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Lyapunov-based method and is of interest because in the absembere the polynomialsi(s) and B(s) are defined as follows:
of modeling errors, it exhibits the strongest transient performance et
properties available in the literature (both and £..). The lesser Als) ="+ an_1s"" +- - +ars+ao @
known modular design [4, Secs. 10.6] is of certainty equivalence B(s) =bms™ 4+ bis + bo. (3)
type, and, while it inherits some of the advantages of the backsteppin i )
method in the nonadaptive context, its adaptive transient performal:,—(,tie parameters; andb; are unknown. Without loss of generality,
properties are not as strong. Because of the certainty-equivaleche assume thag > 0. . . .
structure, the study of robustness of the modular design foIIowsAss_umpt'or_1 1.1:The plant is minimum _phase, i.e., the polynomial
the route standard in robust adaptive control [2]. In contrast, t (s) is Hurwitz. The plant ordetn), relative degregy = n —m),
robustness study for the tuning functions design, undertaken in tﬁf%d sign Of_ the high-frequency ga{_sgn(bm)) are_knqwn. .
paper, requires a new approach suited for the Lyapunov framewo.rKAssumptlon 1.2:The reference s'gnaj""(t) a.n.d 't? f.'rSt’). derlvla-
and applicable to controllers which are truly nonlinear. tives are known and bounded and, in additioft,” is piecewise
In the process of redesign for robustness, we make only ofgntinuous. S ) )
modification to the original tuning functions design [3]—we add Assumptlon 1.3:The transfer functiom\ is §tab|e and its rela.tlve
a switchings-modification to the tuning functions. This modifica-d€gree is no lower tharp + 1. The output disturbancé(#) and its
tion affects both the parameter update law and the actual contft derivative are uniformly bounded.
law because the tuning functions controller incorporates the tuning/\SSUMPtion 1.4:Upper boundsiy and M, of [|¢|] a”ﬁ lo| =
functions. An important difference from standard robust adaptivé/?| are known, where¢ = (b, .-+ bo. an—1,---.a0)" is the
control is that we do not employ update law normalization—neith&1known parameter vector.
dynamic [2] nor static [7]. Normalization is incompatible with (and
even detrimental to) Lyapunov designs because their stability depeBdsNotation

on fast adaptation, even in the ideal case. ¢ Generic positive constant independentof, d and the initial
The result of our paper is that, for sufficiently small the conditions.

state of the closed-loop system is uniformly ultimately bounded ;  Generic positive constant independenjofi, d and possibly

when A is improper or has relative degree zero. The region of depending on the initial conditions.

attraction is proportional ta/u. When A is strictly proper and 1, Generic constant scalar, vector or matrix independent, of

for sufficiently smallu, the closed-loop state iglobally uniformly d and the initial conditions, uniformly bounded with respect

ultimately bounded. In both cases, the mean square of the tracking to 4.

error is proportional to the size of the uncertainties. The reasons  Generic bounded function of time independent bfand
for the loss of globality is the nonlinear character of the tuning the initial conditions, possibly depending @hand ;;, and
functions controller. The loss of globality is the price paid for uniformly bounded with respect tp.

achieving improved transient performance properties in the absence
of perturbations [4, Sec. 10.4].

Since the time of the original submission of this paper, the ) )
robustness of adaptive backstepping designs has become a topic '€ design procedure follows the steps in [4, Sec. 10.2.1]. The
active study. Liet al.[5] presented a simulation study which indicate@nly difference here is that we employmodification in the update
that in the absence of robustification tools, the tuning functioddW and accordingly modify the control law. We first represent the
design possesses a much higher degree of robustness than certaf@jt (1) in the observer canonical form
zg\lljglrgze?;:mg?e designs. Zhang and loannou [8]-[10] obtained & = Aoz + (k — a)ar + bu

