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Multi-Agent Deployment in 3-D via PDE Control
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Abstract—This paper introduces a methodology for modelling,
analysis, and control design of a large-scale system of agents
deployed in 3-D space. The agents’ communication graph is a
mesh-grid disk 2-D topology in polar coordinates. Treating the
agents as a continuum, we model the agents’ collective dynam-
ics by complex-valued reaction-diffusion 2-D partial differential
equations (PDEs) in polar coordinates, whose states represent the
position coordinates of the agents. Due to the reaction term in the
PDEs, the agents can achieve a rich family of 2-D deployment
manifolds in 3-D space which correspond to the PDEs’ equilib-
rium as determined by the boundary conditions. Unfortunately,
many of these deployment surfaces are open-loop unstable. To
stabilize them, a heretofore open and challenging problem of PDE
stabilization by boundary control on a disk has been solved in
this paper, using a new class of explicit backstepping kernels that
involve the Poisson kernel. A dual observer, which is also explicit,
allows to estimate the positions of all the agents, as needed in
the leaders’ feedback, by only measuring the position of their
closest neighbors. Hence, an all-explicit control scheme is found
which is distributed in the sense that each agent only needs local
information. Closed-loop exponential stability in the L2, H1, and
H2 spaces is proved for both full state and output feedback
designs. Numerical simulations illustrate the proposed approach
for 3-D deployment of discrete agents.

Index Terms—Backstepping, boundary control, deployment,
distributed parameter systems, multi-agent systems.

I. INTRODUCTION

COOPERATIVE formation control for multi-agent system
has seen a phenomenal growth in the past years due to

a multitude of practical applications, such as UAV formation
flying, mobile robot deployment, moving sensor networks,
coordination of transportation vehicles, or satellite clusters [1],
[2]. One of the intrinsic advantages of multi-agent systems is
the ability to complete tasks, otherwise very difficult for a single
individual, by collaborative work. Collaboration provides many
advantages such as flexibility, fault tolerance, redundancy, or
efficiency. Deployment configuration and formation control are
key technologies if the agents are to perform complex coopera-
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tive tasks. The agents are often required to move to a designed
position, on a given deployment manifold, to adequately fulfill
detection, monitoring or sampling functions. Practical exam-
ples include applications such as rendezvous [3], large area ex-
ploration [4], [5], pattern formation [6], surveillance [7], [8], or
distributed environmental monitoring and science imaging [9].
However, most designs found in the literature consider simpler
2-D deployments, and thus avoid to address the challenges of
3-D formations, even though real-life applications are rarely
planar.

a) Related literature: A wealth of results on multi-agent
cooperative control can be found in the literature [10]–[12].
Most works can be classified into two wide families. On the one
hand, one can find designs based on traditional discrete models;
borrowing tools from graph theory, matrix theory, spectrum
analysis, or potential functions, they have already produced
an impressive array of results [13]–[17]. More recently, a
new continuum-based viewpoint has arisen, leaning heavily
on partial differential equation (PDE) methods [18]–[23]. The
discrete and continuous approaches are nevertheless essentially
equivalent, given that semi-discrete partial difference equations
(PdEs) are analogous to PDEs over graphs [24]. Since graph
Laplacian control for state consensus [25] is formulated as a
linear PdE which behaves like a heat equation over the graph,
Laplacian control can be expressed as a linear heat equation
discretized in space. The selected discretization scheme de-
termines the underlying communication topology connecting
different agents.

In [26], one can find how a distributed system and the discrete
approximation of a PDE are connected in system-theoretic
terms. In particular, the application of finite difference approx-
imations results in the space variable(s) being mapped into the
agent index(es), and the spatial derivatives being transformed
into links between neighbors [11], [27].

In a discrete context, it is well-known that the consensus con-
trol algorithm plays a crucial role. Many formation controllers
extend the consensus algorithm and analyze stability properties
under the framework of graph Laplacian matrices. We next
provide a small but relevant sample of the many results that
can be found in the literature. For instance, a leader-follower
distributed formation control and estimation architecture is pro-
posed in [28]. A similar structure but with a time-varying refer-
ence state is considered in [29]. By tracking the team centroid,
an observer-controller scheme is designed in [30]. Another
approach, hinging on the use of potential functions and valid for
nonholonomic mobile robots with curvature constraints, can be
found in [31]. Potential functions have also been used to design
decentralized controllers for large teams of robots [32]. Another
work shows the design of distance-based formation controllers,
in a quantized communication setting, by means of analyzing
the spectral properties of the incidence matrix [33]. Other
results include the design of a distributed controller based on
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optimal localized feedback gains for one-dimensional forma-
tions [34] or the development of a multilevel topology, gradient-
based consensus controller for 2-D formation shapes [35].

In the continuum context, the agents index is modeled as
a continuous variable, allowing the collective dynamics of a
group of discrete agents to be formulated as a PDE. The pos-
sibility of applying PDE methods to solve multi-agent control
problems opens up a wealth of new possibilities, many of them
not yet explored. We next review some recent developments
exploiting the connection between PDEs and multi-agent sys-
tems. For instance, in [36], a model reference adaptive control
law based on PdEs is used to track desired deployment tra-
jectories. [37] designs a feedforward controller for multi-agent
deployment by using a flatness-based motion planning method
for PDEs. Reaction-advection-diffusion PDE backstepping is
used in [11] for leader-enabled deployment onto planar curves.
Reference [38] combines extremum seeking and diffusion feed-
back for multi-agent deployment around a source. In [39], a
large vehicular formation closed-loop dynamics are studied
by means of PDE eigenvalue analysis. Similarly, hyperbolic
PDE models of large vehicular platoons are used to design
decentralized control laws in [27]. Hyperbolic models have also
been used to analyze networks of oscillators in [40]. Another
instance of PDE methods, which can be found in [41], is the
use of smoothed particle hydrodynamics theory to address the
problem of pattern generation by decentralized controllers.

b) Results and contributions of the paper: We present a
PDE-based approach to deploy multi-agent system onto 3-D
manifolds. The agents’ collective dynamics are modeled by two
advection-diffusion PDEs, whose states represent the agents’
positions; the first PDE is complex-valued, with the x and y
coordinates, respectively, representing the real and imaginary
parts of the state, while the remaining PDE is real-valued and
describes the z coordinate (height) evolution. The PDEs are de-
fined on a disk, parameterized by polar coordinates (r, θ); these
correspond to discrete indexes of the agents when the PDEs are
discretized via finite differences, which impose a fixed com-
munication topology. The agents on the boundary (at the disk’s
edge) are selected as leaders; they drive the collective dynamics
of the whole system (this idea was first introduced in [42]).

By modeling the multi-agent system as a continuum, the
achievable deployment profiles are found from all possible
equilibria of the model PDE equations. Since these equilibria
can be analytically expressed by explicit formulae, we find a
wide variety of deployment manifolds; in particular, it is found
that a layer of agents can be deployed on any periodic, square-
integrable planar curve fixed at a designated height.

From the underlying PDE it is clear that many of these
equilibrium profiles are potentially open-loop unstable. To ad-
dress this problem, a heretofore open and challenging problem
of PDE stabilization by boundary control on a disk has been
solved in this paper, using a new class of explicit backstepping
kernels that involves the Poisson kernel. The basis of the design
is the backstepping method for PDE boundary control. At its
inception, backstepping was developed for 1-D parabolic equa-
tions [43]; it has been since extended to many other equations
and domain shapes [44]. In particular, past results include
a design for a complex-valued PDE (the Ginzburg–Landau
equation) at the exterior of a disk [45] and an output-feedback
controller for an annular geometry [46]. However, the inclusion

of the disk’s origin presents a major design challenge due to
the appearance of singular terms in the PDE; this is addressed
by applying a series of transformations that allows us solve the
resulting kernel equations. In addition, we show L2, H1, and
H2 closed-loop stability despite these potential singularities,
thus guaranteeing a good system behavior. When discretized,
our control law enables the leader agents to drive the followers
asymptotically into the desired deployment manifold.

To reduce the communication needs of our design, we also
formulate an observer to estimate the positions of all the agents,
which are required in the leaders’ feedback law. Since the
observer is driven exclusively by their neighbors’ information,
only local communication is needed for all agents, both leaders
and followers. In addition, the controller and observer have
explicitly computable gains. Thus, our design results in an all-
explicit feedback law which is distributed in the sense that each
agent only needs local information.

c) Organization: Section II introduces the agents’ model
and the explicit deployment profiles. Section III focuses on the
design of a novel boundary control law for a disk-shaped do-
main. H2 closed-loop exponential stability is stated and proven
in Section IV. Next, Section V introduces a boundary observer
and proves the stability of the closed-loop system when the
observer estimates are used in the control laws. We connect the
PDE design with the agents’ distributed control law by means
of discretization in Section VI, along with a simulation study
that supports the theoretical results. We conclude with some
remarks in Section VII.

