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Robustness of the Tuning Functions Adaptive
Backstepping Design for Linear Systems

Fayçal Ikhouane and Miroslav Krstić

Abstract—In this paper we study robustness of the recently developed
adaptive backstepping design withtuning functions for linear systems.
Under assumptions on unmodeled dynamics and disturbances equal
to those for certainty equivalence schemes, we address—for the first
time—an adaptive schemenot based on the certainty equivalence prin-
ciple. In the process of redesign for robustness we employ only leakage
in the estimator—we do not employ normalization, neither static nor
dynamic. A fundamental difference between the tuning functions design
and the certainty equivalence designs is that the controller in the former
is inherently nonlinear, while in the latter it is nonlinear only in the
parameter estimate. As a result, achievable robustness results for the
tuning functions scheme are not global but regional, with a region of
attraction inversely proportional to the “size” of the unmodeled dynamics.
The tracking error is proportional to the size of the uncertainties.

Index Terms—Adaptive backstepping, leakage, robustness, tuning func-
tions, unmodeled dynamics.

I. INTRODUCTION AND PROBLEM STATEMENT

Standard results on robust adaptive control apply to certainty-
equivalence schemes [2]. Lyapunov-type designs—designs which
incorporate the complete state of the plant, filters, and estimators
into a Lyapunov function—have been in existence since Feuer and
Morse [1] but have only recently become popular in the context of
integrator backstepping [3], [4] (the only other Lyapunov scheme that
has attracted some attention is Morse’s scheme with high-order tuners
[6]). In this paper we study robustness of the adaptive backstepping
design withtuning functionsfor linear systems. This is the first result
available for a Lyapunov-based scheme under general assumptions
used in certainty-equivalence robust adaptive control [2].

Adaptive backstepping has so far spawned two classes of methods.
The better known tuning functions design [4, Secs. 10.2–10.4] is a
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Lyapunov-based method and is of interest because in the absence
of modeling errors, it exhibits the strongest transient performance
properties available in the literature (bothL2 andL1). The lesser
known modular design [4, Secs. 10.6] is of certainty equivalence
type, and, while it inherits some of the advantages of the backstepping
method in the nonadaptive context, its adaptive transient performance
properties are not as strong. Because of the certainty-equivalence
structure, the study of robustness of the modular design follows
the route standard in robust adaptive control [2]. In contrast, the
robustness study for the tuning functions design, undertaken in this
paper, requires a new approach suited for the Lyapunov framework
and applicable to controllers which are truly nonlinear.

In the process of redesign for robustness, we make only one
modification to the original tuning functions design [3]—we add
a switching�-modification to the tuning functions. This modifica-
tion affects both the parameter update law and the actual control
law because the tuning functions controller incorporates the tuning
functions. An important difference from standard robust adaptive
control is that we do not employ update law normalization—neither
dynamic [2] nor static [7]. Normalization is incompatible with (and
even detrimental to) Lyapunov designs because their stability depends
on fast adaptation, even in the ideal case.

The result of our paper is that, for sufficiently small�, the
state of the closed-loop system is uniformly ultimately bounded
when � is improper or has relative degree zero. The region of
attraction is proportional to1=�. When � is strictly proper and
for sufficiently small�, the closed-loop state isglobally uniformly
ultimately bounded. In both cases, the mean square of the tracking
error is proportional to the size of the uncertainties. The reason
for the loss of globality is the nonlinear character of the tuning
functions controller. The loss of globality is the price paid for
achieving improved transient performance properties in the absence
of perturbations [4, Sec. 10.4].

Since the time of the original submission of this paper, the
robustness of adaptive backstepping designs has become a topic of
active study. Liet al. [5] presented a simulation study which indicates
that in the absence of robustification tools, the tuning functions
design possesses a much higher degree of robustness than certainty-
equivalence type designs. Zhang and Ioannou [8]–[10] obtained
several results.

