZJFHHHF{( +‘é)~}92 ;
. c2 €1 2/=1 Zi =X — G = X — ;L’? — Qi1 (Tf_l) 0 — ;1
0‘1:—7[0 1]z = wi =t — pit (F 1)Té
- . —_———
6’2 = —‘/[21 (C1 —|— 92)Z1 ]Z (74) 0
e T A
wherez; = 1,z = x5 + (c1 + 62)z1. Therefore + (pim1(Fim1) — @i (T21)) 0
—Cq —|— 92 1 ‘U'
Ai(fs) 75 :
((02) |: 1+ (a +92) —02:| (79) <= doviz =\ Tg
) —cy -I-Hg R 1 0 _l; Oxy (:M(IA) »«k(lk)()
AE(QQ): —1+(01 +092) 2 —C2 1]. (76) B 0
0 -~ 0 2 9ai_s .
. - Z - (J‘/c+1 - -T/;Jrl) Zi—oteCi—1 Zio1
For carefully “engineered” values = c2 = 2, v = 6, and¢» = 3, = Qup L ~——
the characteristic polynomials of;(6,) and A.(f.) are 2 0 0
pi(s) ="+ (4—b)s+ (02)° = 702+ 5 (77) _Qaiep 1+Zah |z
3 N2 G N2 _ -G ) 06 " 2
pel(s) =" 4+ (4= b2)s> + ((2)> — Tha 4+ 11)s5 + 12 — 66>. 5 k= 5
(78) = @i — . (A2)
We calculateA” andS®, o = {s,u, su} as follows: By induction, we conclude that = 0 iff = = z°. |
A" = {(z,01,6. M| 6. —00,0.8074
= {(z01,0:) € |02 € (=0, )} ACKNOWLEDGMENT
\ ={(2,01,62) € M | 6> € (0.8074,6.1926)}
{(Mgl 92) € M| 8, € € (6.1926,400)} (79) The authors would like to thank D. Ayeles, R. Freeman, P.
Kokotovic, L. Praly, and R. Sepulchre for discussions and their
and interest in this problem.
Ss = {(Z,él,ég) E _7\[ | 62 E (—OC,Q)}
S = {(2.61.02) € M | > € (2.6.8791)} REFERENCES
8" ={(z,61,62) € M | 6 € (6.8791, 400)}. (80)  [1] D. K. Arrowsmith and C. M. PlaceAn Introduction to Dynamical
' Systems Cambridge, U.K.: Cambridge Univ. Press, 1990.
In light of (79) and (80), we have [2] J. Carr,Applications of Centre Manifold Theary New York: Springer-
Verlag, 1981.
R =8° ﬂ (A“ UAS“) [3] J. Guckenheimer and P. Holmellonlinear Oscillations, Dynamical

N Systems, and Bifurcations of Vector FielddNew York: Springer-Verlag,
= {(z.61.65) € M| 6y € (0.8074,2)}. (81) 1983.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998 425

[4] z. P. Jiang and L. Praly, “Iterative designs of adaptive controllers faeal-life problems. Therefore, we are concerned here with the far

systems with nonlinear integrators,” Rroc. 30th IEEE Conf. Decision more general case gfolynomialdependency.
and Contro| Brighton, U.K., Dec. 1991, pp. 2482-2487. The Robust Stability Problemtet the parameter sef be ani-

[5] I. Kanellakopoulos, P. V. Kokoto@, and A. S. Morse, “Systematic . . . _ _ .
design of adaptive controllers for feedback linearizable systetB&E dlmen5|ona_l box, ieq) = la,- @] x -+ x[g,-q,], and let a family
Trans. Automat. Contrvol. 36, pp. 1241-1253, 1991. of polynomials be given by

[6] H. K. Khalil, Nonlinear Systems Upper Saddle River, NJ: Prentice- .

Hall, 1996. p(b q) = ao (q)‘s + 4+ am—l(q)s + am(q) (1)

[7] U. Kirchgraber and K. J. PalmeiGeometry in the Neighborhood of

Invariant Manifolds of Maps and Flows and Linearization_ongman, Where the coefficients are depending polynomially on parameters
1990. i=1,---,La=(q, ,q), e, fork=0,---,m
[8] M. Krsti¢, “Invariant manifolds and asymptotic properties of adap-

. ; L d
tive nonlinear stabilizers,IEEE Trans. Automat. Contrvol. 41, pp.

k i %
817-829, 1996. a(@ = > al) gt )
[9] M. KTrsti¢, |. Kanellakopoulos, and P. V. Kokotdyi‘Adaptive nonlinear i1, =0
gc;r;t_rtl)lsgwt;mgg; overparametrization Syst. Contr. Lett.vol. 19, pp. Question: Is the family of polynomials (robustly) stable fap,
[10] —, Nonlinear and Adaptive Control DesignNew York: Wiley, I-€., are the polynomialg(q) stable for allq € Q7
1995. Here stability is meant in the sense of Hurwitz or asymptotical