II. 3-D DEPLOYMENT

The following section models multi-agent deployment as a
PDE problem. Considering the agents’ communication topol-
ogy as a continuum, we reformulate the discrete partial differ-
ence equations (PdEs) describing the agents’ dynamics as a set
of continuous complex-valued reaction-diffusion PDEs. This
allows us to obtain all possible deployment profiles by solving
for the PDEs’ equilibrium. Using this idea we determine several
deployment profiles of interest.

A. Agents’ Model

We consider that the communication structure for the agents
is given by an undirected graph G(V,E) on a mesh-grid disk
with M ×N nodes, as shown in Fig. 1. The pair (i, j) ∈ V
represents a node, but also an agent located at the node. If
((i, j), (i′, j ′)) ∈ E, then (i, j) and (i′, j ′) are neighbors, i.e.,
the respective agents at the nodes can share states of informa-
tion; we abbreviate this relation by denoting (i, j) ∼ (i′, j ′).
The agents at the boundary (outermost layer) are selected as
leaders, following the concept of boundary actuation. The rest
are follower agents. Thus, for j = 1, 2, . . . , N , the leaders
are denoted by (M, j) and the followers by (i, j), with i =
1, 2, . . . ,M − 1.

Let xij(t), yij(t), and zij(t) denote agent (i, j)’s position
coordinates at time t in 3-D space over the time-invariant com-
munication graph in Fig. 1. It is known [24] that Laplacian con-
trol (consensus law [1]) coincides with the continuous Laplace
operator; thus, consensus dynamics can be modeled as a PDE
containing a Laplace operator. Based on this idea, we describe
the dynamics of the agents by using a set of PDEs. For that,
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Fig. 1. Graph defining the communication relationship among agents. (i, j)
denotes an agent located in the ith ray layer and jth angle layer. The agents at
the outermost layer are leaders. Each follower except at the innermost layer has
four neighbors.

we first map the graph G to a closed disk B̄(0, R) = {(r, θ) :
0 ≤ r ≤ R, 0 ≤ θ < 2π}. As M,N → ∞, the discrete graph
approaches1 B̄(0, R), namely, (i, j) → (ri, θj) → (r, θ). Let-
ting now u(t, r, θ) = x(t, r, θ) + jy(t, r, θ) and z(t, r, θ) de-
note, respectively, the horizontal and vertical coordinates of
agent (r, θ), the agent dynamics is expressed by the following
two 2-D PDEs:

ut(t, r, θ)=
ε

r
(rur(t, r, θ))r+

ε

r2
uθθ(t, r, θ)+λu(t, r, θ) (1)

zt(t, r, θ)=
1

r
(rzr(t, r, θ))r+

1

r2
zθθ(t, r, θ)+μz(t, r, θ) (2)

for (t, r, θ) ∈ R
+ × B̄(0, R), u, ε, λ ∈ C, z, μ ∈ R, and

Re(ε), μ > 0, where Re(·) denotes the real part. The first two
terms of (1) and (2) are the Laplacian written in polar coordi-
nates, and the third term is a linear reaction term, which would
model the effect of the state of a given agent on the agent itself.
The boundary conditions are the leaders’ position, given by

u(t, R, θ) =U(t, θ) (3)
z(t, R, θ) =Z(t, θ). (4)

Since u and z are uncoupled, they can be analyzed separately.
Furthermore, given that (2) is a particular case of (1), in the
sequel we only analyze the dynamics of u in detail; the results
for z can be derived in a similar fashion.

B. Deployment Profiles

Since the agents’ dynamics are given by (1)–(4), final deploy-
ment formations correspond to the equilibrium profiles (ū, z̄) of
the PDEs, which are given by

1

r
(rūr(r, θ))r +

1

r2
ūθθ(r, θ) +

λ

ε
ū(r, θ) = 0 (5)

1

r
(rz̄r(r, θ))r +

1

r2
z̄θθ(r, θ) + μz̄(r, θ) = 0 (6)

1The approximating error between the PDEs and the discrete agent system is
related to both the discretization method and the number of the agents. This is
discussed in Section VI.

with designed boundary actuation

ū(R, θ) = f(θ), z̄(R, θ) = C (7)

where the boundary of z̄ has been set as a constant C for
simplicity. Equations (5)–(7) characterize all achievable 3-D
deployments; their explicit solution is given by

ū(r, θ) =

+∞∑
n=−∞

CnJn

(√
λ

ε
r

)
ejnθ (8)

where Cn =
1

2πJn

(√
λ
εR

) π∫
−π

f(ω)e−jnωdω,

z̄(r, θ) =C
J0
(√

μr
)

J0
(√

μR
) (9)

where Jn is the nth-order Bessel function of the first kind.
By changing the position of the leaders (boundary actua-

tors) we can obtain a wide variety of combinations x̄ and
ȳ from ū = x̄+ jȳ enabling rich and interesting deployment
manifolds. In particular, the system can provide any formation
curve for a given height for a desired layer r0 ≤ R of follower
agents. For example, if one wants to deploy the agents at
height l onto a curve defined by h(θ) = x̄(θ) + jȳ(θ), this
is achievable as follows. First, determine the constant C that
achieves the curve at height l and layer r0 of agents from
C = l(J0(

√
μR)/J0(

√
μr0)). Then, substitute r0 into (8) and

invert the series to obtain the coefficients Cn as a function of
h(θ). Finally, letting r = R, one obtains the boundary input as

f(θ)= x̄(R, θ)+jȳ(R, θ)=

+∞∑
n=−∞

ϕnJn

(√
λ

ε
R

)
ejnθ (10)

where

ϕn =

∫ π

−π h(ω)e
−jnωdω

2πJn

(√
λ
ε r0

) . (11)

Once the deployment curve at a given height and layer is
fixed, the remaining agents will follow a family of continuum
curves that extend the shape of the reference curve h(θ) to a
smooth manifold in three-dimensional space. To illustrate the
procedure, we next show several examples.

Fig. 2 depicts eight possible deployment profiles under the
action of boundary actuations determined by this procedure.
One could also imagine the transitions between these deploy-
ment patterns. For instance, at the beginning [Fig. 2(a)], all the
agents are gathered on a disk at height zero. Then, the leaders
move to z = 1 but still remain with a circle shape, while the fol-
lower agents separate and arrive at different heights [Fig. 2(b)].
Next, the agents cycle through a series of patterns: asteroid,
quadrifolium, deltoid, 3-petal polar rose, 3-petal epicycle and
4-petal epicycle, as shown in Fig. 2(c) to Fig. 2(h). The periodic
property of the Bessel function Jn makes the leaders’ formation
profile shape to repeatedly appear at different heights for the
follower agents, in particular there are six layers of self-similar
deployment patterns at different heights when λ/ε = 400 and
μ = 15.



894 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 4, APRIL 2015

Fig. 2. Agent deployment manifolds with the parameters λ/ε = 400 + j0 and μ = 15. (a) Circular shape u = exp(jθ) at height z = 0. (b) Circular shape
u = exp(jθ) at height z = 1. (c) Asteroid shape u = exp(jθ) + (1/3) exp(−j3θ) at height z = 1. (d) Quadrifolium shape u = exp(jθ) + exp(−j3θ) at height
z = 1. (e) Deltoid shape u = exp(jθ) + (1/2) exp(−j2θ) at height z = 1. (f) 3-petal polar rose shape u = exp(jθ) + exp(−j(π − 2θ)) at height z = 1.
(g) 3-petal epicycloid shape u = exp(jθ)− (1/4) exp(j4θ) at height z = 1. (h) 4-petal epicycloid shape u = exp(jθ)− (1/5) exp(j5θ) at height z = 1.

Fig. 3. Agent deployment manifolds with positive imaginary part of λ/ε, with
z(R, θ) = 1 and μ = 15. (a) Polar rose shape u = exp(jθ) + exp(−j5θ)
with λ/ε = 100 + j60. (b) 3-petal rose shape u = exp(jθ) + exp(−j(π −
2θ)) with λ/ε = 100 + j60. (c) 10-petal epicycloid shape u = exp(jθ)−
(1/11) exp(j11θ) with λ/ε = 200 + j40. (d) 4-petal epicycloid shape u =
exp(jθ)− (1/5) exp(j5θ) with λ/ε = 100 + j20.

Fig. 3 illustrates other possible deployments by choosing a
positive imaginary part of λ/ε; increasing this value “twists”
the deployment profile while simultaneously shrinking the de-
ployment manifold. The larger the imaginary part is, the smaller
the bottom of the deployment becomes. This would allow users
to implement different 3-D formations, such as the twist vase of
Fig. 3(c), by tuning the value of the imaginary part of λ/ε.

The deployment profiles corresponding to the equilibrium of
(1)–(4) are potentially open-loop unstable, particularly for large
values λ and μ. Namely, the agents would not converge to the
desired formation from their initial positions unless they started
exactly at the equilibrium. Given that large values of λ and μ
are required for most of the desired deployments, such as those
shown in Figs. 2 and 3, it is necessary to design stabilizing
feedback laws for the leaders. In the next section, we focus on
such stabilizing control designs.

III. BOUNDARY CONTROL DESIGN

To stabilize the equilibrium profiles of (1)–(4), we design a
feedback law by using a backstepping-based method.