• In [8] they provided a robustification to the tuning functions
design restricted to therelative degree twocase. In [9] they
studied plants of general relative degree but the unmodeled
dynamics were assumed to be strictly proper. Our results are
more general and apply to plants with arbitrary relative degree
and improper unmodeled dynamics.

• In [10] they develop a certainty equivalence design based on
backstepping, similar to our modular design [4, Sec. 10.6]. This
design is compatible with standard robustification tools (pro-
jection, dynamic normalization, etc.); however, as a certainty-
equivalence design, it does not possess the transient performance
properties of the tuning functions design.

This paper is organized as follows. In Section II we present the
design procedure. Section III deals with the stability and asymptotic
performance analysis of the closed-loop system when the transfer
function � is improper. In Sections IV and V we address the case
where� is respectively proper and strictly proper.

A. Problem Statement

The control objective is to asymptotically track a reference signal
yr(t) with the outputy of the plant

y(t) =
B(s)

A(s)
(1 + ��(s))u(t) + d(t) (1)

where the polynomialsA(s) andB(s) are defined as follows:

A(s) = s
n
+ an�1s

n�1
+ � � �+ a1s+ a0 (2)

B(s) = bms
m
+ � � �+ b1s+ b0: (3)

The parametersai and bi are unknown. Without loss of generality,
we assume that� � 0.

Assumption 1.1:The plant is minimum phase, i.e., the polynomial
B(s) is Hurwitz. The plant order(n), relative degree(� = n�m),
and sign of the high-frequency gain(sgn(bm)) are known.

Assumption 1.2:The reference signalyr(t) and its first� deriva-
tives are known and bounded and, in addition,y

(�)
r is piecewise

continuous.
Assumption 1.3:The transfer function� is stable and its relative

degree is no lower than��+ 1. The output disturbanced(t) and its
first derivative are uniformly bounded.

Assumption 1.4:Upper boundsM� and M% of k�k and j%j =

j1=bmj are known, where� = (bm; � � � ; b0; an�1; � � � ; a0)
T is the

unknown parameter vector.

B. Notation

c Generic positive constant independent of�; d; _d and the initial
conditions.

g Generic positive constant independent of�; d; _d and possibly
depending on the initial conditions.

h Generic constant scalar, vector or matrix independent ofd;
_d and the initial conditions, uniformly bounded with respect

to �.
� Generic bounded function of time independent of_d and

the initial conditions, possibly depending ond and �, and
uniformly bounded with respect to�.

II. DESIGN PROCEDURE

The design procedure follows the steps in [4, Sec. 10.2.1]. The
only difference here is that we employ�-modification in the update
law and accordingly modify the control law. We first represent the
plant (1) in the observer canonical form

_x = A0x + (k � a)x1 + bu

y = (1 + ��)x1 + d (4)

where

A0 =

In�1

�k

0 � � � 0

; k = (k1; � � � ; kn)
T

a = (an�1; � � � ; a0)
T
; b = (0(��1)�1; bm; � � � ; b0)

T
: (5)

By filtering u and y with two n-dimensional filters

_� = A0� + eny

_� = A0�+ enu
(6)

(whereen = [0 � � � 0 1]T ), the state estimate is formed as

x̂ = B(A0)�� A(A0)� (7)

whereA(�) and B(�) are polynomial matrices with argumentA0.
Then the estimation error satisfies

" = x � (B(A0)�� A(A0)�)

_" = A0"+ (a� k)(��x1 + d): (8)

The adaptive control law is given in Table I. The only differences
from the controller in [4, p. 432] are the underbraced terms in (20)
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and (23). (Note that these terms propagate through the stabilizing
functions�i.) The switching�-modification is defined as

�� =

0; if k�̂k �M�

�s�; if k�̂k � 2M�

smooth connecting function, otherwise

�% =

0; if k%̂k � M%

�s%; if k%̂k � 2M%

smooth connecting function, otherwise
(9)

for some design constants�s� and �s%. For an example of an
arbitrarily many times differentiable connecting function, please see
[9, eq. (27)] (we only needC��1). For a discussion of the effect of
�s�; �s% > 0 on performance, the reader is referred to [2].