Il. DESIGN PROCEDURE

< In [8] they provided a robustification to the tuning functions y=+pd)a +d “)
design restricted to theelative degree twccase. In [9] they \where
studied plants of general relative degree but the unmodeled 7
dynamics were assumed to be strictly proper. Our results are nol T
Ao = | -k ; k= (ki kn)

more general and apply to plants with arbitrary relative degree

and improper unmodeled dynamics. - T
« In [10] they develop a certainty equivalence design based on @ = (an—1,-~,a0)", b= (0¢—1)x1:bm, "" bo)".  (5)

backstepping, similar to our modular design [4, Sec. 10.6]. This _. . . . . )

design is compatible with standard robustification tools (progy filtering u andy with two n-dimensional filters

jection, dynamic normalization, etc.); however, as a certainty- 1= Ao+ ey

equivalence design, it does not possess the transient performance 5= AN / (6)
properties of the tuning functions design. = AoA +enu
This paper is organized as follows. In Section Il we present thgheree,, = [0 --- 0 1]7), the state estimate is formed as
design procedure. Section Il deals with the stability and asymptotic
performance analysis of the closed-loop system when the transfer &= B(Ao)A — A(Ao)y (7)

function A is improper. In Sections IV and V we address the case . . .
. ; . Where A(-) and B(-) are polynomial matrices with argument;.
where A is respectively proper and strictly proper.

Then the estimation error satisfies
e=x— (B(Ao)X — A(Ao)n)
£= Aoz + (a — k)(pAz + d). (8)

A. Problem Statement

The control objective is to asymptotically track a reference signal
y-(t) with the outputy of the plant
_ B

ot = SR+ A () +d() @)

The adaptive control law is given in Table I. The only differences
from the controller in [4, p. 432] are the underbraced terms in (20)
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and (23). (Note that these terms propagate through the stabilizing TABLE |
functions«;.) The switchings-modification is defined as TUNING FUNCTIONS DESIGN WITH ¢ -MODIFICATION
0, if 191 < M, H=y—u 13)
g9 = { Oy, if ||6]] > 2My L= (AT o (i=1) o9 ... 14
smooth connecting function,  otherwise 2= (AT Vi — 2w it i=2mp (A4
0, if flal] < M, _ = 15
00 = Oue itlloll > 20, (9 =M (15)
smooth connecting function,  otherwise tm=—(a+d)n—&—-o 0 (16)
- Jda
for some design constants;y and o,. For an example of an ar = bz — |2 +d2< 0;)
arbitrarily many times differentiable connecting function, please see ’
[9, eq. (27)] (we only need” ™). For a discussion of the effect of a7
70,05, > 0 on performance, the reader is referred to [2]. o a1 ) i1
Consider the Lyapunov function candidate i =—zior— |Gt ds dy st fi+ —=—TIm
by 2 da da
. 1, 1 p. b, 2 — ol p gt i=3. ... 18
Vp—zl<§4]+ 1 Poc)+w(g—g) ]:22 By dy 7 3, P (18)
o .
1 P R 5 — dai—q (6o + - )'1‘(73) " A1 (Ao + )
+50 =60 (E - 6). (10) Bi = 8y Lt w oy (Aot + ey
3 a m—+ti—1 8
Noting that the derivative of the tracking error is + Z Gzl G) g (ATN), + Z O” !
7 a r(] 1)
Jj=
i1 = a0 — n— _'.r Als n—1)T (j ln— d 11 (1— 7
1= 22 = an—1y = §r + pA(s + an—1)r +d + an—y (11) X(—]x'j)\1+)\j+l)+<y1 D"'OC(;Ql)Q )
and using (23) and (10), by following a derivation similar to [4] it
is readily shown that o _ A
: 1y W 71 = (w—0(gr +@1)e1)z1 — oob (20)
~—~
T 2?4 (A s Vs v
Vo, £ —crzt + 21 (A(s + fl‘nfl);brl +d+an—1d) I 8%_1 R 1)
p dy
- ;ZLt]vz] -5 Z || II* Adaptive control law: B
& d Jai_1q 2 w=ar = (‘4gl>\)/+l + oy " (22)
+ 0" (pAw) +d) -2 <L) PH :
¢ (pAn ; 9 dy i Parameter update laws:
i : QJ l(A(b—i—a l)‘1:14-(14-a —1d) é:rp (23)
— 0= —ysgn(bm) (e +a1)51 — 70,0
. . g
—099 (6 —6) — ,0(d — 0) (12)
where we denote wherez = (x1,---,2,,(7)T. The vectorsh, and ¢, are defined

in [4, egs. (10.129)—(10.133)] and their exact form is not needed in
1 ’ our analysis. The matri¥l, is a companion matrix associated with
= QZ df(a - k) Po. (24)  the polynomialB(s), which means that it is Hurwitz. For stability
=1 analysis, we are interested in the deviatibn= ¢ — ¢, which is