First, to eliminate angular dependence, we expand the system
state (1) and the boundary control (3) as a Fourier series:

u(t, r, θ) =

∞∑
n=−∞

un(t, r)e
jnθ, (12)

U(t, θ) =

∞∑
n=−∞

Un(t)e
jnθ (13)

where the coefficients un and Un, for n ∈ Z, are obtained from

un(t, r) =
1

2π

π∫
−π

u(t, r, ψ)e−jnψdψ (14)

Un(t) =
1

2π

π∫
−π

U(t, ψ)e−jnψdψ. (15)

Each coefficient un(t, r) verifies the following uncoupled PDE:

unt =
ε

r
(runr)r − n2 ε

r2
un + λun (16)

evolving in (t, r) ∈ R
+ × [0, R], with boundary conditions

un(t, R) = Un(t). Thus, we can independently design each Un

to stabilize un; later, (15) can be used to assemble all the Un’s
to find U .

A. Backstepping Transformation

Following [43], our approach to designUn(t) is to seek a trans-
formation to map (16) into the following stable target system:

wnt =
ε

r
(rwnr)r − n2 ε

r2
wn (17)

with boundary conditions wn(t, R) = 0. Define the transforma-
tion as follows:

wn(t, r) = un(t, r)−
r∫

0

Kn(r, ρ)un(t, ρ)dρ (18)

where the kernel Kn(r, ρ) defined on T = {(r, ρ) : 0 ≤ ρ ≤
r ≤ R}. By substituting the transformation into the target sys-
tem and performing differentiation and integration by parts (see
[43]), one arrives at a hyperbolic PDE for the kernel

Knrr +
Knr

r
−Knρρ +

Knρ

ρ
− Kn

ρ2

− n2

(
1

r2
− 1

ρ2

)
Kn =

λ

ε
Kn (19)

with boundary conditions

Kn(r, 0) = 0, Kn(r, r) = − λ

2ε
r. (20)
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B. Kernel Function

While (19) is similar to the kernel PDE found in [43], there
are extra terms which are singular at r, ρ = 0. These terms make
(19) not amenable to previously developed solution methods
for backstepping kernels that can be found in the literature.
However, by using a series of transformations it is possible
to obtain the explicit solution of (19); for brevity, we just
enumerate the transformations and give the final result. First,
let Kn(r, ρ) = Πn(r, ρ)ρ(ρ/r)

|n|. Next, set Πn(r, ρ) = Φ(x)

where x = ((λ/ε)(r2 − ρ2))
1/2, and finally define Ψ(x) =

xΦ(x). By applying the transformations, we end up with

x2Ψ′′ + xΨ′ − (1 + x2)Ψ = 0 (21)

with boundary condition Ψ(0) = −(λ/2ε), which is Bessel’s
modified differential equation of order 1. Solving (21) and
undoing the transformations, we reach an explicit expression
for the kernel

Kn(r, ρ) = −ρ
(ρ
r

)|n| λ
ε

I1

[√
λ
ε (r

2 − ρ2)

]
√

λ
ε (r

2 − ρ2)
(22)

where I1 is the first-order modified Bessel function of the first-
kind. Applying (12) and summing the Fourier series, we can
obtain transformation (18) in the angular space

w =

∞∑
n=−∞

wn(t, r)e
jnθ

=
∞∑

n=−∞
un(t, r)e

jnθ −
∞∑

n=−∞

r∫
0

Kn(r, ρ)un(t, ρ)e
jnθdρ

=u(t, r, θ) +

r∫
0

π∫
−π

K(r, ρ, θ − ψ)u(t, ρ, ψ)dψ dρ (23)

where we have used the Convolution Theorem for Fourier
series; then a formula analog to (12) can be used to obtain
K(r, ρ, θ − ψ) from the Kn’s by summing them. This yields

K(r, ρ, θ−ψ)=−λ

ε
ρ

I1

[√
λ
ε (r

2−ρ2)

]
√

λ
ε (r

2−ρ2)
P (r, ρ, θ−ψ) (24)

where P (r, ρ, θ − ψ) is the Poisson kernel:

P (r, ρ, θ − ψ) =
+∞∑

n=−∞

1

2π

(ρ
r

)|n|
ejn(θ−ψ)

=
1

2π

1− ρ2

r2

1 + ρ2

r2 − 2ρ
r cos(θ − ψ)

. (25)

From (23), we see that u is mapped into w, which verifies

wt =
ε

r
(rwr)r +

ε

r2
wθθ, (26)

w(t, R, θ) = 0. (27)

Note that setting r = R in (23) and applying the boundary
conditions (3) and (27) we obtain the control law U as a
feedback law in the state u.

One goes back from w to the original system u by the inverse
mapping

u(t, r, θ)=w(t, r, θ)+

r∫
0

π∫
−π

L(r, ρ, θ, ψ)w(t, ρ, ψ)dψ dρ (28)

whose kernel (the inverse kernel) is found analogously to K:

L(r, ρ, θ−ψ)=−ρ
λ

ε

J1

[√
λ
ε (r

2−ρ2)

]
√

λ
ε (r

2−ρ2)
P (r, ρ, θ−ψ). (29)

Let now Ū(θ) = ū(r, θ)|r=R be the steady state of the leader
agents obtained from the desired deployment profile ū(r, θ).
Then, we obtain the leaders’ feedback laws as

U(t, θ) = Ū(θ)−A{ū}(θ) +A{u}(t, θ) (30)

where A{·} denotes the following operator acting on u, which
is found by setting r = R in (24):

A{u}(t, θ) = −λ

ε

R∫
0

ρ

I1

[√
λ
ε (R

2 − ρ2)

]
√

λ
ε (R

2 − ρ2)

×

⎛
⎝ π∫

−π

P (R, ρ, θ − ψ)u(t, ρ, ψ)dψ

⎞
⎠ dρ. (31)

The leaders’ control law (30) contains a state feedback part
(the third term) which stabilizes the deployment and an open-
loop part (the first two terms), which guides all the agents
to the target positions and can be pre-computed–prior to
deployment–from ū. Note that (30) implies that the user only
needs to inform the leaders about the desired deployment.

Following a similar procedure, the leaders’ control law for
the height coordinate is:

Z(t, θ) = z̄(R, θ)− μ

R∫
0

ρ
I1

[√
μ(R2 − ρ2)

]
√

μ(R2 − ρ2)

×

⎛
⎝ π∫

−π

P (R, ρ, θ − ψ)(z(t, ρ, ψ)− z̄(ρ, ψ))dψ

⎞
⎠ dρ. (32)

IV. H2 STABILITY

In this section, we investigate the stability of the closed-loop
system. In what follows, let ‖ · ‖L2 , ‖ · ‖H1 , and ‖ · ‖H2 denote,
respectively, the usual L2, H1 and H2 norms on the disk. Since
the domain is two-dimensional, to have continuity of the state
variables an H2 stability result is required [47].

Based on the shape of transformations (23) and (28) we
first formulate a result that states the equivalence of norms of
the original and target variables, thus allowing us to do norm
computations in the simpler target system (26).
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Proposition 1: Let g(r, θ) be related to f(r, θ) as follows:

g(r, θ) = f(r, θ) +

r∫
0

π∫
−π

ρF (r, ρ)P (r, ρ, θ − ψ)f(ρ, ψ) dψ dρ

(33)
where F (r, ρ) ∈ C2(T ). Then ‖g‖L2 ≤ Ĉ0‖f‖L2 , ‖g‖H1 ≤
Ĉ1‖f‖H1 , and ‖g‖H2 ≤ Ĉ2‖f‖H2 , where the constants Ĉi

depend only on R and F (r, ρ).
The proof of Proposition 1 is outlined in the Appendix. We

next prove stability of the target system.
Proposition 2: Consider the system (26), (27) with initial

conditions w0(r, θ) which satisfies w0 ∈ H2 and w0(R, θ) = 0.
Then w ∈ C([0,∞), H2) and the equilibrium w(t, r, θ) ≡ 0 is
exponentially stable in the L2, H1, and H2 norms, i.e., there
exist D0, D1, D2, α0, α1, α2 > 0, such that

‖w(t, ·)‖L2 ≤D0e
−α0t‖w0‖L2 , (34)

‖w(t, ·)‖H1 ≤D1e
−α1t‖w0‖H1 , (35)

‖w(t, ·)‖H2 ≤D2e
−α2t‖w0‖H2 . (36)

Proof: The well-posedness result is standard, see for in-
stance the book by Brezis [47]. For the norm estimates, take
first

V1 =
1

2
‖w(t, ·)‖2L2 =

1

2

R∫
0

π∫
−π

|w(t, r, θ)|2r dθ dr. (37)

Then

V̇1 =

R∫
0

π∫
−π

ww∗
t + w∗wt

2
r dθ dr

= εR

R∫
0

π∫
−π

Re{w∗(rwr)r +
1

r
w∗wθθ} dθ dr

= −εR

R∫
0

π∫
−π

(
|wr|2 +

1

r2
|wθ|2

)
r dθ dr (38)

where w∗ denotes the conjugate of w and εR is the real part
of the complex coefficient ε. To proceed we need Poincare’s
inequality in polar coordinates, whose proof we skip