Consider the Lyapunov function candidate

V� =

�

j=1

1

2
z
2
j +

1

dj
"
T
P0" +

jbmj

2

(%� %̂)

2

+
1

2
(� � �̂)

T
�
�1
(�� �̂): (10)

Noting that the derivative of the tracking error is

_z1 = x2 � an�1y � _yr + ��(s+ an�1)x1 + _d+ an�1d (11)

and using (23) and (10), by following a derivation similar to [4] it
is readily shown that

_V� � �c1z
2
1 + z1 (��(s+ an�1)x1 + _d+ an�1d)

�

�

j=2

cjz
2
j �

1

2

�

j=1

1

dj
k"k2

+	
T
" (��x1 + d) �

�

j=2

dj

2

@�j�1

@y

2

z
2
j

�

�

j=2

zj
@�j�1

@y
(��(s+ an�1)x1 + _d+ an�1d)

� �� ~�
T
(~� � �)� �%~%(~%� %) (12)

where we denote

	
T
= 2

�

j=1

1

dj
(a� k)

T
P0: (24)

The terms with uncertainties (underbraced) reduce negativity of the
Lyapunov inequality (12). Our task in the next section is to quantify
the effect of these terms.

III. ROBUSTNESSPROPERTIES WITH� IMPROPER

In this section, we treat the most general case where� is improper,
with a relative degree no smaller than�� + 1. The stability analysis
is carried out by using a similarity transformation to represent (4) as

_x1 = x2 � an�1x1

...

_x� = c
T
b �x� amx1 + bmu

_� = Ab� + bbx1

y = (1 + ��)x1 + d (25)

TABLE I
TUNING FUNCTIONS DESIGN WITH �-MODIFICATION

z1 = y � yr (13)

zi = (A
m
0 �)i+1 � %̂y

(i�1)
r � �i�1 i = 2; � � � ; � (14)

�1 = %̂��1 (15)

��1 = �(c1 + d1)z1 � �2 � �!
T
�̂ (16)

�2 = �b̂mz1 � c2 + d2
@�1

@y

2

z2 + �2 +
@�1

@�̂
��2

(17)

�i = �zi�1 � ci + di
@�i�1

@y

2

zi + �i +
@�i�1

@�̂
��i

�

i�1

j=2

@�j�1

@�̂
�
@�i�1

@y
zj i = 3; � � � ; � (18)

�i =
@�i�1

@y
(�2 + !

T
�̂) +

@�i�1

@�
(A0� + eny)

+

i�1

j=1

@�i�1

@y
(j�1)
r

y
(j)
r + ki A

m
0 � 1

+

m+i�1

j=1

@�i�1

@�j

� (�kj�1 + �j+1) + y
(i�1)
r +

@�i�1

@%̂
_̂% (19)

�1 = (! � %̂( _yr + ��1)e1)z1 � ���̂ (20)

�i = �i�1 �
@�i�1

@y
!zi i = 2; � � � ; � (21)

Adaptive control law:

u = �� � A
m
0 � �+1

+ %̂y
(�)
r (22)

Parameter update laws:

_̂
� = ���

_̂% = �
 sgn(bm)( _yr + ��1)z1 � 
�%%̂
(23)

where �x = (x1; � � � ; x�; �
T )T . The vectorsbb and cb are defined

in [4, eqs. (10.129)–(10.133)] and their exact form is not needed in
our analysis. The matrixAb is a companion matrix associated with
the polynomialB(s), which means that it is Hurwitz. For stability
analysis, we are interested in the deviation~� = � � �r which is
governed by

_~� = Ab
~� + bb~x1; ~�(0) = 0 (26)

where �r is defined as

_�r = Ab�r + bbyr; �r(0) = �(0) (27)

and ~x1 is defined as

~x1 = x1 � yr: (28)