. . . %overned by
The terms with uncertainties (underbraced) reduce negativity of the

Lyapunov inequality (12). Our task in the next section is to quantify L - ~
the effect of these terms. (=ApC+bpar, ((0)=0 (26)

where ¢, is defined as
IIl. ROBUSTNESSPROPERTIES WITHA IMPROPER

In this section, we treat the most general case whergimproper, Cr = ApCr + oy, ¢r(0) = ¢(0) @)
with a relative degree no smaller tharp + 1. The stability analysis

is carried out by using a similarity transformation to represent (4) &d 71 is defined as
B = T — 121 1 = X1 — Yr. (28)

For then variables we define analogously = 7 — 7..)
. 1 -
Tp =0Ch T — amx1 + bnu L - =
(= Ay + by 7= Ao+ enzi, 1(0)=0

) (29)
y= (1 + HA)-I'l +d (25) Nr = 4407]1‘ + enyr, 77r(0) = 77(0)
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Define the strictly proper and stable transfer functidxs and A»
and the states;, andv, as

P
= E qys’ +Ar
j=0

As+ an—1)

p—1
A=) o + A,
7=0
vy = A + b
Ay = (1,0, >0)V1 =1
o = Aovo + b2, T
Azi’l :(1‘0./"',0)11221121. (30)

The matricesds and A» are Hurwitz since\ is stable. We are now
ready to introduce the augmented Lyapunov funcfion

V=V,+ } —n Pm]—i— —C PbC—l—(p v, P1 v —|—q71/2 Povs.

e (31)

Note thatV is a quadratic functiod” = " P, v of the vector

A A A A

X = (Z 2,1 '/C g 31/;'%9/[3@)7" (32)
On the other hand, using (4) and (28) we obtain
T = z1 — pAF — pAy, —d. (33)

With (12), (31), and (33) we get
v < —%:f + 21 (A5 + an—1)y- + d+ tn—1d)

c . c 1, .
- 114% + 2 A(s + an—1)F — g]lf - %HTIH2
2 . 1 s 1 - 2 -
+ S iPyenz — —2% — 7”(”2 + *CPbbbh
ky] 8 / , ;
—~1+2q1b1uP1V171 - || 1|| __"%

T 16

+ 2q2b%;P2V221 - %”V"”

o = g E d—]_||5||2
=
v I1G 1, o
4+ U e(pAy, +d) — g E d—||5|| 4+ pP =AZy

1 4,
- —I<I” - <Phbb<my, +d)— ||<||
8k¢

2 - .

- //,k—CPbbbA,rl — 5||V1||‘ — 2101, Py (pAy, +d)
¢

= Llall® - 20085, Pova(uidy, + d) = Ll

— 2uq: I)TVP1 v Ar — i—2||yg||2 — Q/I,qgl);VPQZIQA,%1

—aoll6lICIEN = 161) + oeollf)* = 008(8 = o) + 74p8”

£ (45

_ 80/]713101&(-5‘1' (l‘nfl)yr + d+ (lnld)>
dy
P ) . 2
+ _d; (O zj ) =z da,- SA(s+ an—1)i
‘ 4\ 9y y
=2
2 d
o p 1 Ll
B C,J’Zj' ” I - 2% o lll®
j=2 J L !

q2 Y o
I” - gllvzll2 — aullf)|* = 7.,0°. (34)

1 z02 q1
s I = oy
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Thus, if we choosé:,., k¢, ¢1, andg: as

16 32
ky > —[Poen|*ke > == Pobs|)*
(@] [&]
& C1 (35)
7 < — sq2 < — 5
27|b{, Py 27|63, P
we obtain
Vv < —aV +j3+ ;zzc((A(s + a,n_l);il)z + (A;il)z) (36)
where
. —1 1
o = min 6—1, 2¢a,...,2¢,, Amin([)o) /\mm([)h),
4 4 2
)\mlln (Pl) Amln(PZ) 270"‘"@ 2030 (37)
8 ’ 8 |bm| ,Amin('r_l)
3= c(,u2 +d2 4+ d 4 o+ 050).