R∫
0

π∫
−π

|w|2r dθ dr ≤ 4R2

R∫
0

π∫
−π

|wr|2r dθ dr. (39)

Then,

V̇1 ≤ − εR
4R2

R∫
0

π∫
−π

|w|2r dθ dr = −α0V1 (40)

thus reaching the L2 result. Take now

V2 = V1 +
1

2
‖wr(t, ·)‖2L2 +

1

2

∥∥∥wθ

r
(t, ·)

∥∥∥2
L2

(41)

which equivalent to the H1 norm. Then

V̇2= V̇1+

R∫
0

π∫
−π

Re

{
w∗

rwrt+
1

r2
w∗

θwθt

}
r dθ dr

= V̇1 − εR

R∫
0

π∫
−π

∣∣∣∣1r (rwr)r+
1

r2
wθθ

∣∣∣∣
2

r dθ dr

≤−εR

R∫
0

π∫
−π

(
|wr|2+

1

r2
|wθ|2

)
r dθ dr

≤− εR
4R2

V1−
εR
2

R∫
0

π∫
−π

(
|wr|2 +

1

r2
|wθ|2

)
r dθ dr

≤−α1V2. (42)

For the H2 norm estimate, denote s = ε� w =
(ε/r)(rwr)r + (ε/r2)wθθ = wt. The equation verified by
s is st = ε� s with s(t, R, θ) = 0. Taking

V3 = V1 + V2 + ‖s(t, ·)‖2L2 (43)

it is obvious from the previous developments that V̇3 ≤ −α2V3.
Since V3 is equivalent (given the null boundary condition of w)
to the H2 norm, the proposition is proved. �

Combining Propositions 1 and 2 and applying them to u
minus the desired equilibrium profile ū, we obtain the following
theorem stating that the leaders’ feedback law achieves expo-
nential stability of the deployment profile in H2 norm (this
result also holds for z).

Theorem 1: Consider the system (1) and (3) with control law
(30) and initial condition u0(r, θ). Then there exist D and α >
0 such that if u0 ∈ H2 and satisfies the compatibility condition

u0(R, θ) = Ū(θ)−A{ū}(θ) +A{u}(t0, θ) (44)

then u ∈ C([0,∞), H2) and ‖u(t, ·)‖H2 ≤ De−αt‖u0‖H2 .
The H2 stability result guarantees the continuity of the agent

system, in the sense that neighbors in terms of the network
topology remain neighbors in geometric space; this is important
in practice to avoid the agents going out of communications’
range.

V. OBSERVER DESIGN

Feedback law (30) assumes that leaders know all the agents’
positions at all times, which is not realistic. We now design an
observer to estimate these positions using a measurement at the
boundary, specifically, the derivative ur(t, R, θ). We pose the
following observer:

ût(t, r, θ) =
ε

r
(rûr)r+

ε

r2
ûθθ + λû+T (t, R, r, θ), (45)

û(t, R, θ) =U(t, θ)+q10(ur(t, R, θ)−ûr(t, R, θ)) (46)

where T is an output injection operator given by

T (t, R, r, θ)=

π∫
−π

q1(R, r, θ−ψ) (ur(t, R, ψ)−ûr(t, R, ψ)) dψ

(47)
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where q1 is the observer kernel gain, û(t, r, θ) is the estimated
state, and U is the applied control. To find the observer kernel
q1(R, r, θ) and the value q10 that guarantee convergence of û to
u, we introduce the error variable ũ = u− û, which verifies

ũt(t, r, θ) =
ε

r
(rũr)r +

ε

r2
ũθθ + λũ

−
π∫

−π

q1(R, r, θ − ψ)ũr(t, R, ψ)dψ,

ũ(t, R, θ) = −q10ũr(t, R, θ). (48)

Proceeding as in Section III, we use Fourier series expansion
to represent ũ, q1, and ũr(R) with Fourier coefficients ũn,
qn1, ũnr(R), respectively. From the convolution theorem, the
Fourier coefficients of T can be expressed from qn1 as products

Tn(t, R, r) = 2πqn1(R, r)ũnr(t, R). (49)

Consequently, we get a set of uncoupled equations for ũn:

ũnt(t, r) =
ε

r
(rũnr)r (t, r)−

εn2

r2
ũn(t, r) + λũn(t, r)

− 2πqn1(R, r)ũnr(t, R),
ũn(t, R) = −q10ũnr(t, R). (50)

We transform system (50) to a target system w̃n by using the
mapping

ũn(t, r) = w̃n(t, r)−
R∫
r

Qn(r, ρ)w̃n(t, ρ) dρ (51)

where the kernel Qn(r, ρ) is defined on T and the desired target
system verifies

w̃nt(t, r) =
ε

r
(rw̃nr)r −

εn2

r2
w̃n,

w̃n(t, R) = 0. (52)

Analogous to the controller design, we get the observer kernel
equation

Qnrr +
Qnr

r
−Qnρρ +

Qnρ

ρ
− Qnρ

ρ2
− n2

(
1

r2
− 1

ρ2

)
Qn

= −λ

ε
Qn, (53)

Qn(r, r) = Qn(R,R) +
λ(R− r)

2ε
(54)

and the boundary conditions determine the observer gains

εQn(r,R) = 2πqn1, q10 = 0. (55)

Even though (55) has one less boundary condition than (19),
this does not affect the kernel-solving process. Following the
same steps of Section III, we obtain:

q1(R, r, θ) = −λR

I1

[√
λ
ε (R

2 − r2)

]
√

λ
ε (R

2 − r2)
P (R, r, θ). (56)

It is of interest to note that Q is similar to the inverse trans-
formation kernel (29); this is due to the duality between the

observer and control design procedures. Substituting (56) into
(45), we get the observer in explicit form:

ût(t, r, θ) =
ε

r
(rûr)r +

ε

r2
ûθθ + λû

−
π∫

−π

λR

I1

[√
λ
ε (R

2 − r2)

]
√

λ
ε (R

2 − r2)
P (R, r, θ − ψ)ũr(t, R, ψ)dψ,

û(t, R, θ) = U(t, θ). (57)

A. Output Feedback Stability

If we use the observer estimates from (57) in the leaders’
control law (30), we obtain an output feedback controller,
namely

U(t, θ) = Ū(t, θ)−A{ū}(θ) +A{û}(t, θ). (58)

We now analyze the stability of the output-feedback closed-
loop system in the H2 Sobolev space, by studying the aug-
mented system (u, û). These two variables are equivalent to
(û, ũ), which are in turn related to the target variables (ŵ, w̃)
by the following two mappings:

ŵ(t, r, θ)= û(t, r, θ)−
R∫
r

π∫
−π

K(r, ρ, θ, ψ)û(t, ρ, ψ) dψ dρ, (59)

ũ(t, r, θ)= w̃(t, r, θ)−
R∫
r

π∫
−π

Q(r, ρ, θ, ψ)w̃(t, ρ,ψ)dψ dρ. (60)

If we apply (59), (60), we get the (ŵ, w̃) equations:

ŵt(t, r, θ) =
ε

r
(rŵr)r +

ε

r2
ŵθθ

+

π∫
−π

F̄ (R, r, θ, φ)w̃r(R,φ)dφ (61)

w̃t(t, r, θ) =
ε

r
(rw̃r)r +

ε

r2
w̃θθ (62)

ŵ(t, R, θ) = w̃(t, R, θ) = 0 (63)

where a new operator F̄ appears due to the combination of
the controller and observer transformations. This operator is
defined as

F̄ (R, r, θ, φ) = q1(R, r, θ − φ)

−
r∫

0

π∫
−π

K(r, ρ, θ − ψ)q1(R, ρ, ψ − φ) dρ dψ. (64)

While H2 stability of the origin for w̃ follows by Proposition 2,
the stability of the cascade system is slightly more involved. We
obtain the next result.