For the� variables we define analogously(~� = � � �r)

_~� = A0~� + enz1; ~�(0) = 0

_�r = A0�r + enyr; �r(0) = �(0):
(29)
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Define the strictly proper and stable transfer functions�1 and�2

and the states�1 and �2 as

�(s+ an�1) =

�

j=0

&1js
j
+�1

� =

��1

j=0

&2js
j
+�2

_�1 = A1�1 + b1� ~x1

�1~x1 = (1; 0; � � � ; 0)�1 = �11

_�2 = A2�2 + b2� ~x1

�2~x1 = (1; 0; � � � ; 0)�2 = �21: (30)

The matricesA1 andA2 are Hurwitz since� is stable. We are now

ready to introduce the augmented Lyapunov functionV

V = V� +
1

k�
~�
T
P0~� +

1

k�
~�
T
Pb~� + q1�

T

1 P1�1 + q2�
T

2 P2�2: (31)

Note thatV is a quadratic functionV = �TP�� of the vector

� = z
T
; "

T
; ~�

T
; ~�

T
; �

T

1 ; �
T

2 ; ~�
T
; ~%

T

: (32)

On the other hand, using (4) and (28) we obtain

~x1 = z1 � ��~x1 � ��yr � d: (33)

With (12), (31), and (33) we get

_V � �
c1

4
z
2

1 + z1(��(s+ an�1)yr + _d+ an�1d)

�
c1

4
z
2

1 + �z1�(s+ an�1)~x1 �
c1

8
z
2

1 �
1

2k�
k~�k

2

+
2

k�
~�P0enz1 �

c1

8
z
2

1 �
1

4k�
k~�k

2
+

2

k�
~�Pbbbz1

�
c1

16
z
2

1 + 2q1b
T

1�P1�1z1 �
q1

8
k�1k

2
�

c1

16
z
2

1

+ 2q2b
T

2�P2�2z1 �
q2

8
k�2k

2
�

1

8

�

j=1

1

dj
k"k

2

+	
T
"(��yr + d)�

1

8

�

j=1

1

dj
k"k

2
+ �	

T
"�~x1

�
1

8k�
k~�k

2
�

2

k�
~�Pbbb(��yr + d)�

1

8k�
k~�k

2

� �
2

k�
~�Pbbb�~x1 �

q1

2
k�1k

2
� 2q1b

T

1�P1�1(��yr + d)

�
q2

2
k�2k

2
� 2q2b

T

2�P2�2(��yr + d)�
q1

4
k�1k

2

� 2�q1b
T

1�P1�1�~x1 �
q2

4
k�2k

2
� 2�q2b

T

2�P2�2�~x1

� ��k~�k(k~�k � k�k) + �s�k~�k
2
� �%~%(~%� %) + �s%~%

2

+

�

j=2

�
dj

4

@�j�1

@y
zj

2

�
@�j�1

@y
zj(��(s+ an�1)yr + _d+ an�1d)

+

�

j=2

�
dj

4

@�j�1

@y
zj

2

� �zj
@�j�1

@y
�(s+ an�1)~x1

�
c1

8
z
2

1 �

�

j=2

cjz
2

j �
1

4

�

j=1

1

dj
k"k

2
�

1

2k�
k~�k

2

�
1

2k�
k~�k

2
�

q1

8
k�1k

2
�

q2

8
k�2k

2
� �s�k~�k

2
� �s%~%

2
: (34)

Thus, if we choosek�; k� ; q1; and q2 as

k� �
16

c1
kP0enk

2
k� �

32

c1
kPbbbk

2

q1 �
c1

27 bT1�P1
2
q2 �

c1

27 bT2�P2
2

(35)

we obtain

_V � ��V + � + �
2
c (�(s+ an�1)~x1)

2
+ (�~x1)

2 (36)

where

� = min
c1

4
; 2c2; . . . ; 2c�;

��1
min

(P0)

4
;
��1
min

(Pb)