From (4) and (30) we obtain

A(s+an—1)1 =he+h(+ hu+ri1 + 5
A,’;,'l = hx + 12031 + K. (38)

Equations (38) show that the residual tertass + a,,—1 )1 and Az

depend on the coordinatesand A, while the term—a/V" in (36) does

not contain these coordinates. Thus, we need to expressl .\ in

terms of y. Introducing

b /\Tll )T

N = (Aq, -~ (39)

we obtain from (8)

T =bmAmas + hAmaj—1 + hij 4+ 25 + K. (40)
It can be shown [4, p. 345] that whenever the polynomi{s) and
K(s) = s" + kis""* 4+ ... + k, are coprime, the vectok,, can

be written as

Ao = he + hij + hC 4 5. (41)

Due to Assumption 1.4, a lower bound on the leading coefficient
of B(s) and an upper bound on its other coefficients are known

so that all the roots of3(s) lie in a known compact set in the
complex plane. By choosing the roots &% s) outsideX, we avoid
cancellations with the polynomidB(s). With (33) and (38) we get

P
=z - <h§71 + thj + 1/21> + K. (42)
=2
Combining (40)—(42), we obtain
1 = phA+hx+r (43)

for u < 1/2|h|. From (43) and (40) foj = 1 it follows that

Amt1 = pthAmgon + Ax + K (44)
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for sufficiently smalli. The vector\,,, 12 .. is defined as Sincep < 1/2||Fy|| we have from (55)
Atz = Az, A) (45) V]| < efp/ ™20 (56)
Using (44) and (22) it follows that Thus, we have proved tha{;%()\mﬂ,n,}’) is nonsingular in
Az = AL P d) + Qo d) + 5. (46) ©very point of the ball of radius/p:' /™%, which implies that, ,,,

contains a ball of radius/;'/™12” . It follows also that\,, 2., can
The quantitiesP and () are vectors whose components are polyndse written as aC'" function of Y and u inside IV, ;,, such that
mials in x; andd. From (44), (46), and (22) it follows recursively

that Amazn =AY, p). (57)
' ) Combining (38), (40), (41), (44), (57), (22), and the fact that" ;1)
Amizn = F (A mt2.n0 Xo Urs Gy 4" o d) (47) is continuous iny, it follows that for sufficiently smallz, and in
Niju, We have
whereF is aC' function with respect to its arguments. Consider the

function G and the vecto®” defined as lu] < Y]
] ) A(s + an_1)i | < el|Y])
G(A‘m-‘,—Z,an) = >\m+2,n - F(#AWL-&-ZJ“)T) |A:l"1| S Al (58)
Y= (XT: Yrs yra Tty ys'p)ad) . (48)
From (36) and (58) it follows that
Note thatGG vanishes along the trajectories of the closed-loop system. ] o
In particular we have V< —§V + 23 (59)
G(0,0) = 0. (49) in Ny, and for sufficiently small:. To conclude that” is uniformly
. . bounded, we need to have
We define the constant matrices
oG 4%'—; 1/mq2°
=—— (0, —<c 60
G/\ a>\m+2.,n (0 0) a’\lllaX(P‘() (/lu ( )
oF .
= ———(0,0). (50)  which can be guaranteed for
0/"/\777.-‘,-2,17,
e .
The matrixFy, (respectively(3,) is computed by first differentiating ldllee < e and < p(]ld|l) (61)
the functionF" (respectively (') with respect to the vectoX,,.4+2.y., ) . ) o
then putting\,,.42,, = 0 andY” = 0 in the resulting derivative. Thus where o is a continuous scalar function verifying
F\ and G, do not depend on the initial conditions. Using (48) and .
(50) we obtain p(x) >0 and 1151;0 p(x) = 0. (62)
Gr=1, 1 — puF\. (51) The boundedness of the vector.i2,. follows from (57), the