Proposition 3: Consider the system (61)–(63) with initial
conditions ŵ0(r, θ) and w̃0(r, θ). Then there exist D,α > 0
such that if ŵ0, w̃0 ∈ H2 and ŵ0(R, θ) = 0, w̃0(R, θ) = 0,
then ŵ, w̃ ∈ C([0,∞), H2) and ‖ŵ(t, ·)‖H2 + ‖w̃(t, ·)‖H2 ≤
De−αt(‖ŵ0‖H2 + ‖w̃0‖H2).
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Proof: Due to the presence of w̃r(R) in (61), one needs
the H1 norm of w̃ to deduce the L2 stability of ŵ, so we begin
with the H1 analysis. Take

V1 =
1

2
‖ŵ‖2L2 +

1

2
‖w̃‖2L2 +

1

2
‖ŵr‖2L2

+
1

2

∥∥∥∥ ŵθ

r2

∥∥∥∥
2

L2

+
A1

2
‖w̃r‖2L2 +

A1

2

∥∥∥∥ w̃θ

r2

∥∥∥∥
2

L2

(65)

where V1 is an equivalent definition of ‖ŵ‖H1 + ‖w̃‖H1 . By
operating and integrating by parts, we find

V̇1 = −εR

R∫
0

π∫
−π

(
|w̃r|2 +

1

r2
|w̃θ|2

)
r dθ dr

− εR

R∫
0

π∫
−π

(
|ŵr|2 +

1

r2
|ŵθ|2

)
r dθ dr

−A1εR

R∫
0

π∫
−π

|�w̃|2r dθ dr

− εR

R∫
0

π∫
−π

|�ŵ|2r dθ dr

+Re

⎧⎨
⎩

R∫
0

π∫
−π

(ŵ∗(r, θ)−�ŵ∗(r, θ)) r

×
π∫

−π

F̄ (R, r, θ, φ)w̃r(R,φ) dφ dθ dr

⎫⎬
⎭ (66)

By using the Cauchy–Schwarz and Young inequalities, and
Lemma 8 in the Appendix, we obtain

V̇1 ≤ −εR‖Dw̃‖2L2 − εR‖Dŵ‖2L2 −A1εR‖�w̃‖2L2

− εR‖�ŵ‖2L2

+
1

2γ1

R∫
0

π∫
−π

(
|ŵ|2 +�ŵ|2

)
r dθ dr

+
γ1
2

R∫
0

π∫
−π

∣∣∣∣∣∣
π∫

−π

F̄ (R, r, θ, φ)w̃r(R,φ)dφ

∣∣∣∣∣∣
2

r dθ dr

≤ −εR‖Dw̃‖2L2 − εR‖Dŵ‖2L2 −A1εR‖�w̃‖2L2

− εR‖�ŵ‖2L2 +
1

2γ1

(
‖ŵ‖2L2 + ‖�ŵ‖2L2

)

+ γ1C5

R∫
0

π∫
−π

|w̃r(R, θ)|2 dθ dr (67)

where D denotes the gradient operator, and

γ1 =
1 + 4R2

εR
, A1 =

2C5

ε2R
(1 + 4R2). (68)

On the other hand, given the boundary condition of w̃, we have
the following result:

π∫
−π

|w̃r(R, θ)|2dθ = ‖�w̃‖2L2 − ‖D2w̃‖2L2 (69)

which combined with Poincare’s inequality allows to rewrite
(67) as

V̇1 ≤ − εR
8R2

‖w̃‖2L2 −
(

εR
8R2

− 1

2γ1

)
‖ŵ‖2L2 −

εR
2
‖Dw̃‖2L2

− εR
2
‖Dŵ‖2L2 − (A1εR − γ1C5R) ‖�w̃‖2L2

− γ1C5R‖D2w̃‖2L2 −
(
εR − 1

2γ1

)
‖�ŵ‖2L2

≤ −α3V1. (70)

Take now V2, equivalent to the H2 norm, as

V2 = V1 +
A2

2
‖�w̃‖2L2 +

1

2
‖�ŵ‖2L2 . (71)

By Cauchy–Schwarz’s, Young’s, and Poincare’s inequalities,
we find

V̇2 ≤ V̇1 −A2εR‖D(�w̃)‖2L2 − εR‖D(�ŵ)‖2L2

+
1

2γ2

R∫
0

π∫
−π

|(�ŵ)r|2r dθ dr

+
γ2
2

R∫
0

π∫
−π

∣∣∣∣∣∣
π∫

−π

F̄r(R, r, θ, φ)w̃r(R,φ)dφ

∣∣∣∣∣∣
2

dθ dr

+
1

2γ2

R∫
0

π∫
−π

|�ŵθ|2
1

r
dθ dr

+
γ2
2

R∫
0

π∫
−π

∣∣∣∣∣∣
π∫

−π

F̄θ(R, r, θ, φ)w̃r(R,φ)dφ

∣∣∣∣∣∣
2

dθ dr. (72)

By using Lemma 8, we obtain

V̇2 ≤ − εR
8R2

‖w̃‖2L2 −
(

εR
8R2

− 1

2γ1

)
‖ŵ‖2L2 −

εR
2
‖Dw̃‖2L2

−
(
εR − 1

2γ2

)
‖D(�ŵ)‖2L2 −

εR
2
‖Dŵ‖2L2

−
(
A1εR −

(
γ1C5 + γ2

C6

2

)
R

)
‖�w̃‖2L2

−A2εR‖(�w̃)r‖2L2 −
(
εR − 1

2γ1

)
‖�ŵ‖2L2

−
(
A2εR − γ2

2
(C7 + C8)R

3
)∥∥∥∥�w̃θ

r2

∥∥∥∥
2

L2

≤ −α4V2 (73)

where we now take

γ1 =
1 + 4R2

εR
, A1 =

2

ε2R

(
(1 + 4R2)C5 + C6

)
,

γ2 =
1

εR
, A2 =

R3

ε2R
(C7 + C8).

Here, C5, C6, C7, and C8 follow the definition of Lemma 8.
Thus, the proposition is proved. �
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Since the transformations (59) and (60) are invertible, we
reach the final result by combining Propositions 1 and 3.

Theorem 2: Consider the system (1) and (3), the ob-
server (57) and boundary controller (58) with initial condi-
tions u0(r, θ), û0(r, θ). Then there exist D,α > 0 such that
if u0, û0 ∈ H2 and satisfy the compatibility conditions, i.e.,
(44) is satisfied and û0(R, θ) = u0(R, θ), then u, û ∈ C([0,
∞), H2) and ‖u(t, ·)‖H2 + ‖û(t, ·)‖H2 ≤ De−αt(‖u0‖H2 +
‖û0‖H2).

Similar results hold for the real-valued system z(t, r, θ).

VI. NUMERICAL SIMULATIONS FOR DISCRETIZED

AGENT CONTROL LAWS

A. Discretized Agent Control Laws

To apply the feedback laws to a finite number of agents, we
discretize the PDE model (1) and (2) in space by using the
discretized grid defined in [48], namely

ri = (i− 1

2
)hr, θj = (j − 1)hθ (74)

where hr = R/(M − (1/2)), hθ = 2π/(N − 1), and i =
1, · · · ,M , j = 1, · · · , N . The grid points are half-integer in
the radial direction to avoid the singularity at the disk center,
while the boundary is defined on the grid points. Using a
three-point central difference approximation,2 we obtain, for
i = 2, 3 · · · ,M − 1, j = 1, 2, · · · , N − 1

u̇i,j = ε
ui+1,j − 2ui,j + ui−1,j

h2
r

+
ε

ri

ui+1,j − ui−1,j

2hr

+
ε

r2i

ui,j+1 − 2ui,j + ui,j−1

h2
θ

+ λui,j , (75)

żi,j =
zi+1,j − 2zi,j + zi−1,j

h2
r

+
1

ri

zi+1,j − zi−1,j

2hr

+
1

r2i

zi,j+1 − 2zi,j + zi,j−1

h2
θ

+ μzi,j . (76)

All variables are 2π periodic in θ, which gives ui,1 = ui,N and
zi,1 = zi,N . We set a virtual grid point at the center with index
i = 0. Since r1 = hr/2, the coefficient of u0,j and z0,j can be
eliminated, thus obtaining at i = 1

u̇1,j=2ε
u2,j−u1,j

h2
r

+
ε

r21

u1,j+1−2u1,j+u1,j−1

h2
θ

+λu1,j . (77)

Similar formulas can be obtained for z.
For the leader agents, whose controllers contain the desired

deployment information and state feedback

uM,j = ūM,j +

M−1∑
m=1

N∑
l=1

hrhθam,lKj,m,l(um,l − ūm,l)

+ FM (uM,j − ūM,j), (78)

zM,j = z̄M,j +

M−1∑
m=1

N∑
l=1

hrhθam,lK
z
j,m,l(zm,l − z̄m,l)

+ F z
M (zM,j − z̄M,j) (79)

2A more flexible approach based on multi-indexes can be found in [18],
which increases the possible underlying graph topologies. In this work, we limit
ourselves to three-point central differences for the sake of simplicity, to obtain
a discrete model with a minimal number of neighbors.

where Kj,m,l = FmPj,m,l and Kz
j,m,l = F z

mPj,m,l are the
discretized control kernel for u and z, respectively, with Fm =

−(λ/ε)rm(I1[
√

(λ/ε)(R2 − r2m)]/
√

(λ/ε)(R2 − r2m)),F z
m=

−μrm(I1[
√

μ(R2 − r2m)]/
√

μ(R2 − r2m)), and Pj,m,l = 1/
(2π/(R2 − r2mR2 + r2m − 2Rrm cos(θj − θl)). Here we use
the property of Poisson Kernel to get the last terms of (78) and
(79). The coefficients am,l are determined by the Simpson’s
rules of numerical integration

am,l =
2

9
, {m = 1} ∩ {l = 1, 3, · · · , N − 2};

am,l =
8

9
, {m = 2, 4, · · · ,M − 1} ∩ {l = 1, 3, · · · , N − 2}

∪ {m=3, 5, · · · ,M−2} ∩ {l=2, 4, · · · , N − 1};
am,l =

4

9
, {m = 1} ∩ {l = 2, 4, · · · , N − 1}

∪ {m=3, 5, · · · ,M − 2} ∩ {l=1, 3, · · · , N − 2};
am,l =

16

9
, {m = 2, 4, · · · ,M − 1} ∩ {l = 2, 4, · · · , N − 1}

where M and N must be chosen as odd numbers according to
Simpson’s rules.