2
;

��1
min

(P1)

8
;
��1
min

(P2)

8
;
2
�s%

jbmj
;

2�s�

�min(��1)

� = c(�
2
+ _d

2
+ d

2
+ �s% + �s�):

(37)

From (4) and (30) we obtain

�(s+ an�1)~x1 = hx+ h� + hu+ �11 + �

�~x1 = hx+ �21 + �: (38)

Equations (38) show that the residual terms�(s+an�1)~x1 and�~x1

depend on the coordinatesx and�, while the term��V in (36) does
not contain these coordinates. Thus, we need to expressx and� in
terms of�. Introducing

��m = (�1; � � � ; �m)
T (39)

we obtain from (8)

xj = bm�m+j + h��m+j�1 + h~� + "j + �: (40)

It can be shown [4, p. 345] that whenever the polynomialsB(s) and
K(s) = sn + k1s

n�1 + � � � + kn are coprime, the vector��m can
be written as

��m = h"+ h~� + h~� + �: (41)

Due to Assumption 1.4, a lower bound on the leading coefficient
of B(s) and an upper bound on its other coefficients are known
so that all the roots ofB(s) lie in a known compact setK in the
complex plane. By choosing the roots ofK(s) outsideK, we avoid
cancellations with the polynomialB(s). With (33) and (38) we get

~x1 = z1 � � h~x1 +

�

j=2

hxj + �21 + �: (42)

Combining (40)–(42), we obtain

~x1 = �h�+ h�+ � (43)

for � � 1=2jhj. From (43) and (40) forj = 1 it follows that

�m+1 = �h�m+2;n + h�+ � (44)
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for sufficiently small�. The vector�m+2;n is defined as

�m+2;n = (�m+2; � � � ; �n)
T
: (45)

Using (44) and (22) it follows that

�m+2 = ��
T
m+2;nP (�; d) +Q(�; d) + �: (46)

The quantitiesP andQ are vectors whose components are polyno-
mials in �j andd. From (44), (46), and (22) it follows recursively
that

�m+2;n = F ��m+2;n; �; yr; _yr; � � � ; y
(�)
r ; d (47)

whereF is aC1 function with respect to its arguments. Consider the
function G and the vectorY defined as

G(�m+2;n; Y ) = �m+2;n � F (��m+2;n; Y )

Y = �
T
; yr; _yr; � � � ; y

(�)
r ; d

T
: (48)

Note thatG vanishes along the trajectories of the closed-loop system.
In particular we have

G(0; 0) = 0: (49)

We define the constant matrices

G� =
@G

@�m+2;n
(0; 0)

F� =
@F

@��m+2;n
(0; 0): (50)

The matrixF� (respectively,G�) is computed by first differentiating
the functionF (respectively,G) with respect to the vector�m+2;n,
then putting�m+2;n = 0 andY = 0 in the resulting derivative. Thus
F� andG� do not depend on the initial conditions. Using (48) and
(50) we obtain

G� = I��1 � �F�: (51)

Since all vectorsh in (44) are uniformly bounded with respect to�,
the matrixF� is uniformly bounded with respect to�. Thus, using
the Implicit Function theorem we conclude from (49) and (51) that
for � � 1=2kF�k the vector�m+2;n can be written as aC1 function
of Y in a neighborhoodN1=� of Y = 0. In a similar fashion, we
can argue that�m+2;n is aC1 function of �. We now estimate the
size ofN1=�. From (48) we obtain

@G

@�m+2;n
(�m+2;n; Y )

= I��1 � �F� + �F� � �
@F

@��m+2;n
(�m+2;n; Y ): (52)

Using (48) and (22) it can be shown that

F� �
@F

@��m+2;n
(�m+2;n; Y ) � ck�m+2;n; Y k

m 2 (53)

for some positive integerm1 independent of�. Combining (53) and
(52) we obtain

@G

@�m+2;n
(�m+2;n; Y ) � kI��1 � �F�k � �ck�m+2;n; Y k

m 2

(54)
which is nonzero whenever

k�m+2;n; Y k <
kI� � �F�k

c�
: (55)