boundedness df’, and the continuity of\, whenever\,, 2 . (0) <
Since all vectors: in (44) are uniformly bounded with respect o C/#l/'"lz”, The boundedness of the vectdris derived from (41)
the matrix £ is uniformly bounded with respect to. Thus, using and (44). The boundedness of the controand the state: follow,
the Implicit Function theorem we conclude from (49) and (51) thakspectively, from (22) and (40). We now focus on the asymptotic

for 4 < 1/2||Fx|| the vector\s+2,» can be written as & function  performance of the closed-loop system. Using (34), (58), and the fact
of Y in a neighborhoodV,,, of ¥ = 0. In a similar fashion, we tnat 4,4 (4 — ¢) > 0 ando,5(3 — o) > 0, we obtain

can argue thah,,+2, is aC* function of z. We now estimate the - o T
size of Ny,,. From (48) we obtain

oG
a)\m+2,n

P
. o . o ..
V-3 (Z 22 el 4+ 171+ 1CH2 + o 1 + ||u2||2>
A2, Y) N
e, +oe(p? + d* + a3, 63)
781? A Y 52
D Amazn (Amt2n. Y. (52) Integrating both sides of (63) and noting thais uniformly bounded,
the asymptotic performance of our robust adaptive scheme is

=1, —pF\x+puFyx—p

Using (48) and (22) it can be shown that

t+T P
oF , 127 / (ZZ“" el + 17+ 117 + [l 1 + ||u2||2> dt
Py — ————— (A2, V)| < el|Amtzn, Y| 53 7 >
7= OV S el ) &
rt4-1
for some positive integet.; independent op. Combining (53) and <g+ c/ (u> +d> +d*ydt v, T > 0. (64)
(52) we obtain t
LYe Jo We now state the main result of this section.
HW(AMQ,MY)H > L1 = pBx|| = pel Atz n, Y™ Theorem 3.1: Consider the plant (1) subject to Assumptions
(54) 1.1-1.4 and the adaptive controller composed of the control law (22)
which is nonzero whenever and the parameter update law _(23). There exist positive constants
1 u*, g, and ¢ independent ofu, d, and d, and a positive integer
gz, Y| < <||Iﬂ _/"Fk”)mlzp_ (55) m independent ofp such that for|[A(0). x(0)]] < ¢/ pt/mt
h et for lyelleo + g lleo + -+ + 15 [l < e/u"/™12", for ||d]| <
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c/p/™12" " and for any0 < u < p* we have where

1) All the signals of the closed loop are bounded.

2) The tracking error is proportional to the size of perturbations Vr = lyrlloe + llgelloe- (76)
T e From (71) and (75) we obtain
/ (y(t) =y, (1)) dt (71) (7%)
t . ;
T , o] < elllxll+ Yr + lldlloo) @7
<g+ c/ (u® + d(t)* + d(t)?) dt. (65)
¢ With (77), (69), and (70) we get
We point out that andg are positive constants independentuof . o
d, andd; only g depends on initial conditions. V-5V +28 (78)
for
IV. ROBUSTNESSPROPERTIES WITHA PROPER Il < -=., Y, < % [P — (79)
In this section we suppose that is proper, that is, its relative a z z

degree is zero. The stability result is qualitatively the same as for thg conclude thal” is uniformly bounded, we need to have
caseA improper. Our aim in this section is to give a better estimate

of the region of attraction, the allowable disturbances, and reference A/ .
! e : ) 43 c
signals. Similarly to Section Ill we introduce an augmented Lyapunov m < ﬁ (80)
function as in (31). Define the statg as T
Vs = Asvs + bszy which can be guaranteed for
1 1 ;
(1555 ~ T ) = Q0 O = (66) o < olldlle) (81)
Note that the proper transfer functiaty(1+ pA) is stable and Wheregp is a continuous scalar function verifying
the term1/(1 + p20o) is well defined for sufficiently small.. We - L
introduce the final Lyapunov function for our closed-loop system as p()>0 and  lim p(x)=0. (82)

1
ko

+ qgllzTle/z + CJ3V3TP3V3-

. . e~ 1~ -
V=V,+—nFPn+ k—()P[,C + qivl Py
¢
(67)