The observer can be discretized in a similar manner if output
feedback is employed. In that case, u in (78) and z in (79)
must be replaced by their respective state estimates. The ap-
proximating error due to the discretization is O(h2

r + h2
θ) which

depends on the spatial discretization method [49]. The PDE-
based method is most suitable to analyze large scale systems,
as larger numbers of agents greatly decrease the error. Higher
order (such as five-point central difference) approximations will
reduce the error at the cost of increasing the complexity of both
the communication network and the controller. To avoid this
complication, in our simulations we employ a method based
on Fourier series expansions which greatly reduces the error.
In this way, we calculate the harmonics un which only need
discretization in the radial direction, and then sum a finite
number S of harmonics to recover u

ui,j =

S∑
n=1

unie
jnθj (80)

where S > 0 is a large integer. The error caused by using a
finite number of harmonics is much smaller than the azimuthal
discretization error.

B. Numerical Simulations

A variety of deployment manifolds are simulated to demon-
strate the effectiveness of the feedback controller. We also
show how the agents transition smoothly between different
deployment references. The smoothness is guaranteed by the
H2 closed-loop stability of the system.

The simulation consists on a grid of 79 × 81 agents in 3-D
space with parameters ε = 1, λ = 100, μ = 15, R = 1, and
C = 1, transitioning along a sequence of deployment patterns.
A video of the simulation can be downloaded from the Web
[50]. For the readers’ convenience, we show several snapshots
of the simulation in Figs. 4 and 5.

The deployment profiles are ordered following the sequence
shown in Fig. 2, i.e., from circle, to asteroid, to quadrifolium,
to deltoid, to polar rose(3-petal), to epicycloid(3-petal), and



900 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 4, APRIL 2015

Fig. 4. Agents’ deployment snapshots. The beginning (a) and intermediate (b) stages of the transition from asteroid pattern to quadrifolium. (c) The formation
settles to the quadrifolium pattern. The beginning (d) and intermediate (e) stages of the transition from quadrifolium pattern to deltoid. (f) The formation settles to
deltoid pattern. For each figure, the upper-left corner displays the reference boundary shape and the upper-right corner shows the leaders actuation.

Fig. 5. Agents deployment snapshots, continued from Fig. 4. The beginning (g) and intermediate (h) stages of the transition from deltoid pattern to 3-petal polar
rose. (i) The formation settles to 3-petal polar rose pattern. The beginning (j) and intermediate (k) stages of the transition from 3-petal polar rose pattern to 3-petal
epicycloid. (l) The formation settles to 3-petal epicycloid pattern.

finally to epicycloid(4-petal). To avoid large transients we use
continuous, slowly-varying reference trajectories connecting
consecutive deployment pattern; the transitions are also illus-
trated in the figures.

Figs. 4 and 5 depict four groups of transitions between two
different deployment patterns, where (a–c) correspond to the
transition from asteroid to quadrifolium, (d–f) to the transition
from quadrifolium to deltoid, (g–i) to the transition from deltoid
to 3-petal polar rose, and (j–l) to the transition from 3-petal
polar rose to 3-petal epicycloid. The insets of Figs. 4 and 5
display the reference boundary curves Ū(θ) in (30) that the
leaders should track (on the upper-left corner) and the actual
shapes that the leaders form (on the upper-right corner) to con-

trol the followers, respectively. Since the reference boundary is
also dynamic in time, the upper-left inset in each figure shows
different curves representing different evolution stages.

In general, it can be seen that, at the beginning of each
transition, the reference changes a little, but it leads to a
dramatic change in the boundary formation (actuation). This
is due to the discrepancy between the desired formation and
the actual deployment, with the last two terms of (30) being
nonzero. Since the system behaves as a diffusion process, the
agents closest in the communication layer to the leaders are the
ones to respond first, followed by the next layer, and so on.
Thus, the reference signals propagate from boundary to center,
eventually enabling all agents to reach the desired deployment.
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Fig. 6. Agents tracking error and control effort during the simulation. (a) Tracking error between the actual formation and the reference manifold. (b) Control effort.

Fig. 7. Agents rendezvous at the origin using the output-feedback control law. (a) Tracking error. (b) Control effort (c) Observer error. A semi-log plot is used
for clarity; note the different time scale in (c).

In the intermediate stage, with the reference still varying
gradually, the leaders’ tracking error is still increasing until the
reference stops changing. Then, as the reference is finally kept
constant, the tracking error decreases and at last the agents (and
in particular the leaders) converge to the reference shape (see
(c), (f), (i), and (l) in Figs. 4 and 5).

We plot the time evolution of the L2 norm of the tracking
error between the reference deployment manifold and the actual
formation in Fig. 6(a), which shows sudden increases in error
at transitions and fast convergence of the error to zero when the
reference stops changing. The agents’ tracking error at different
layers, namely r = 0.005, r = 0.5, and r = 0.88, is shown,
as well as the tracking error of the leaders and the average
error for all the agents. The error at the innermost layer is
smallest because changes in reference position are minimal at
r = 0.005. On the other hand, the average error for all agents is
smaller than the leaders’ due to their control role. Fig. 6(b) gives
the control effort exerted by the agents. The average control
effort from all the agents (excluding the leaders) is computed
as ‖(ẋ, ẏ, ż)‖L2 , while for a layer (i = 1, . . . ,M − 1) at r =
(2i− 1)R/(2M − 1) is given by ‖(ẋi, ẏi, żi)‖L2 . The leaders’
effort ‖(xM , yM , zM )‖L2 is different from the followers’ in the
sense that their position is directly controlled. Notice how the
error and control effort vary with the reference trajectory; in
particular, the last reference transitions result in rather smooth
and mild transients, and the corresponding tracking error and
control effort are comparatively small.

To test the output-feedback control, we provide an additional
simulation of a rendezvous scenario at the origin with the
same PDE parameters. The agents start at random, normally
distributed positions, that follow a Gaussian distribution with

zero mean and σ2 = 0.3. The observer’s initial condition is set
as the agents’ actual position plus a Gaussian distributed error,
with zero mean and σ2 = 0.2. Fig. 7(a) shows the L2 norm of
the tracking error, while Fig. 7(b) and (c) depicts, respectively,
the control effort and the observer error. These quantities are
shown for all agents, for the leaders, and for the agents of
three selected layers. It is clear that the observer converges first,
taking about one second, and during this period the trajectory is
oscillatory. After that, the behavior is analogous to the full-state
case and the agents quickly converge to the origin.

VII. CONCLUSION

In this paper, we have introduced a distributed cooperative
deployment framework for multi-agent deployment control in
3-D space on a 2-D lattice neighborhood topology, by using a
PDE-based method.

The agents’ communication graph is directly determined
from the discretization of the spatial derivatives of the PDEs,
resulting in a distributed scheme in which each agent re-
quires only local neighbor-to-neighbor information exchange.
Given practical limitations in communication range and band-
width, this framework is very suitable for large-scale agent
deployment.

The merit of our framework is that it allows the exploitation
of powerful tools from the field of PDE control. We begin by
finding a family of explicit deployment profiles, found from
the PDEs’ equilibrium. Since these are potentially unstable, we
introduce a new class of (also explicit) backstepping boundary
control laws that solve the stabilization problem on a disk
topology (a previously open and challenging problem of PDE
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stabilization). In addition, an observer (whose design is dual
to that of the controller) is formulated, allowing to obtain an
all-explicit output feedback law requiring as sole measurement
the leaders’ neighbor positions. Our paradigm also allows for
smooth transitions between different deployment manifolds by
only adjusting a few terms in the leaders’ control law.

A simulation study shows how the discretized dynamics in-
herit the properties of the continuous PDE model. In particular,
we observe that the agents’ collective dynamics behave as
a diffusion process, with leaders’ motion propagating among
the followers by proximity. Hence, the agents gradually form
the desired deployment manifold from the boundary to the
topological center.

Further research includes the extension of this paradigm to
a movable formation driven by an anchor (fixed agent) in the
topological center. Another possible extension is considering
a communication topology in 3D (a blob of agents instead of
a lattice); in particular, if the agents communicate according
to a sphere topology, the methodology of the paper can be
applied (using Spherical Harmonics instead of Fourier Series),
obtaining similar deployment laws. One intriguing line of
research would be to consider Neumann or Robin boundary
conditions in the PDE model to increase the range of feasible
3-D deployment profiles; this would amount to treating the
leaders as virtual agents. In addition, some practical issues need
to be addressed, for instance how to deal with problems caused
by agents’ faults, and obstacle and collision avoidance.