[11] Z. H. Li and M. Krsti€, “Geometric/asymptotic properties of adaptivestabimy, i.e., we want to show that(s,q) # 0 for all s € C with

nonlinear systems with partial excitation,” #roc. 35th IEEE Conf. C > : i i
Decision and ContrglKobe, Japan, Dec. 1996, pp. 4683-4688. Reé = 0, q € Q. To avoid dropping in degree, we assume for

[12] L. Praly, G. Bastin, J.-B. Pomet, and Z. P. Jiang, “Adaptive stabilizationMPlicity throughout this paper that (q) > 0 for all a€eqQ.
of nonlinear systems,” inFoundations of Adaptive ControlP. V. Unfortunately, most of the methods known from literature, e.g.,
Kokotovi¢, Ed.  Berlin, Germany: Springer-Verlag, 1991, pp. 347-4344], [5], [14]-[18], [23], [32], and [34]-[36], can only treat problems

[13] L. P!"aly, “Adaptive' regulation: Lyapunov des_ign with a growth condivyith polynomial dependency with only a few parameters and/or
tl'gg’z_ Int. J. Adaptive Contr. Signal Processingol. 6, pp. 329-351, polynomials of lower degree. The genetic algorithm [25] appears to

[14] D. Taylor, P. V. Kokotowt, R. Marino, and I. Kanellakopoulos, “Adap- 0€ an exception. However, this algorithm seems to be not fully tested
tive regulation of nonlinear systems with unmodeled dynamitSZE  for large control problems and gives no guarantee for finding the
Trans. Automat. Contrvol. 34, pp. 405-412, 1989. global solution. In Example 4 in Section V, we present an example

in which this algorithm fails to give the correct solution.

A possible approach is to consider the Hurwitz determinant associ-

ated with the family of polynomials, e.g., [14], [16], [18], [23], [34],
and [35]. In principle, by space and time limitations this approach is

Robustness Analysis of Polynomials with Polynomial restricted to problems with a moderate number of parameters and to

Parameter Dependency Using Bernstein Expansion lower degree polynomials. The first algorithm which we present in

Section Il adopts this approach and is based on the expansion of the

M. Zettler and J. Garloff Hurwitz determinant into Bernstein polynomials. This leads to a fast

algorithm. Focusing on larger control problems we develop then in

Section IV a second algorithm which avoids the blowing up of the

Abstract—This paper considers the robust stability verification of problem caused by using the Hurwitz determinant. The underlying
polynomials with coefficients depending polynomially on parameters jdea of the algorithm is to watch for zero crossing over the imaginary

varying in given intervals. Two algorithms are presented. Both rely on ;s b inspecting the so-called value set. Here we profit again from
the expansion of a multivariate polynomial into Bernstein polynomials.

The first one is an improvement of the so-called Bemstein algorithm the convex hull property of the Bernstein expansion.

and checks the Hurwitz determinant for positivity over the parameter The results of this paper are presented in greater detail in the report

set. The second one is based on the analysis of the value set of the{37] which is available upon request. We note that the approach the

family of polynomials and profits from the convex hull property of the  firot gigorithm is based on can be applied to other stability regions
Bernstein polynomials. Numerical results to real-world control problems

are presented showing the efficiency of both algorithms. as well as to matrix stability using the determinantal criteria listed
in [30], cf. [6, Ch. 17], often at the expense of an increase of
dimensionality, however. For the related problem of Schur stability

and the problem of computing the stability margin see [28].

Index Terms—Bernstein polynomials, polynomial parameter depen-
dency, robust Hurwitz stability.

|. INTRODUCTION II. BERNSTEIN EXPANSION

A standard approach to robustness analysis of linear dynamidcor compactness, we definenaulti-index! as an ordered-tupel
systems is to examine the characteristic polynomial in the presergeonnegative integer§,, - - -, ;). We will use multi-indexes, e.g.,
of parametric uncertainties. So far, most attention has been pgaidshorten power products; fat = (1, -, 1) € R! we set
to the case of affine and multiaffine parameter dependency of thé = ,,4117"22 - --- -z, For simplicity, we sometimes suppress
coefficients of the characteristic polynomial; see, e.g., [2], [6], [20{he brackets in the notation of multi-indexes. We write< N if
and the references therein. However, these cases do not cover most (ny,---,n) and if 0 < i, < ng, k = 1,---,1. Further, let

Manuscript received February 26, 1997. This work was supported by tﬁe: {I : I < N}. Then we can write afi-variate polynomialp
Ministry of Science and Research Baden#tt¢mberg. in the form

The authors are with the Fachhochschule Konstanz, Fachbereich Informatik, I !
D-78405 Konstanz, Germany (e-mail: garloff@fh-konstanz.de). p(x) = Z arx., xeR @)

Publisher Item Identifier S 0018-9286(98)01388-9. les

0018-9286/98%$10.00 1998 IEEE