Since� � 1=2kF�k we have from (55)

kY k � c=�
1=m 2

: (56)

Thus, we have proved that @G
@�

(�m+2;n; Y ) is nonsingular in

every point of the ball of radiusc=�1=m 2 , which implies thatN1=�

contains a ball of radiusc=�1=m 2 . It follows also that�m+2;n can
be written as aC1 function ofY and� insideN1=� such that

�m+2;n = �(Y;�): (57)

Combining (38), (40), (41), (44), (57), (22), and the fact that�(Y;�)

is continuous in�, it follows that for sufficiently small�, and in
N1=�, we have

juj � ckY k

j�(s+ an�1)~x1j � ckY k

j�~x1j � ckY k: (58)

From (36) and (58) it follows that

_V � �
�

2
V + 2� (59)

in N1=� and for sufficiently small�. To conclude thatV is uniformly
bounded, we need to have

4�

��max(P�)
< c=�

1=m 2 (60)

which can be guaranteed for

kdk1 �
c

�1=m 2
and � � }(k _dk1) (61)

where} is a continuous scalar function verifying

}(x) > 0 and lim
x!1

}(x) = 0: (62)

The boundedness of the vector�m+2;n follows from (57), the
boundedness ofV , and the continuity of�, whenever�m+2;n(0) �

c=�
1=m 2 . The boundedness of the vector� is derived from (41)

and (44). The boundedness of the controlu and the statex follow,
respectively, from (22) and (40). We now focus on the asymptotic
performance of the closed-loop system. Using (34), (58), and the fact
that �� ~�T(~� � �) � 0 and�%~%(~% � %) � 0, we obtain

_V � �
�

2

�

j=1

z
2

j + k"k
2
+ k~�k

2
+ k~�k

2
+ k�1k

2
+ k�2k

2

+ c(�
2
+ _d

2
+ d

2
): (63)

Integrating both sides of (63) and noting thatV is uniformly bounded,
the asymptotic performance of our robust adaptive scheme is

t+T

t

�

j=1

z
2

j + k"k
2
+ k~�k

2
+ k~�k

2
+ k�1k

2
+ k�2k

2
dt

� g + c

t+T

t

(�
2
+ _d

2
+ d

2
) dt 8t; T � 0: (64)

We now state the main result of this section.
Theorem 3.1: Consider the plant (1) subject to Assumptions

1.1–1.4 and the adaptive controller composed of the control law (22)
and the parameter update law (23). There exist positive constants
�
?
; g; and c independent of�; _d; and d, and a positive integer

m1 independent of� such that fork�(0); �(0)k � c=�
1=m 2 ,

for kyrk1 + k _yrk1 + � � � + ky
(�)
r k1 � c=�

1=m 2 , for kdk1 �
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c=�1=m 2 and for any0 � � < �? we have

1) All the signals of the closed loop are bounded.
2) The tracking error is proportional to the size of perturbations

t+T

t

(y(t)� yr(t))
2

dt

� g + c
t+T

t

(�
2

+ _d(t)
2

+ d(t)
2

)dt: (65)

We point out thatc andg are positive constants independent of�;

d; and _d; only g depends on initial conditions.

IV. ROBUSTNESSPROPERTIES WITH� PROPER

In this section we suppose that� is proper, that is, its relative
degree is zero. The stability result is qualitatively the same as for the
case� improper. Our aim in this section is to give a better estimate
of the region of attraction, the allowable disturbances, and reference
signals. Similarly to Section III we introduce an augmented Lyapunov
function as in (31). Define the state�3 as

_�3 = A3�3 + b3z1

1

1 + ��
�

1

1 + �&20
z1 = (1; 0; � � � ; 0)�3 = �31: (66)