APPENDIX

TECHNICAL LEMMAS

To prove Proposition 1, we state and prove Lemmas 1–4.
Lemma 1: For n1, n2 > 0, it holds that
π∫

−π

∣∣∣∣∣∣
π∫

−π

P (r, ρ, θ − ψ)f(ρ, ψ)dψ

∣∣∣∣∣∣
2

dθ ≤
π∫

−π

|f(ρ, θ)|2dθ, (81)

π∫
−π

∣∣∣∣∣∣
π∫

−π

P (r, ρ, θ − ψ) cosn1(θ − ψ) sinn2(θ − ψ)

f(ρ, ψ)dψ|2 dθ ≤
π∫

−π

|f(ρ, θ)|2dθ. (82)

Proof: Using Fourier series, and remembering that

P (r, ρ, θ) =
1

2π

n=∞∑
n=−∞

(ρ
r

)|n|
ejnθ, (83)

f(ρ, θ) =

n=∞∑
n=−∞

fn(ρ)e
jnθ (84)

we get
π∫

−π

P (r, ρ, θ − ψ)f(ρ, ψ)dψ

=
1

2π

n=∞∑
n=−∞

m=∞∑
m=−∞

(ρ
r

)|n|
fm(ρ)

π∫
−π

ejn(θ−ψ)ejmψdψ

=

n=∞∑
n=−∞

(ρ
r

)|n|
fn(ρ)e

jnθ. (85)

Here, we have used the orthogonality property of Fourier
series (the same conclusion is reached using the convolution
theorem). Now, by Parseval’s theorem

π∫
−π

∣∣∣∣∣∣
π∫

−π

P (r, ρ, θ − ψ)f(ρ, ψ)dψ

∣∣∣∣∣∣
2

dθ

= 2π

n=∞∑
n=−∞

∣∣∣∣(ρr
)|n|

fn(ρ)

∣∣∣∣
2

≤ 2π

n=∞∑
n=−∞

|fn(ρ)|2 =

π∫
−π

|f(ρ, θ)|2dθ. (86)

Similarly, (82) can be proved by showing that the Fourier coef-
ficients of P (r, ρ, θ) cosn1(θ) sinn2(θ) are less than or equal to
one, which we omit due to limited space. �

Lemma 2: Call P̂ = P (r, ρ, θ − ψ)(ρ/r)n1 cos(θ −
ψ)n2 sin(θ − ψ)n3 for any integer n1, n2, n3 ≥ 0. Then, if

g(r, θ) =

r∫
0

π∫
−π

F̂ (r, ρ, θ)P̂ (r, ρ, θ − ψ)f(ρ, ψ) dψ dρ (87)

where F̂ (r, ρ, θ) ∈ C1(T )× C1([−π, π]) and F̂ (r, 0, θ) = 0,
then

gx =

r∫
0

π∫
−π

(
(F̂r + F̂ρ

ρ

r
+

F̂

r
) cos θ − sin θ

r
F̂θ

)

× P̂ (r, ρ, θ − ψ)f(ρ, ψ) dψ dρ

+

r∫
0

π∫
−π

ρ

r
F̂ P̂ (r, ρ, θ − ψ)

× [cos(θ − ψ)fx(ρ, ψ)− sin(θ − ψ)fy(ρ, ψ)] dψ dρ.
(88)

Proof: In polar coordinates

gx = cos θ
∂g

∂r
− sin θ

r

∂g

∂θ
= cos θF̂ (r, r, θ)f(r, θ)χ(n3)

+

r∫
0

π∫
−π

(
F̂r cos θ−

sin θ

r
F̂θ

)
P̂ (r, ρ, θ−ψ)f(ρ, ψ) dψ dρ

+

r∫
0

π∫
−π

F̂ (r, ρ, θ) cos θP̂r(r, ρ, θ−ψ)f(ρ, ψ) dψ dρ

−
r∫

0

π∫
−π

F̂ (r, ρ, θ)sin θrP̂θ(r, ρ, θ−ψ)f(ρ, ψ) dψ dρ (89)

where χ(n3) = 1 if n3 = 0, and zero otherwise. Noticing that

∂

∂r
P̂ (r, ρ, θ − ψ) = − ρ

r

∂

∂ρ
P̂ (r, ρ, θ − ψ), (90)

∂

∂θ
P̂ (r, ρ, θ − ψ) = − ∂

∂ψ
P̂ (r, ρ, θ − ψ) (91)

and, integrating by parts the last two lines of (89) and expanding
cos θ = cos(θ − ψ + ψ) and sin θ = sin(θ − ψ + ψ) as sums,
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we rewrite the last two lines of (89) as

r∫
0

π∫
−π

F̂ (r, ρ, θ)
ρ

r
cos(θ − ψ)P̂ (r, ρ, θ − ψ)

(
cos(ψ)fr(ρ, ψ)− sinψ

fθ(ρ, ψ)

ρ

)
dψ dρ

−
r∫

0

π∫
−π

F̂ (r, ρ, θ)
ρ

r
sin(θ − ψ)P̂ (r, ρ, θ − ψ)

(
sinψfr(ρ, ψ) + cos(ψ)

fθ(ρ, ψ)

ρ

)
dψ dρ

=

r∫
0

π∫
−π

F̂ (r, ρ, θ)
ρ

r
P̂ (r, ρ, θ − ψ)

[cos(θ − ψ)fx(ρ, ψ)− sin(θ − ψ)fy(ρ, ψ)] dψ dρ. (92)

�
Lemma 3: If

g(r, θ) = f(r, θ) +

r∫
0

π∫
−π

ρF (r, ρ)P (r, ρ, θ − ψ)f(ρ, ψ) dψ dρ

(93)
where F (r, ρ) ∈ C2(T ), then

gxx = fxx

+

r∫
0

π∫
−π

[
H2 cos

2 θ+
H1

r
sin2 θ

]
P (r, ρ, θ−ψ)f(ρ, ψ) dψ dρ

+

r∫
0

π∫
−π

2H1
ρ

r
P (r, ρ, θ − ψ) cos θH3(r, ρ, θ, ψ) dψ dρ

+

r∫
0

π∫
−π

ρF (r, ρ)
ρ2

r2
P (r, ρ, θ − ψ)

[
cos2(θ − ψ)fxx(ρ, ψ)

− 2 sin(θ − ψ) cos(θ − ψ)fxy(ρ, ψ)+sin2(θ−ψ)fyy(ρ, ψ)
]

× dψ dρ (94)

where

H1(r, ρ) = 2F (r, ρ)
ρ

r
+ ρFρ(r, ρ)

ρ

r
+ ρFr(r, ρ),

H2(r, ρ) =

(
∂r + ρr∂ρ +

1

r

)
H1(r, ρ),

H3(r, θ, ψ) = cos(θ − ψ)fx(r, ψ)− sin(θ − ψ)fy(r, ψ).

Proof: The proof is carried out by applying Lemma 2. Let
H4(r, θ, ψ) = sin(θ − ψ)fx(r, ψ) + cos(θ − ψ)fy(r, ψ). Then
we have

gxx =fxx +

π∫
−π

cos2 θH1(r, r)f(r, ψ)P (r, r, θ − ψ) dψ

+

π∫
−π

cos θF (r, r)H3(r, θ, ψ)P (r, r, θ − ψ)r dψ

+ cos2 θ

r∫
0

π∫
−π

(H1(r, ρ))rPf(ρ, ψ) dψ dρ

+
sin2 θ

r

r∫
0

π∫
−π

H1Pf(ρ, ψ) dψ dρ

+ cos θ

r∫
0

π∫
−π

(
ρ2F

r
)rPH3 dψ dρ

+
sin θ

r

r∫
0

π∫
−π

ρ2F (r, ρ)

r
PH4 dψ dρ

+

r∫
0

π∫
−π

(
cos2 θH1f(ρ, ψ)+

cos θρ2

r
F (r, ρ)H3

)
Pr dψ dρ

(95)

−
r∫

0

π∫
−π

(
sin θ cos θH1f(ρ, ψ)

r
+

ρ2 sin θF (r, ρ)H3

r2

)

× Pθ dψ dρ. (96)

Analogous to the derivation process of Lemma 2, we rewrite
(95) as follows integrating by parts:

−cos2 θ

π∫
−π

H1(r, r)P (r, r, θ − ψ)f(r, ψ) dψ

− cos θ

π∫
−π

rF (r, r)P (r, r, θ − ψ)H3(r, ·) dψ

+ cos2 θ

r∫
0

π∫
−π

(ρ
r
H1(r, ρ)

)
ρ
Pf(ρ, ψ) dψ dρ

+ cos2 θ

r∫
0

π∫
−π

ρ

r
H1(r, ρ)Pfρ(ρ, ψ) dψ dρ

+ cos θ

r∫
0

π∫
−π

(
ρ3

r2
F

)
ρ

PH3(ρ, ·) dψ dρ

+ cos θ

r∫
0

π∫
−π

ρ3

r2
FPH3ρ(ρ, ·) dψ dρ (97)