Observe that” is a quadratic function” = T P, x of the vector

T T T

X:(ZT&(C‘ s 7 1< ﬂulTaygﬂ'/V??ﬂévéT)T' (68)
Similarly to Section Ill we obtain
V < —aV 4 84 p2c((Als 4 an_1)i1)* + (AZ1)?).  (69)

From (30), (33), and noting that; = 0 for j > 2 and<,; = 0 for
j > 1 it follows that

A(s+ an—1)T1 = vi1 +si0(z1 — prer — pAy, —d) + 11215

(70)
AFy = vo1 + so0(21 — pver — pAy, — d).
Using (4), (5), (30), and (40) fof = 1 we obtain
T1r = he + phvi + h/_\m+2 + hn+ hzi + K. (71)

From (71) it can be seen that the tefais+a,, 1 )% in (70) contains

the state\,.1». Thus, this term cannot be directly cancelled-byV

The boundedness of the controland the vectors. andzx is shown
as in [4, Sec. 10.2.2]. The asymptotic performance is as in (64). We
now state the main result of this section

Theorem 4.1: Consider the plant (1) subject to Assumptions
1.1-1.4 and the adaptive controller composed of the control law
(22) and the parameter update law (23). Af is proper, then
there exist positive constantsu*, ¢, and g independent ofy,
d, and d such that for||x(0)|| < ¢/\/m, for ||d]|ec < ¢/ &p, for
lyrllso + [l9rlloe < ¢/ & and for any0 < p < p*, we have the
following.
1) All the signals of the closed loop are bounded.
2) The tracking error is proportional to the size of perturbations

T )
/ (y(t) — yr(t))" dt

~t+1 ) . .

< g—l—c/ (1* 4 d(t)* 4 d(1)?) dt. (83)
t

V. ROBUSTNESSPROPERTIES WITHA STRICTLY PROPER

In this section we suppose that the transfer functions strictly
proper. The Lyapunov functio for the closed-loop system is

in (69). The aim of the subsequent analysis is to express this stateléfined as in (31). The derivativié is computed as in (25). Using

terms of the vector. From (4) and (66) we have

xry = mzl + V31 + K. (72)
With (72) and (40) forj = 1 we get
Ant1 = hi) + he + hzy + hé + hus + k. (73)
Using (22) we obtain
Mg = 220 + a1 + Ao (74)
Combining (74), (73), and (41) it follows that
Ama] < elllxll + Ve + [ld]leo)
Nz] < elIxll + Y+ lld]l ) (75)

(30) and noting that,; = 0 for j > 1 and¢; = 0 for j > 0,
we obtain
A5+ an—1)F1 = S1o(21 — pvor — pAy, —d) +viy (84)
Ai‘l = V21.

From (84) and (36) it follows that

V< —%v +28 (85)
for sufficiently smallyi. From (85) we conclude thdt” is globally
uniformly bounded. The boundedness of the vectorand & and
the controlu can be shown as in [4, Sec. 10.2.2]. The asymptotic
performance is as in (64). We now state the main result of this section.
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Theorem 5.1: Consider the plant (1) subject to Assumption®btained foru = 0). Moreover, it is assumed thdtis continuous in
1.1-1.4 and the adaptive controller composed of the control lavneighborhood’ of the zero inR™ and satisfies
(22) and the parameter update law (23)Alfis strictly proper, then
there exist positive constanis’, ¢, andg independent of:, d, and sup | (2)lp
d such that for every) < u < p* we have the following. seU—{0} |xlp

1) All the signals of the closed loop aggobally bounded.
2) The tracking error is proportional to the size of perturbations The following are proven.
4T ‘ AT L ‘ 1) 3, is locally {,-reachable (and globally,-reachable iU =
/ (y(t) — g (1)) dt < g+ C/ (n* 4+ d(t)* + d(t)?) dt. R"; see Proposition 6 in the above-mentioned phper
¢ ¢ 2) The input—output operator associated with is locally /,,-

<1. @)