Note that the proper transfer function1=(1 + ��) is stable and
the term1=(1 + �&20) is well defined for sufficiently small�. We
introduce the final Lyapunov function for our closed-loop system as

V = V� +
1

k�
~�P0~� +

1

k�
~�Pb~� + q1�

T

1 P1�1

+ q2�
T

2 P2�2 + q3�
T

3 P3�3: (67)

Observe thatV is a quadratic functionV = �TP�� of the vector

� = z
T
; "

T
; ~�

T
; ~�

T
; �

T

1 ; �
T

2 ; �
T

3 ; ~%; ~�
T T

: (68)

Similarly to Section III we obtain

_V � ��V + � + �
2

c((�(s+ an�1)~x1)
2

+ (�~x1)
2

): (69)

From (30), (33), and noting that&1j = 0 for j � 2 and &2j = 0 for
j � 1 it follows that

�(s+ an�1)~x1 = �11 + &10(z1 � ��21 � ��yr � d) + &11 _x1r

(70)

�~x1 = �21 + &20(z1 � ��21 � ��yr � d):

Using (4), (5), (30), and (40) forj = 1 we obtain

_x1r = h"+ �h�11 + h��m+2 + h� + hz1 + �: (71)

From (71) it can be seen that the term�(s+an�1)~x1 in (70) contains
the state��m+2. Thus, this term cannot be directly cancelled by��V
in (69). The aim of the subsequent analysis is to express this state in
terms of the vector�. From (4) and (66) we have

~x1 =
1

1 + �&20
z1 + �31 + �: (72)

With (72) and (40) forj = 1 we get

�m+1 = h~� + h"+ hz1 + h~� + h�31 + �: (73)

Using (22) we obtain

�m+2 = z2 + �1 + h��m: (74)

Combining (74), (73), and (41) it follows that

j�m+1j � c(k�k+ Yr + kdk1)

j�m+2j � c(k�k+ Yr + kdk1)
3 (75)

where

Yr = kyrk1 + k _yrk1: (76)

From (71) and (75) we obtain

j _x1rj � c(k�k+ Yr + kdk1)
3

: (77)

With (77), (69), and (70) we get

_V � �
�

2
V + 2� (78)

for

k�k �
c
p
�
; Yr �

c
p
�
; kdk1 �

c
p
�
: (79)

To conclude thatV is uniformly bounded, we need to have

4�

��max(P�)
<

c
p
�

(80)

which can be guaranteed for

� � }(k _dk1) (81)

where} is a continuous scalar function verifying

}(x) > 0 and lim
x!1

}(x) = 0: (82)

The boundedness of the controlu and the vectors� andx is shown
as in [4, Sec. 10.2.2]. The asymptotic performance is as in (64). We
now state the main result of this section

Theorem 4.1: Consider the plant (1) subject to Assumptions
1.1–1.4 and the adaptive controller composed of the control law
(22) and the parameter update law (23). If� is proper, then
there exist positive constants<�?; c; and g independent of�;
d; and _d such that fork�(0)k � c=

p
�, for kdk1 � c=

p
�, for

kyrk1 + k _yrk1 � c=
p
� and for any0 � � < �?, we have the

following.

1) All the signals of the closed loop are bounded.
2) The tracking error is proportional to the size of perturbations

t+T

t

(y(t)� yr(t))
2

dt

� g + c
t+T

t

(�
2

+ _d(t)
2

+ d(t)
2

)dt: (83)

V. ROBUSTNESSPROPERTIES WITH� STRICTLY PROPER

In this section we suppose that the transfer function� is strictly
proper. The Lyapunov functionV for the closed-loop system is
defined as in (31). The derivative_V is computed as in (25). Using
(30) and noting that&1j = 0 for j � 1 and &2j = 0 for j � 0,
we obtain

�(s+ an�1)~x1 = &10(z1 � ��21 � ��yr � d) + �11

�~x1 = �21:
(84)

From (84) and (36) it follows that

_V � �
�

2
V + 2� (85)

for sufficiently small�. From (85) we conclude thatV is globally
uniformly bounded. The boundedness of the vectors� and x and
the controlu can be shown as in [4, Sec. 10.2.2]. The asymptotic
performance is as in (64). We now state the main result of this section.
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Theorem 5.1:Consider the plant (1) subject to Assumptions
1.1–1.4 and the adaptive controller composed of the control law
(22) and the parameter update law (23). If� is strictly proper, then
there exist positive constants�?; c; andg independent of�; d; and
_d such that for every0 � � < �? we have the following.