Also, (96) can be rewritten by use of (91) and integration by
parts as

−sin θ cos θr

r∫
0

π∫
−π

H1Pfψ(ρ, ψ) dψ dρ

− sin θ

r

r∫
0

π∫
−π

ρ2

r
F (r, ρ)PH3ψ(ρ, ·) dψ dρ. (98)

Expanding cos θ and sin θ as in the proof of Lemma 2 and
substitute them in H3ρ and H3ψ

cos θ

r∫
0

π∫
−π

ρ3

r2
FP cos(θ − ψ)fxρ(ρ, ψ) dψ dρ

− cos θ

r∫
0

π∫
−π

ρ3

r2
FP sin(θ − ψ)fyρ(ρ, ψ) dψ dρ
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− sin θ

r

r∫
0

π∫
−π

ρ2

r
FP cos(θ − ψ)fxψ(ρ, ψ) dψ dρ

− sin θ

r

r∫
0

π∫
−π

ρ2

r
FP sin(θ − ψ)fyψ(ρ, ψ) dψ dρ

=

r∫
0

π∫
−π

ρ2

r2
FP
[
cos2(θ−ψ)fxx

−2 sin(θ−ψ) cos(θ−ψ)fxy+sin2(θ−ψ)fyy
]
dψ dρ. (99)

Similarly,

cos2 θ

r∫
0

π∫
−π

ρ

r
H1Pfρ(ρ, ψ) dψ dρ

− sin θ cos θ

r

r∫
0

π∫
−π

H1Pfψ(ρ, ψ) dψ dρ

=cos θ

r∫
0

π∫
−π

ρrH1P [cos(θ − ψ)fx(ρ, ψ)

− sin(θ − ψ)fy(ρ, ψ)] dψ dρ. (100)

Substituting in (96) we find the expression of gxx. �
Based on the expression of the derivatives of the transforma-

tion, we now can derive a bound on these derivatives.
Lemma 4: The function

g(r, θ) = f(r, θ) +

r∫
0

π∫
−π

ρF (r, ρ)P (r, ρ, θ − ψ)f(ρ, ψ) dψ dρ

(101)
where F (r, ρ) ∈ C2(T ), satisfies

‖g‖L2 ≤C0‖f‖L2 , (102)
‖gx‖L2 ≤C1‖f‖L2 + C2(‖fx‖L2 + ‖fy‖L2), (103)
‖gxx‖L2 ≤C3‖f‖H1

+ C4‖fxx‖L2

+ C4‖fxy‖L2 + C4‖fyy‖L2 . (104)

Proof: First, since F (r, ρ) ∈ C2(T ), we can bound F :

∀(r, ρ) ∈ T |F (r, ρ)| ≤ M, |Fr(r, ρ)| ≤ Mr,

|Fρ(r, ρ)| ≤ Mρ, |Frr(r, ρ)| ≤ Mrr,

|Frρ(r, ρ)| ≤ Mrρ, |Fρρ(r, ρ)| ≤ Mρρ.

Then

‖g‖2L2 =

R∫
0

π∫
−π

|f(r, θ)

+

r∫
0

π∫
−π

F (r, ρ)P (r, ρ, θ − ψ)f(ρ, ψ) dψρ dρ

∣∣∣∣∣∣
2

r dθ dr

≤ 2‖f‖2L2 + 2M2

R∫
0

r3

2

r∫
0

π∫
−π

∣∣∣∣∣∣
π∫

−π

P (r, ρ, θ − ψ)f(ρ, ψ)dψ

∣∣∣∣∣∣
2

dθρ dρ dr

≤ 2‖f‖2L2 + 2M2

R∫
0

r3

2

r∫
0

π∫
−π

|f(ρ, θ)|2 ρ dθ dρ dr

≤ 2

(
1 +

M2R4

8

)
‖f‖2L2 . (105)

Hence, by setting C0 = 2(1 + (M2R4/8)) we have proven
(102). We can bound the first and second derivatives of g by
using Lemma 1–3, Cauchy–Schwarz inequality, and Hölder’s
inequality in the same fashion. �

We have shown expressions and bounds for gx and gxx.
Analogous results follow for gy , gxy , and gyy . Using these
bounds we reach Proposition 1.

To prove Proposition 3, we state and prove Lemmas 5–8. For
simplicity, let

P̄ (R, ρ, ψ) =

π∫
−π

P (R, ρ, ψ − φ)f(ρ, φ)dφ. (106)

Lemma 5: The following inequalities hold

π∫
−π

∣∣∣∣∣∣
∫ r

0

π∫
−π

P (r, ρ, θ − ψ)P̄ (R, ρ, ψ) dψ dρ

∣∣∣∣∣∣
2

dθ

≤
π∫

−π

r∫
0

|f(ρ, θ)|2 dρ dθ, (107)

π∫
−π

∣∣∣∣∣∣limρ→r

⎡
⎣ π∫
−π

P (r, ρ, θ − ψ)P̄ (R, ρ, ψ)dψ

⎤
⎦
∣∣∣∣∣∣
2

dθ

≤
π∫

−π

|f(r, θ)|2 dθ. (108)

We skip the proof, which mimics that of Lemma 1 by using
the Convolution Theorem and Parseval’s theorem.

Lemma 6: The following inequalities hold

π∫
−π

∣∣∣∣∣∣
π∫

−π

Pθ(R, r, θ−ψ)f(ρ, ψ)dψ

∣∣∣∣∣∣
2

dθ ≤
π∫

−π

|fθ(ρ, θ)|2dθ,

(109)
π∫

−π

∣∣∣∣∣∣
r∫

0

π∫
−π

Pθ(r, ρ, θ − ψ)P̄ (R, ρ, ψ)dψ dρ

∣∣∣∣∣∣
2

dθ

≤
π∫

−π

r∫
0

|fθ(ρ, θ)|2dρ dθ. (110)

Proof: We have that
π∫

−π

(Pθ(R, r, θ − ψ)) f(ρ, ψ)dψ

= −
π∫

−π

(Pψ(R, r, θ − ψ)) f(ρ, ψ)dψ

=

π∫
−π

P (R, r, θ − ψ)fθ(ρ, ψ)dψ. (111)
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Using Lemma 1, we get (109). Integrating by parts twice yields

π∫
−π

Pθ(r, ρ, θ − ψ)

π∫
−π

P (R, ρ, ψ − φ)f(ρ, φ) dφ dψ

=

π∫
−π

P (r, ρ, θ − ψ)

π∫
−π

P (R, ρ, ψ − φ)fθ(ρ, φ) dφ dψ. (112)

Using Lemma 5 the result follows. �
Lemma 7: The following inequalities hold:

π∫
−π

∣∣∣∣∣∣
π∫

−π

Pr(R, r, θ − φ)f(ρ, φ)dφ

∣∣∣∣∣∣
2

dθ

≤
π∫

−π

∣∣∣∣ 1Rfθ(ρ, θ)

∣∣∣∣
2

dθ, (113)

π∫
−π

∣∣∣∣∣∣
r∫

0

π∫
−π

Pr(r, ρ, θ − ψ)P̄ (R, ρ, ψ)dψ dρ

∣∣∣∣∣∣
2

dθ

≤1

r

π∫
−π

r∫
0

|fθ(ρ, θ)|2 dρ dθ. (114)

Lemma 7 is proved by combining Parseval’s Theorem and
integration by parts with the Fourier series

fθ(ρ, θ) =

n=∞∑
n=−∞

jnfn(ρ)e
jnθ. (115)

For simplicity rewrite (64) as

F̄ (R, r, θ, φ)=f1(r)P (R, r, θ−φ)

−
r∫

0

π∫
−π

f2(r, ρ)P (r, ρ, θ−ψ)f1(ρ)P (R, ρ, ψ−φ)dρ dψ (116)

where f1(r) ∈ C2([0, R]) and f2(r, ρ) ∈ C2(T ). Based on
Lemmas 5–7, we obtain the following lemma.

Lemma 8: The following inequalities hold:

π∫
−π

∣∣∣∣∣∣
π∫

−π

F̄ (R, r, θ, φ)w̃r(R,φ)dφ

∣∣∣∣∣∣
2

dθ

≤ C5

π∫
−π

|w̃r(R, θ)|2dθ, (117)

π∫
−π

∣∣∣∣∣∣
π∫

−π

F̄r(R, r, θ, φ)w̃r(R,φ)dφ
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2

dθ

≤ C6

π∫
−π

|w̃r(R, θ)|2dθ + C7

π∫
−π

|w̃rθ(R, θ)|2dθ, (118)

π∫
−π
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∫ π

−π

F̄θ(R, r, θ, φ)w̃r(R,φ)dφ
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2

dθ

≤ C8

π∫
−π

|w̃rθ(R, θ)|2dθ (119)

where the constants Ci depend only on R, f1, and f2.
Proof: We can bound f1, f2 and their derivatives. Then,

from Lemma 5, we find (117). Combining Lemmas 5 and 7, we
get (118) and Lemmas 5 and 6 give (119). �
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