86 . I
(86) stable (and globally,-stable if U = R"™; see Proposition
™.
REFERENCES 3) Consider more generally a nonlinear time-invariant system
[1] A. Feuer and A. S. Morse, “Adaptive control of single-input single- ¥ such that zero is an equilibrium point for the associated
output linear systems,|IEEE Trans. Automat. Contr.vol. 23, pp. unforced system. IE is locally (respectively, globally},-
557-569, 1978. , _ reachable, locally (respectively, globalli)-observable, and
2] E"\]A"J?e"’:ﬂinczlf:;? ‘]l'gsgg'ROb“St Adaptive Control Englewood Cliffs, if the associated input—output operator is locally (respectively,
[3] M. Krsti¢, I. Kanellakopoulos, and P. V. Kokotdvi“Nonlinear design globally) 7,-observable, then zero is a locally (respectively,
of adaptive controllers for linear system$2EE Trans. Automat. Conir. globally) asymptotically stable equilibrium point for the un-
vol. 39, pp. 738-752, 1994. ) ] forced system (see Proposition)4
[4] FQS Nonlinear and Adaptive Control DesignNew York, Wiley, 4) ¥, is globally /,-observable (see Propositioh)G
[5] Z.-H. Li, C. Wen, and C.-B. Soh, “Robustness of Krstic's new adaptive 5) Zerc_).ls _a Iocal_ly (globally it = R") asymptotlc_ally stable
control scheme,” inProc. IFAC Symp. Nonlinear Contr. Syst. Design equilibrium point for the unforced system associated With
Tahoe City, CA, 1995. (see Proposition 'g.

[6] A. S. Morse, “High-order parameter tuners for the adaptive control poark 1: From the above list, 3) has been established indepen-
of linear and nonlinear systems,” iRroc. U.S.-ltaly Joint Seminar

“Systems, Models and Feedback: Theory and Applicati@apri, Italy, dently in [2] in the continuous-time case; see, also, [1, Th. 2]. In the
1992. global continuous-time case, this result was established in [3].

[7] S. M. Naik, P. R. Kumar, and B. E. Ydstie, “Robust continuous-time The point is that 4) is erroneous, as shown by the following linear
adaptive control by parameter projectiofEEE Trans. Automat. Contr. example:
vol. 37, pp. 182-197, 1992.

[8] Y. Zhang and P. A. loannou, “A robust modification of a new class

of adaptive controllers,” iProc. 1995 American Control ConfSeattle, y(t+1) = Ay(t) + By(t — 1) + u(t). (3)
WA, pp. 2510-2514.
(e] ﬁécSéj?#'féégdcgﬁrfmé’:;g%i(gn’éogggiriz(;&bgﬁei‘:gpﬂ‘/’f igggm’ In the linear case, indeet},-observability is equivalent to the usual
op. 3941-3946. ' T ' observability (see Proposition 3 in the above-mentioned pPapkr
[10] —, “Robustness and performance of nonlinear adaptive contrdl,” is easy to verify that (3) is not necessarily observable if the matrix
J. Adaptive Contr. Signal Processinp be published. A is singular.

In what follows, it is proved that

i) 3) can be improved, replacing,-observability by a novel
notion called!,,-constructibility. In the linear case, this notion
is equivalent to the usual constructibility;

ii) 4) must be replaced by the following propositiox, is
globally 7, -constructible;

iii) and therefore, 5) is true.

Correction to “Local [,-Stability and Local Small
Gain Theorem for Discrete-Time Systems”

Henri Bourks

I. INTRODUCTION Il. 7,-CONSTRUCTIBILITY AND |TS USE

Section VI of the above-mentioned papepntains an error. The  Consider the time-invariant nonlinear syst&indefined by
following systemX; is considered:

y(t+1) = fy(t =)oyt = Dsy) +u(y ) "EFD=T00.0)
y(t) = g(a(t), u(t)), x(t) € R", u(t) € R™, y(t) € R?
where y(t) € R? andu(t) € R?. The statex(t) is defined by y(t) = o((t), u(0) “lr € ue) € v e 4
2(t) = (y(t = h),o.y(t — 1),y(H)) € B” with n = g(h + 1). @
The functionf is assumed to satisfy(0) = 0 so that zero is an

equilibrium point for the unforced system associated viith (and Where f andg are continuous and satisf§(0,0) = 0,4(0,0) = 0.
Let us denote a®(¢,to,xo,u) the statex(¢) satisfying (4) with
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