1) All the signals of the closed loop areglobally bounded.
2) The tracking error is proportional to the size of perturbations

t+T

t

(y(t)� yr(t))
2
dt � g + c

t+T

t

(�
2
+ _d(t)

2
+ d(t)

2
)dt:

(86)
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Correction to “Local -Stability and Local Small
Gain Theorem for Discrete-Time Systems”

Henri Bourl̀es

I. INTRODUCTION

Section VI of the above-mentioned paper1 contains an error. The
following system�d is considered:

y(t+ 1) = f(y(t� h); � � � ; y(t� 1); y(t)) + u(t) (1)

where y(t) 2 Rq and u(t) 2 Rq. The statex(t) is defined by
x(t) = (y(t � h); � � � ; y(t � 1); y(t)) 2 Rn with n = q(h + 1).
The functionf is assumed to satisfyf(0) = 0 so that zero is an
equilibrium point for the unforced system associated with�d (and
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obtained foru = 0). Moreover, it is assumed thatf is continuous in
a neighborhoodU of the zero inRn and satisfies2

sup
x2U�f0g

jf(x)jp

jxjp
< 1: (2)

The following are proven.1

1) �d is locally lp-reachable (and globallylp-reachable ifU =

Rn; see Proposition 6 in the above-mentioned paper1).
2) The input–output operator associated with�d is locally lp-

stable (and globallylp-stable if U = Rn; see Proposition
71).

3) Consider more generally a nonlinear time-invariant system
� such that zero is an equilibrium point for the associated
unforced system. If� is locally (respectively, globally)lp-
reachable, locally (respectively, globally)lp-observable, and
if the associated input–output operator is locally (respectively,
globally) lp-observable, then zero is a locally (respectively,
globally) asymptotically stable equilibrium point for the un-
forced system (see Proposition 41).

4) �d is globally lp-observable (see Proposition 61).
5) zero is a locally (globally ifU = Rn) asymptotically stable

equilibrium point for the unforced system associated with�d

(see Proposition 81).

Remark 1: From the above list, 3) has been established indepen-
dently in [2] in the continuous-time case; see, also, [1, Th. 2]. In the
global continuous-time case, this result was established in [3].

The point is that 4) is erroneous, as shown by the following linear
example:

y(t+ 1) = Ay(t) +By(t� 1) + u(t): (3)

In the linear case, indeed,lp-observability is equivalent to the usual
observability (see Proposition 3 in the above-mentioned paper1). It
is easy to verify that (3) is not necessarily observable if the matrix
A is singular.

In what follows, it is proved that

i) 3) can be improved, replacinglp-observability by a novel
notion calledlp-constructibility. In the linear case, this notion
is equivalent to the usual constructibility;

ii) 4) must be replaced by the following proposition:�d is
globally lp-constructible;

iii) and therefore, 5) is true.

II. lp-CONSTRUCTIBILITY AND ITS USE

Consider the time-invariant nonlinear system� defined by

x(t+ 1) = f(x(t); u(t))

y(t) = g(x(t); u(t)); x(t) 2 R
n
; u(t) 2 R

m
; y(t) 2 R

q

(4)

wheref andg are continuous and satisfyf(0; 0) = 0; g(0; 0) = 0.
Let us denote as�(t; t0; x0; u) the statex(t) satisfying (4) with
x(t0) = x0.

2In everything that follows, the notation and the definitions are those of the
above-mentioned paper.1
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